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Tutorial #9

Problem 1 (Counting tree edges) Use structural induction to prove that
e(T ), the number of edges of a full binary tree T , can be computed via for-
mula

e(T ) = 2(n(T )− `(T ))

where n(T ) is the number of nodes in T and `(T ) is the number of leaves.
Note that a leaf is a tree node that does not have descendants (children
nodes). You can use the following recursive definition for the set of leaves:

Basis step: If a tree has a single node, then it is a leaf (as well as a root).
Recursive step: The set of leaves of the tree T = T1 · T2 is the union of the
set of leaves of T1 and T2.

You can also use the fact that the full binary tree T = T1 · T2 adds two new
edges when connecting T1 and T2 to the new common root. Provide detailed
justification.

Solution 1 We use structural induction

Basis step: If the full binary tree T consists of a single root vertext r then
we have n(T ) = 1, `(T )) = 1 and e(T ) = 0. These values satisfy the
relation:

e(T ) = 2(n(T )− `(T ))

Recursive step: Let T = T1 · T2 be a full binary tree built from two full
binary trees T1, T2 and a root vertext r connected to the root vertices
r1 of T1 and r2 of T2. Thus, the set edges(T ) of edges of T is given by:

edges(T ) = edges(T1) ∪ edges(T2) ∪ {{r, r1}, {r, r2}}.

Hence we have:

e(T ) = e(T1) + e(T2) + 2.

Let us assume that the formula to be proved holds for T1 and T2. Thus
we have:
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e(T1) = 2(n(T1)− `(T1)) and e(T2) = 2(n(T2)− `(T2)).

Note that we have (from the lectures and Tutorial 8):

`(T ) = `(T1) + `(T2) and n(T ) = n(T1) + n(T2) + 1.

Combining the above equations, we deduce:

e(T ) = e(T1) + e(T2) + 2
= 2(n(T1)− `(T1)) + 2(n(T2)− `(T2)) + 2
= 2(n(T1) + n(T2) + 1− (`(T1) + `(T2)))
= 2(n(T )− `(T )).

Therefore, we have proved by induction that for all full binary tree T :

e(T ) = 2(n(T )− `(T ))

Problem 2 Consider all genes (strings with Σ = {A, T,C,G}) of length 10.
1. How many genes begin with AGT?
2. How many genes begin with AG and end with TT?
3. How many genes begin with AG or end with TT?
4. How many genes have exactly four A’s?
5. How many genes have exactly four A’s non-adjacent to each other?

Provide detailed justification for your answers.

Solution 2
1. Each of the 7 remaining characters need to be chosen from 4, leading

to 47 genes.
2. Each of the 6 remaining characters need to be chosen from 4, leading

to 46 genes.
3. We apply the subtraction rule: 48 + 48 − 46.
4. We apply the product rule:

• choose where to place the A’s:
(
10
4

)
,

• choose the 6 remaining characters from {T,C,G}: 36

So the answer is:
(
10
4

)
× 36

Problem 3 (Counting binary strings) Consider all bit strings of length
15.

1. How many begin with 00?
2. How many begin with 00 and end with 11?
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3. How many begin with 00 or end with 10?
4. How many have exactly ten 1’s?
5. How many have exactly ten 1’s such as none of these 1’s are adjacent

to each other?
Provide detailed justifications for your answers.

Solution 3 For every bit string b1b2 · · · b15 each of the bits b1, b2, . . . , b15
can take two values, namely 0 or 1. Applying the product rule, the sum rule
and the subtraction rule,

1. the number of bit strings b1b2 · · · b15 beginning with 00 is 213,
2. the number of bit strings b1b2 · · · b15 beginning with 00 and ending

with 11 is 211,
3. the number of bit strings b1b2 · · · b15 beginning with 00 or ending with

10 is 213 + 213 − 211,
4. the number of bit strings b1b2 · · · b15 with exactly ten 1’s is

(
15
10

)
, that

is, the number of ways of choosing 10 bits among b1, b2, . . . , b15,
5. the number of bit strings b1b2 · · · b15 having exactly ten 1’s such as

none of these 1’s are adjacent to each other is zero. Indeed, in order
to separate each of these ten 1’s from the others, we would need (at
least) nine 0’s.

Problem 4 (Counting permutations) Solve the following counting prob-
lems:

1. How many permutations of the eight letters A,B,C,D,E, F,G,H have
A in the second position?

2. How many permutations of the eight letters A,B,C,D,E, F,G,H have
A in one of the first two positions?

3. How many permutations of the eight letters A,B,C,D,E, F,G,H have
the two vowels after the six consonants?

4. How many permutations of the eight letters A,B,C,D,E, F,G,H nei-
ther begin nor end with D?

5. How many permutations of the eight letters A,B,C,D,E, F,G,H do
not have the vowels next to each other?

Provide detailed justifications for your answer.

Solution 4
1. Choose a letter to be the first one and then choose a permutation of

the remaining six: 7× 6! = 7!.
2. Choose where to place A, then choose a permutation of the remaining

seven: 2× 7!.

3



3. Choose a permutation of the consonants, then a choose a permutation
of the vowels: 6!× 2!.

4. Choose a place for D, then choose a permutation of the remaining
seven: 6× 7!.

5. 7× 2!× 6! do have the vowels next to each other, so 8!− 7× 2!× 6! do
not have the vowels next to each other.

Problem 5 (Counting triominos) We saw in class that every 2n × 2n

board, with one square removed, could be covered with triominos. Deter-
mine a formula counting the number of triominos covering such a truncated
2n × 2n board. Prove this formula by induction.

Solution 5

Basis step: if n = 1, then 2n × 2n − 1 = 3 and a single triomino suffices

Recursive step: Let t(n) be the number of triomino needed to cover a
truncated 2n× 2n board. We want to express t(n+ 1) as a function of
t(n). So, consider a truncated 2n+1×2n+1 board. Removing one square
from one the four quadrants and removing three squares forming a
triomino from the other three yields:

t(n + 1) = 4t(n) + 1.

This suggests:

t(n) = 4n−1
3 ,

which is easy to verify by induction.

Problem 6 (Pigeonhole principle and combinatorial proofs)

1. Let S be a subset of N (where N is the set of non-negative integers)
such that S has at least 3 elements. Prove that there exist at least
two elements s, y of S so that x + y is even.

2. Let S be a subset of N×N such that S has at least 5 elements. Prove
that there exist at least two elements (x1, x2) and (y1, y2) in S so that
x1 + y1 and x2 + y2 are both even.

3. Prove that, in the previous question, one can not replace that 5 by 4
while preserving the same conclusion.
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Solution 6

1. The sum of two integers of the same parity gives an even integer. We
classify the elements of S into two classes even and odd integers. Since
there are at least three elements in S one of the two classes contains at
least two elements. There are therefore in S two integers of the same
parity.

2. We reproduce the same reasoning but this time we make 4 classes.

(a) PP couples whose two components are even

(b) PI the couples whose first component is even and the second
component is odd

(c) IP the couples whose first component is odd and the second com-
ponent is even

(d) II couples whose two components are odd.

As soon as we have 5 elements, we are sure that there is at least one
class that contains two elements. Now the sum of two elements of a
class gives a couple whose two components are even. This confirms
that from 5 elements we are sure of the existence of the two desired
couples.

3. considering the part S = (0, 0), (0, 1), (1, 0), (1, 1) we see that 4
couples do not allow to ensure existence.
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