UWO CS2214

Tutorial \#8

Problem 1 (Summation) Use mathematical induction to show that

$$
\Sigma_{j=0}^{2 n}(2 j+1)=(2 n+1)^{2}
$$

for all positive integers n. Provide detailed justifications for your answer.
Solution 1 We shall prove for an arbitrary positive integer n the property $P(n)$ below holds:

$$
\Sigma_{j=0}^{2 n}(2 j+1)=(2 n+1)^{2}
$$

Basis step: For $n=1$, we have

$$
\Sigma_{j=0}^{2}(2 j+1)=1+3+5=9=(2+1)^{2}
$$

Hence the property $P(n)$ holds for $n=1$.
Recursive step: Let us prove that for all $k \geq 1$ if $P(k)$ holds then so does $P(k+1)$. So let $k \geq 1$, let assume that $P(k)$ holds, that is,

$$
\Sigma_{j=0}^{2 k}(2 j+1)=(2 k+1)^{2}
$$

and let us prove that $P(k+1)$ holds as well, that is:

$$
\Sigma_{j=0}^{2 k+2}(2 j+1)=(2 k+3)^{2}
$$

We have:

$$
\begin{aligned}
\Sigma_{j=0}^{2(k+1)}(2 j+1) & =\sum_{j=0}^{2 k}(2 j+1)+2(2 k+1)+1+2(2 k+2)+1 \\
& =(2 k+1)^{2}+8 k+8
\end{aligned}
$$

Since $(2 k+3)^{2}=(2 k+1)^{2}+8 k+8$, we deduce that $P(k+1)$ holds indeed.

Therefore, we have proved by induction that for all positive integer n, the property $P(n)$ holds.

Problem 2 (Summation) Show by induction that for all $n \geq 1$ we have

$$
\begin{equation*}
\sum_{i=1}^{i=n}(i+1)=\frac{n(n+3)}{2} \tag{1}
\end{equation*}
$$

Solution 2 http://www.csd.uwo.ca/~moreno/cs2214_moreno/tut/Problem_ 1.PDF

Problem 3 (Inequality) Prove by induction that for all $n \geq 3$ we have

$$
\begin{equation*}
4^{n-1}>n^{2} \tag{2}
\end{equation*}
$$

Solution 3 https://www.iitutor.com/mathematical-induction-inequality/
Problem 4 (Inequality) Prove by induction that for all $n \geq 3$ we have

$$
\begin{equation*}
n^{2} \geq 2 n+3 \tag{3}
\end{equation*}
$$

Solution 4 https: // www. csm. ornl. gov/~sheldon/ds/ans2. 3.2.html
Problem 5 (Divisibility) Prove by induction that for all $n \geq 1$ the integer $6^{n}-1$ is divisible by 5 .

Solution 5 http://home.cc.umanitoba.ca/~thomas/Courses/InductionExamples-Solutions. pdf

Problem 6 (Incorrect proof) Here is an incorrect proof of the statement:

All people have the same eye color.
Proof by induction: we prove the statement "All members of any non-empty set of people have the same eye color".

1. This is clearly true for any singleton set, that is, any set with a single element.
2. Now, assume we have a non-empty set S of people, and the inductive hypothesis is true for all smaller sets. Choose an ordering on the set, and let S_{1} be the set formed by removing the first person, and S_{2} be the set formed by removing the last person. All members of S_{1} have the same eye color, and also for S_{2}. However, $S_{1} \cap S_{2}$ has members from both sets, so all members of S have the same eye color.

Explain what is incorrect in the above reasoning.
Solution 6 Let $P(n)$ be the property that any n persons have the same eye color, where n is a positive integer. While $P(1)$ is true, the above reasoning breaks for $P(2)$. Indeed, when applied to $n=2$, this reasoning considers two sets S_{1} and S_{2}, each of which consisting of a single person so that $S_{1} \cap S_{2}$ is empty.

Problem 7 (Counting tree leaves) The set of leaves and the set of internal vertices of a full binary tree are defined recursively as follows:

Basis step: The root r is a leaf of the full binary tree with exactly one vertex r. This tree has no internal vertices.

Recursive step: The set of leaves of the tree $T=T_{1} \cdot T_{2}$ is the union of the sets of leaves of T_{1} and T_{2}. The internal vertices of T are the root r of T and the union of the set of internal vertices of T_{1} and the set of internal vertices $\mathrm{f} T_{2}$.

Use structural induction to prove that $\ell(T)$, the number of leaves of a full binary tree T, is 1 more than $i(T)$, the number of internal vertices of T.

Solution 7 We shall prove that, for an arbitrary full binary tree T, its number of leaves $\ell(T)$ satisfies the property $\mathcal{P}(T)$ below:

$$
\ell(T)=i(T)+1
$$

Basis step: The root r is a leaf and has no internal vertices, that is, $\ell(T)=$ 1 and $i(T)=0$, hence it satisfies $\ell(T)=i(T)+1$.

Recursive step: Let $T=T_{1} \cdot T_{2}$ be a full binary tree built from two full binary trees T_{1}, T_{2}. We shall prove that, if $\mathcal{P}\left(T_{1}\right)$ and $\mathcal{P}\left(T_{2}\right)$ both hold, then so does $\mathcal{P}(T)$. So, let us assume that $\mathcal{P}\left(T_{1}\right)$ and $\mathcal{P}\left(T_{2}\right)$ both hold. By definition of $\ell(T)$, we have:

$$
\ell(T)=\ell\left(T_{1}\right)+\ell\left(T_{2}\right) .
$$

By induction hypothesis, we have:

$$
\ell\left(T_{1}\right)=i\left(T_{1}\right)+1 \text { and } \ell\left(T_{2}\right)=i\left(T_{2}\right)+1
$$

By definition of $i(T)$, we have:

$$
i(T)=i\left(T_{1}\right)+i\left(T_{2}\right)+1
$$

Putting everything together:

$$
\begin{aligned}
\ell(T) & =\ell\left(T_{1}\right)+\ell\left(T_{2}\right) \\
& =i\left(T_{1}\right)+1+i\left(T_{2}\right)+1 \\
& =i(T)+1
\end{aligned}
$$

Hence, we have proved that $\mathcal{P}(T)$ holds.
Therefore, we have proved by induction that for all binary trees we have the number of leaves is 1 more than the number of internal vertices.

Problem 8 Consider the set S of strings over the alphabet $\{a, b\}$ defined inductively as follows:

- Base case: the empty word λ and the word a belong to S
- Inductive rule: if ω is a string of S then both ωb and $\omega b a$ belong to S as well.

1. Prove that if a string ω belongs to S, then ω does not have two or more consecutive a 's.
2. Prove that for any $n \geq 0$, if ω is a string of length n over the alphabet $\{a, b\}$ that does not have two or more consecutive a 's, then ω is a string of S.

Solution 8

1. Let ω be any word over the alphabet $\{a, b\}$. Denote by $P(\omega)$ the property that ω does not have two or more consecutive a 's. Consider first a word ω in the base case. Thus, ω is either λ or a. Hence, the property $P(\omega)$ clearly holds for ω Consider now a word ω obtained by applying the inductive rule. Hence ω is either of the $\omega^{\prime} b$ or $\omega^{\prime} b a$. We want to prove that if $P\left(\omega^{\prime}\right)$ holds then do does $P(\omega)$. Clearly, if ω would have two or more consecutive a 's the same would need to hold for ω, which would be a contradiction. Hence $P(\omega)$ holds.
2. Let $n \geq 0$. Denote by $Q(n)$ the property that any word over the alphabet $\{a, b\}$ with length n not having two or more consecutive a's belongs to S. Consider first $n=0$. The only word of length zero is the empty word λ which (1) does not have two or more consecutive
a's, and (2) belongs to S. Hence $Q(0)$ holds. Let $k \geq 0$. Assume that $Q(0), \ldots, Q(k)$ holds and let us prove that $Q(k+1)$ holds as well. Hence, we consider any word ω with length $k+1$ and which does not have two or more consecutive a's. Either ω has he form $\omega^{\prime} b$ or the form $\omega^{\prime \prime} b a$ where ω^{\prime} has length k and $\omega^{\prime \prime}$ has length $k-1$. Neither ω^{\prime} nor $\omega^{\prime \prime}$ can have two or more consecutive a's. Hence by inductive hypothesis, they belong to S. Thus, by the inductive rule defining S, it follows that $\omega^{\prime} b$ or the form $\omega^{\prime \prime} b a$ belong to S as well. Therefore, we have proved that $Q(k+1)$ holds as well.

Problem 9 (Exponential growth of the Fibonacci numbers) Recall that $F_{0}=1, F_{1}=1$ and that for all $n \geq 2$ we have $F_{n}=F_{n-1}+F_{n-2}$. Prove that $F_{n}>\left(\frac{2}{3}\right)^{n-2}$ for all $n \geq 0$.

Solution 9 Last two slides.

