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Tutorial #12

Problem 1 Let V = {1, 2, . . . , n}. How many different (simple, undirected)
graphs with vertex set V are there?

Solution 1 The edges of G are subsets of V with two elements. Hence, the

answer is 2(n2).
See details at: http://www.maths.lse.ac.uk/Personal/jozef/MA210/

06sol.pdf

Problem 2 Let G1 = (V1, E1) and G2 = (V2, E2) be two simple graphs
given by:

V1 = {1, 2, 3, 4, 5, 6} and E1 = {{1, 2}, {2, 3}, {3, 1}, {4, 5}, {5, 6}, {6, 4}},

and

V2 = {a, b, c, d, e, f} and E2 = {{a, b}, {b, c}, {c, d}, {d, e}, {e, f}, {f, a}},

1. Let G = (V,E) and H = (W,F ) be two isomorphic simple graphs.
Let f be a one-to-one correspondence from V to W realizing that
isomorphism. Let X be a non-empty subset of V . Let GX be the
subgraph of G induced by X. Let Y = f(X) be the image of X in
W . Let HY be the subgraph of H induced by Y . Prove that the the
graphs GX and HY are isomorphic.

2. Are G1 and G2 isomorphic? Justify your answer.

Solution 2

1. We need to prove the following statement: For every v, u ∈ X, with
u 6= v, we have:

{v, u} is an edge of GX if and only if {f(v), f(u)} is an edge of HY .

So, let v, u ∈ X, with u 6= v. Since G and H are isomorphic The
following statement is already true:

{v, u} is an edge of G if and only if {f(v), f(u)} is an edge of H.
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By definition of GX , we have:

{v, u} is an edge of G if and only if {v, u} is an edge of GX

Since f(v) and f(u) belong to Y , by definition of HY , we also have:

{f(v), f(u)} is an edge of H if and only if {f(v), f(u)} is an edge of
HY .

Combining the last 3 equivalence yields the desired one.

2. We apply the result of the previous question. We note that {1, 2, 3} in-
duces on G1 a subgraph which is isomorphic to the complete graph K3.
But no subgraph of G2 is isomorphic to K3. Indeed, G2 is isomorphic
to the cycle C6.

Problem 3 Let G1 = (V1, E1) and G2 = (V2, E2) be two isomorphic simple
graphs.

1. Show that if one is a complete bipartite graph, then the other is also
a complete bipartite graph.

2. Show that if one is bipartite, then the other is also bipartite.

3. Show that if one is connected, then the other is also connected.

Solution 3

1. Assume that G1 is a complete bipartite graph, with “colors” B (for
blue) and R (for red). That is, {B,R} is a partition of V1 so that for
every u, v in V1 we have:

{v, u} is an edge of G if and only if (u, v) ∈ R×B ∪B ×R.

In other words, the edges of G1 connect the red and blue vertices.

Let f be a one-to-one correspondence from V1 to V2 realizing that
isomorphism between G1 and G2. Hence, for every u, v in V1 we have:

{v, u} is an edge of G1 if and only if {f(v), f(u)} is an edge of G2.

Clearly, {f(B), f(R)} is a partition of V2. Moreover, f realizes a one-
to-one correspondence between B and f(B) as well as a one-to-one
correspondence between R and f(R). Therefore, for every u, v in V1

we have:
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(u, v) ∈ R×B ∪B ×R if and only if
(f(u), f(v)) ∈ f(R)× f(B) ∪ f(B)× f(R)

Putting everything together, we have for every u, v in V1:

{f(v), f(u)} is an edge of G2 if and only if
(f(u), f(v)) ∈ f(R)× f(B) ∪ f(B)× f(R)

In other words, the edges of G1 connect vertices from f(B) to vertices
from f(R). Therefore, G2 is a complete bipartite graph.

2. The proof is similar to the previous one. One can use the following
characterization of a bipartite graph: there is a partition {B,R} of
the vertex set so that the induced graphs GR and GB have no edges.

3. The proof is similar to the previous one. One can use the following
characterization of a connected graph. The simple graph G = (V,E)
is connected if for v, u ∈ V , with u 6= v, there is a path from u to v.

Problem 4 For each of the following two graphs, determine whether or
not it has an Euler circuit. Justify your answers. If the graph has an Euler
circuit, use the algorithm described in class to find it, including drawings of
intermediate subgraphs.

Solution 4

1. First, consider the graph on the left. Every node has an even degree,
hence there exists an Euler circuit, say from a to a. We use the
algorithm seen in class. Observe that the following circuits partition
of the set of the edges:

(a, b, d, e, a), (b, c, e,b), (c, d, c), (a, e,a).
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From there we deduce am Euler circuit from a to a, by first merging
the first two elementary circuits:

(a,b, c, e,b, d, e, a), (c, d, c), (a, e,a).

Then, adding the two circuits of length 2 yields the Euler circuit:

(a, b, c, d, c, e, b, d, e, a, e, a)

2. Second, consider the graph on the right. Every node has an even
degree, except a and d. Hence there exists an Euler path from a to d.
Removing the edge (a, f) we build an Euler circuit around a. Using
the algorithm, we have the following circuits partition of the set of the
edges:

(a, b, d, c, a), (b, e, c, e, b).

From there we deduce am Euler circuit from a to a:

(a, b, e, c, e, b, d, c, a)

and an Euler path from a and d:

(a, b, e, c, e, b, d, c, a, d)

Problem 5 For each of the following two graphs, determine whether or
not it has an Euler circuit. Justify your answers. If the graph has an Euler
circuit, use the algorithm described in class to find it, including drawings of
intermediate subgraphs. If the graph has an Euler path, use the algorithm
described in class to find it, including drawings of intermediate subgraphs.
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Solution 5 1. Removing (b, c) makes every degree even. Now we build
an Euler circuit around b. We start with b, i, h, a, b We insert at i
the Euler circuit around i: i, c, d, e, j, d, g, i We insert at a the Euler
circuit around a: a, d, i, a.

2. Every degree even, hence there exists an Euler circuit. Now we build an
Euler circuit around a. We start with the “frontier” : a, b, c, d, e, j, o, n,m, l, k, f .
Next, we go around b using 4 vertical edges and the circular edges. We
are left with two triangles
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