$\rm UWO\ CS2214$

Tutorial #2

Problem 1 Suppose the variable x represents students, y represents courses, and T(x, y) means "x is taking y". Translate the following statements into the language of predicate logic using these variables, predicate, and any needed quantifiers.

- 1. Every course is being taken by at least one student,
- 2. Some student is taking every course,
- 3. No student is taking all courses,
- 4. There is a course that all students are taking,
- 5. Every student is taking at least one course,
- 6. There is a course that no students are taking,
- 7. Some students are taking no courses,
- 8. No course is being taken by all students,
- 9. Some courses are being taken by no students,
- 10. No student is taking any course.

Solution 1

- 1. $(\forall C)(\exists S) \ T(S,C),$
- 2. $(\exists S)(\forall C) \ T(S,C),$
- 3. $(\forall S)(\exists C) \neg T(S, C),$
- 4. $(\exists C)(\forall S) \ T(S,C),$
- 5. $(\forall S)(\exists C) \ T(S,C),$
- 6. $(\exists C)(\forall S) \neg T(S,C),$
- 7. $(\exists S)(\forall C) \neg T(S, C),$
- 8. $(\forall C)(\exists S) \neg T(S,C),$

- 9. $(\exists C)(\forall S) \neg T(S,C),$
- 10. $(\forall S)(\forall C) \neg T(S, C)$.

Problem 2 Prove that the following is true for all positive integers n: "n is even if and only if $3n^2 + 8$ is even".

Solution 2

• We first prove that if n is even then so is $3n^2+8$. Hence we assume that n is even and deduce that $3n^2+8$ is even as well. The assumption means that there exists an integer k such that n = 2k holds. This leads to

$$3n^{2} + 8 = 3(2k)^{2} + 8 = 12k^{2} + 8 = 2(6k^{2} + 4).$$

Letting $k' = 6 k^2 + 4$, we have established that there exists an integer k' such that $3 n^2 + 8 = 2 k'$, that is, the integer $3 n^2 + 8$ is even.

• We then prove that if $3n^2 + 8$ is even then so is n. We prove the contrapositive. Hence we assume that n is odd and deduce that $3n^2+8$ is old as well. The assumption means that there exists an integer k such that n = 2k + 1 holds. This leads to

$$3n^{2}+8 = 3(2k+1)^{2}+8 = 12k^{2}+12k+11 = 2(6k^{2}+6k+5)+1.$$

Letting $k' = 6k^2 + 6k + 5$, we have established that there exists an integer k' such that $3n^2 + 8 = 2k' + 1$, that is, the integer $3n^2 + 8$ is odd.

Problem 3 Show that

$$((p \to q) \land (q \to r)) \to (p \to r) \equiv T$$

i.e. that the compound proposition on the left of \equiv is a tautology. You should do it in two different ways using

(a) truth tables

(b) logical equivalences

HINT: first replace all " \rightarrow " using $a \rightarrow b \equiv \neg a \lor b$. Then, use Morgan's laws and other standard logical equivalence laws (slides 50-54 in propositional logic).

Solution 3 Our proposed solution combines both types of techniques. We have the following equivalences:

$$\begin{array}{ccc} ((p \to q) \land (q \to r)) \to (p \to r) & \iff \\ ((\neg p \lor q) \land (\neg q \lor r)) \to (\neg p \lor r) & \iff \\ \neg ((\neg p \lor q) \land (\neg q \lor r)) \lor (\neg p \lor r) & \iff \\ \neg (\neg p \lor q) \lor \neg (\neg q \lor r) \lor (\neg p \lor r) & \iff \\ (p \land \neg q) \lor (q \land \neg r) \lor (\neg p \lor r). & \iff \end{array}$$

We shall prove now that the latter proposition (in the above chain of equivalences) is a true whatever are the truth values of p, q and r. We proceed by case inspection.

- 1. Consider the first parenthesized expression, namely $(p \land \neg q)$. Observe that if p = true and q = false, then the whole proposition is true, whatever is r.
- 2. Assume now that either p = false or q = true:
 - if p = false, then $(q \land \neg r) \lor (\neg p \lor r)$ is true, whatever is r,
 - if q =true, then $(q \land \neg r) \lor (\neg p \lor r)$ is true, whatever is r.

Finally, whatever are p, q, r, the formula is true. This concludes the proof.

Problem 4 Give a direct proof of the following: "If p is a prime number larger than 2 then p^2 is odd".

Clearly separate the hypotheses from the conclusion and provide detailed justification for your answer.

Solution 4 Assume that p is a prime number larger than 2. Let us prove that p^2 is odd. We saw in class that if an integer number is odd, then so is is square. The prime p (being greater than 2) is odd. Hence p^2 is odd.