UWO CS2214

Tutorial #7

Problem 1 Let a,b,c,m be four positive integers with m > 1. Assume
that ¢ has an inverse modulo m. Prove that if each of b and ¢ is an inverse
of a modulo m then we have: b=¢ mod m .

Solution 1 Let us assume that each of b and ¢ is an inverse of ¢ modulo
m. Thus, we have

ab=1 modm and ac=1 mod m.
This implies
ab = ac mod m.
That is:
a(b—c) =0 mod m.

In other words, m divides a(b — ¢). Since a has an inverse modulo m, we
have:

ged(a,m) = 1.
Therefore, m divides b — ¢, that is:

b=c¢ mod m.

Problem 2 Let a,b, m be three positive integers with m > 1. Consider the
function f from Z,, to Z,, defined by

f(p) = ap+b mod m

1. Prove that f is injective if and only a and m are relatively prime.

2. Prove that if @ and m are relatively prime, then f is surjective. Is the
converse true?

3. When a and m are relatively prime, what is the inverse function of f?

Solution 2
1. f injective means that for all p,q € Z,, we have

flp)=f(@ — p=q modm.



The equation f(p) = f(q) is equivalent to:
ap+b=aq+b mod m,
that is:
a(p—¢) =0 mod m.

Therefore, f injective means that for all p,q € Z,, we have

a(p—q) =0 modm — p=gq modm.
In other words:

m divides a(p — q) — m divides (p — q)

This proves that if @ and m are relatively prime, then f is injective.
Now, suppose that f is not injective. Then, there exists p,q € Zp,,
with p # ¢ and m divides a(p — ¢). Because 0 < p — ¢ < m holds, we
cannot have ged(a, m) = 1, otherwise m would divide p — q.

2. Assume that a and m are relatively prime and let us prove that f

is surjective. Since a and m are relatively prime, we know that f is
injective. Now observe that the domain and the codomain of f are the
same finite set Z,,. Since f is injective, the images f(p) for all p € Z,,
are disctint and thus there are m of them. Since the codomain of f is
Zm, necessarily, every element of Z,, must have a pre-image in Z,, by
f, thus f is surjective.
The converse is true and this can be proved by a similar reasoning:
if @ and m are not relatively prime, then f is not injective and two
different elements p, g € Z,, have the same image. Hence, at least one
element of Z,, does not have a pre-image by f in Z,,, that is, f is not
surjective. The key point here is that the domain and the codomain
of f are the same finite set Z,.

3. Assume that a and m are relatively prime. Then, there exists ¢ € Z,,
such that ac =1 mod m. The inverse function f~! of f is given by

f~Hq) = ¢(g = b) mod m.

Problem 3 Find s,t, and ged(a,b) such that sa + tb = ged(a, b) holds in
the following cases:

1. a=2and b=3,

2. a=11and b =12,

3. a=12 and b = 15,



4.

a=3and b=7,

Solution 3

1. =1 x2+1x3=1=gcd(a,b),

2. —1x114+1x 12 =1 = ged(a,b),

3. —1x 1241 x 15 =3 = ged(a,b),

4. —2x3+1x7=1=ged(a,b),.

Problem 4

1. Find all integers = such that 0 < 2 < 21 and 42 4+ 9 = 13 mod 21.
Justify your answer.

2. Find all integers x and y suchthat 0 <z <21, 0<y < 21,242y =4
mod 21 and 3z —y = 10 mod 21. Justify your answer.

3. Find all integers x such that 0 < z < 21, 2 =2 mod 3 and z =6
mod 7.

Solution 4

1. We have 4 x 5 = —1 mod 21. Thus, we have 4 X 16 = 1 mod 21,
since 5 = —16 mod 21. That is, 16 is the inverse of 4 modulo 21. We
multiply by 16 each side of:

4r +9 =13 mod 21,
leading to:
z+9x16=16 x 13 mod 21,
that is:
x=16(13-9) mod 21,
which finally yields: z =1 mod 21.

2. We eliminate y in order to solve for x first. Multiplying 3x —y = 10
mod 21 by 2 yields 6z — 2y = 20 mod 21. Adding this equation
side-by-side with = + 2y = 4 mod 21 yields 7z = 3 mod 21. Since
3x7=0 mod 21, wehave 0x =9 mod 21, which is false. Therefore,
the input problem has no solutions for x and consequently no solutions
for y.

3. We apply the Chinese Remainder Theorem. We have m = 3, n =7,

a=2,b=06. We need s and t such that sm +tn = 1, hence we can
choose s = —2 and t = 1. Then, we have

c=a+(b—a)sm=2+(6—2)x —2x3=20 mod 21.



Problem 5 (Modular exponentiation) When dealing with congruences,
an important question is that of modular exponentiation, that is, computing

an expression of the form a™
positive integers.

mod m where a is an integer and m,n are

1. Assume that n is even and at least equal to 2. Let r be the remainder

of the division of a2 by m. Prove that we have a™ = r

2 mod m.

2. Assume that n is odd and at least equal to 3. Let r be the remainder

of the division of "z by m. Prove that we have a" = (ar?) mod m.

3. Use the previous questions in order to compute 4** mod 60 without
using any computer.

Solution 5

1. Indeed, using Tutorial 6, we have

3. We have
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xa 2 xa=rxrxa=(ar?) mod m.

applying(2)

applying(1)

applying(1)

applying(2)

using4? = 16 mod 60
using4® =4 mod 60
using4? = 16 mod 60
using4® =4 mod 60
using4® =4 mod 60zs

Problem 6 (RSA) Let us consider an RSA Public Key Crypto System.
Alice selects 2 prime numbers: p = 5 and ¢ = 11. Alice selects her public
exponent e = 3 and sends it to Bob. Bob wants to send the message M = 4

to Alice.

1. Compute the product n = pgq



2. Is this choice for of e valid here?
3. Compute d , the private exponent of Alice.

4. Encrypt the plain-text M using Alice public exponent. What is the
resulting cipher-text C'?

5. Verify that Alice can obtain M from C, using her private decryption
exponent.

Solution 6
1. We have n = pg = 55.

2. We have ged(r, (p—1)(g — 1)) = ged(3,40) = 1, hence e = 3 is a valid
choice (note that 3 is a prime number, any way).

3. Alice’s private exponent d satisfies de =1 mod (p — 1)(q¢ — 1), hence
3d =1 mod 40, which gives d = 27 since 3 x 27 =81 =14 2 x 40.

4. Bob sends: C = M€ mod n =43 mod 55 =64 mod 55 =09.

5. Alice receives C and computes C¢ mod n = 927 mod 55 = 4. To
compute 927 mod 55 by hand, one can proceed as in the previous

problem:

927 = (9%)29 mod 55 applying (2)

92" = ((99)29)?9 mod 55 applying (2)

927 = (((9%)29%29)29 mod 55  applying (1,2)

927 = (((26)%9%)29)29 mod 55 using 92=26 mod 55

92" = ((16 x 92)29)29 mod 55 using 26% =16 mod 55
92" = ((16 x 26)29)29 mod 55 using 92 =26 mod 55

92" = ((31)29)29 mod 55 using 16 x 26 =31 mod 55
927 = (26 x9)%9 mod 55 using 312 =26 mod 55
92" = (14)29 mod 55 using (26 x 9) =14 mod 55
927 = 31x9 mod 55 using 142 =31 mod 55
927 = 4 mod 55 using 31 x9=4 mod 55

Problem 7 (Functions and matrices) Consider the set of ordered pairs
(x, y) where x are y are real numbers. Such a pair can be seen as a point
in the plane equipped with Cartesian coordinates (z, y).



1. For each of the following functions Fi, Fy, F3, Fy, determine a (2 x 2)-
matrix A so that the point of coordinates (z y) is sent to the point

(' ') when we have
(v)-2(}) 2

where

(a) Fi(z,y) = (y,z)

(b) Fa(z,y) = (54, 5Y)
(c) F3(x,y) = (v, —y)

(d) Fu(z,y) = Fi(F3(2,y))

2. Determine which of the above functions F1, Fy, F3, Fy is injective? sur-
jective? Justify your answer.

Solution 7

( ) (y1,71) = (y2,22) holds then we have (z1,y1) =
Y2)
/

, hence F is injective. F) is also surjective since we have

y) =y,
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2. A= < [ > F5 is not injective. Indeed, if x = —y then Fy(z,y) =

w

(0,0); thus 3many points like (1, —1), (2 — 2) have the same image by
F5. F is not injective. Indeed, for a point (a,b) to have a pre-image
by Fb, it must satisfy 3b = 2a; thus many points like (1, —1), (2 — 2)
do not have a pre-image by F.

3. A= < (1) _01 ) If (z1, —y1) = (w2, —y2) holds then we have (z1,y1) =

(mg,yg) hence F3 is injective. F3 is also surjective since we have
B ) = @),

4. We have Fy(x,y) = F1(F3(z,y)) = (—y,x) and we have A = < (1) _01 >

Since F; and F3 are both injective, it follows that Fy is injective as
well. Similarly, since F; and F3 are both surjective, it follows that Fy
is surjective as well.



