RSA and Public Key
Cryptography

Chester Rebeiro
IIT Madras

STINSON : chapter 5, 6

Ciphers

* Symmetric Algorithms
— Encryption and Decryption use the same key
— l.e. Kg =K,
— Examples:

* Block Ciphers : DES, AES, PRESENT, etc.
e Stream Ciphers : A5, Grain, etc.

 Asymmetric Algorithms
— Encryption and Decryption keys are different
— K¢ # K
— Examples:

* RSA
* ECC

Asymmetric Key Algorithms

~
m
~

Alice untrusted communication Iink| Bob o
Ef #%AR3Xf341S “Attack at Dawn!!”
Plaintext encryption (ciphertext) decryption

“Attack at Dawn!!”

The Key K is a secret
Encryption Key K; not same as decryption key K

K. known as Bob's bublic ke Advantage : No need of secure
KE : s P v; key exchange between Alice and
p is Bob’s private key Bob
0

Asymmetric key algorithms based on trapdoor one-way functions

One Way Functions

* Easy to compute in one direction
* Once done, it is difficult to inverse

Press to lock Once locked it is
(can be easily done) difficult to unlock
without a key

Trapdoor One Way Function

* One way function with a trapdoor

* Trapdoor is a special function that if possessed can be used to
easily invert the one way

Lor
trapdoor

Locked
(difficult to unlock) Easily Unlocked

Public Key Cryptography
(An Anology)

* Alice puts message into box and locks it

 Only Bob, who has the key to the lock can open it and read
the message

Mathematical Trapdoor One way
functions

 Examples

— Factorization of two primes
* Given P, Q are two primes
e andN=P*Q
— Itis easy to compute N
— However given N it is difficult to factorize into P and Q

* Used in cryptosystems like RSA

— Discrete Log Problem
* Consider b and g are elements in a finite group and b* = g, for some k
 Given b andk itis easy to compute g
* Given b and gt is difficult to determine k
e Used in cryptosystems like Diffie-Hellman
* Avariant used in ECC based crypto-systems

Applications of Public key
Cryptography
* Encryption
* Digital Signature :
“Is this message really from Alice?”
* Alice signs by ‘encrypting’ with private key
* Anyone can verify signature by ‘decrypting’ with Alice’s public key

 Why it works?
— Only Alice, who owns the private key could have signed

encrypt decrypt
with _ with
hash Alice’s Secret Key [Alice’s Public Key
| | Signature o .
™ RS S —— = Verity
g 1
"
Hello Bob!!! " prsgesannmasssanns i
essage
- = ‘I hash function / Bob

Applications of Public key

Cryptography
e Key Establishment : ey Exchanee

“Alice and Bob want to use a block cipher for encryption. How
do they agree upon the secret key”

@ Alice and Bob agree upon a prime p and a generator g.
P 3 This is public information

choose a secret a choose a secret b

compute A=g@mod p compute B = g° mod p
B
Compute K= B2 mod p Compute K= AP mod p

AP mod p = (g?)®* mod p = (g®)? mod p =B?mod p

RSA

Shamir, Rivest, Adleman (1977)

10

More Number Theory

Mathematical Background

11

RSA : Key Generation

Bob first creates a pair of keys (one public the other private)

1. Generatetwo largeprimes p,q (p # q)

2.Computen = pxq and ¢(n) =(p—-1)(g—1)
3. Choosearandomb (1< b < ¢(n))and gcd(b, p(n)) =1

4.Computea = b~ mod(¢(n))

Bob's public keyis (n,b)
Bob's privatekeyis(p,q,a)

Given the private key it is easy the
public key

Given the public key it is difficult to
derive the private key

12

RSA Encryption & Decryption

s

Encryption Decryption

— v =x"mod
e.(x)=y=x"mod n d, (x)= y* modn

wherex € Z,

13

RSA Example

1. Taketwoprimesp =653andg =877
2. n=653x877=572681; ¢(n) =652x876 =571152
3. Choose public key b =13; note that gcd(13,571152) =1

4. Privatekeya =395413 =13" mod 571152

Message x =12345
encryption : y =12345" mod 572681 = 536754
decryption: x = 536754*" mod 572681 =12345

14

Correctness

i

when x e Z, and ged(x,n) =1

Encryption
e, (x)=y=x"mod n

wherexe Z,

Decryption

d,.(x)=y“modn

y* = (x")* modn
=(x“)modn
— (xt¢(n)

=X

=(x""""Ymodn~

x)mod n

/|

ab = 1mod ¢(n)

ab—-1=tp(n)
/ ab = to(n) +1

/I From Fermat’s theorem

15

Correctness

when x e Z and ged(x,n) # 1

Since n = pg,gcd(x,n) = por gcd(x,n) =gq

if

b
=> x=x" mod n

Assume gcd(n,x) = p
=> p|x=> pk=x

___.ab
x=x"mod p+——" LHS : xmod p = pkmod p=0

ab
x=x""modq - RHS :x”mod p =0

. gcd(p,x) = pitimplies gcd(g,x) =1

(by CRT') x”modg = x"""*" modgq

— xt¢(p)¢(q)+1 modq
— (x¢(q))l‘<0(p) -xmodq

= (1)"”"” . xmod g = x

RSA Implementation

y=x"mod n

Algorithm : SQUARE-AND-MULTIPLY(z, ¢, 1)

z 1
for: + ¢ — 1 downto (

2 +—z2modn
do iff,‘ = 1

then 2 « (z x) mod n
return (z)

¢ =23 =(10111),

O R N W b

N = ==

12* x = x

X** x=x°
X10 * y — y11

x22 * y = y23

17

RSA Implementation in Software
(Multi-precision Arithmetic)

RSA requires arithmetic in 1024 or 2048 bit numbers

Modern processors have ALUs that are 8, 16, 32, 64 bit
— Typically can perform arithmetic on 8/16/32/64 bit numbers

solution: multi-precision arithmetic (gmp library)

/* Structure of the multi-precision number */
typedef struct
{
int sign;
word digits[MAX DIGITS];
tbignum t;

——
base : 2°, where b = 64/32/16/8 bits

'
1024 bits 18

Multi-precision Addition

e ADD:a=9876543210=(2, 76, 176, 22, 234),,
b =1357902468 = (80, 239, 242, 132),,

base = 8 bit (256)

0O 234 132 O 110
1 22 242 1 9
2 176 239 1 160
3 76 80 1 157
4 2 0 0 2

a+b-= (2, 157, 160, 91 110)256
= 11234445678

(110 < 234)?
(9<22)?
(160 < 176)?
(157 < 76)?
(2<2)?

o O r R R

“Computational Number Theory”, Abhijit Das, CRC Press

19

Multi-precision Subtraction

e SUB:a=9876543210 =(2, 76, 176, 22, 234),,
b =1357902468 = (80, 239, 242, 132),,

base = 256 (8 bit)

0 234 132 0 (234<132)? O 102
1 22 242 0 (22<242)? 1 36
2 176 239 1 (176<239)? 1 192
3 76 8 1 (76<80)? 1 251
4 2 0 1 (2<0)? 0 1

a-b=(1,251,192, 36, 102),.,
= 8658640742

Multi-precision Multiplication
(Classical Multiplication)

* MUL:a=1234567

= (18, 214, 135),,

b=76543210 =(4, 143,244, 234),5

base = 8 bit (256)

a*b-=
(0 85 241 247 25 195 102),.,
=99447721140070

a j by aby=(hl)a Operation c
Initialization (0, 0, 0, 0, 0, 0, U)n
135 0 234 (123,102)s Add 102atpesD (D, O, 0, 0, 0, 0,102)g
Add 123atpos1 (0, 0, 0, 0, 0,123,102)p
1T 244 (198,17/2)s AddI72atpesl (0, 0, 0, 0, I, 39,100}
Add 128 atpos 2 (0, 0, 0, 0,129, 39,102)5
3 143 { 75,1050 Add 106 at pos 2 (0, 0, 0, 0,23, 39,1025
Add Thatpos3 (0, 0, 0, 75,234, 39,102}s
3 4 [2, @8)p Add 28at posd (0, 0, 0,103,234, 39,102)n
Add 2atposd (0, 0, 2,103,234, 39,102)5
214 0 234 (195,166} Add 156 at pos 1 (0, 0, 2,108,234,195,102)5
Add 195 at pos 2 (0, 0, 2,104,173,195,102)5
T 244 (200, 24R)s Add 245 at pos 2 (0, 0, 2,100, 165, 195,102)p
Add 203 at pos 3 (0, O, 3, 52,165,195, 102)p
2 143 ([110,138)s Add 138 at pos 3 (0, 0, 3,100, 165,105, 102) 5
Add 119 at pos 4 (0, 0,122,180, 165,195, 102)a
T 4 [3 B8lc Add BSatposd (0, 0,210,190,165,195,102)8
Add 3atpes5 (0, 3,210,190, 165, 195, 102) s
18 0 234 (16,116)s Add 116at pos2 (0, 3,210,191, 25,195,102)p
Add 16 at pos 3 (0, 3,210,207, 25,195,102)a
T 244 [17, 40)s Add 40 at pos 3 (D, 3,210,247, 25,195,102}
Add 1Tatposd (D, 3,227,247, 25,195.102)s
7 143 [10, 14)s Add ldatposd (0, 3,241,247, 25,105,102)p
Add 10at pos 5 (0,13,241,247, 25,105,102)»
T 4 [0 79z Add T2atposh (0,85 341,247, 25,195, 102)p |
Add Oat pos® (0,85, 241,247, 25,185,102} p

21

Multi-precision Multiplication
(Karatsuba Multiplication)

Let a, b be two multiprecision integers with n B —ary words.
Letm=n/2

a=a,B" +a,
b=>bB" +b,
axb=(a,b, B> +(a,b, +ab,)B" +ab,
=(a,b,)B™" + (ahbh +a)b, +(a, —a,)(®, _bz))Bm +ab,

using(a, —a,)(b, —b)) = a,b, —a,b, —a,b, + a,b,

Karatsuba multiplication converts n bit multiplications into 3 multiplications of n/2 bits
The penalty is an increased number of additions

22

Multi-precision Multiplication
(Karatsuba Multiplication)

B = 256;
a = 123456789 = (7, 91, 205, 21),

b = 987654321 = (58, 222, 104, 177),,.;

n=4; m=2
a = (7,91); a = (205, 21)
a = (7, 91)2562 + (205, 21)

b, = (58, 222); b, = (104, 177)
b = (58, 222)2562 + (104, 177)

ahbh = (1, 176, 254, 234)256
a|b| = (83, 222, 83, 133)
a, - bh = -(197, 186)
= -(45, 211)256
(ah] bh) (aI] b|) = (35, 100, 170, 78)
ahbl + albh

= ahbh+ albl B (ah B bh) (al B bl)

= (50, 42, 168, 33)

256

256
a - bl

256

256

1 176 254 234
50 42 168 33
83 222 83 133
1 177 49 20 251 255 83 133 T— ab

23

Speeding RSA decryption with CRT

* Decryption is done as follows :
X =y2mod n

* Bob can also decrypt by using CRT
X=y2mod p
X =y2 mod q

(since he knows the factors of n, i.e. p,q)

e CRT turns out to be much faster since the size (in
bits) of p and q is about % that of n

24

Multi-precision libraries

* GMP : GNU Multi-precision library
 Make use of Intel’s SSE/AVX instructions

— These are SIMD instructions that have large
registers (128, 256, 512 bit)

* Crypto libraries
— OpenSSL, PolarSSL, NaCl, etc.

25

Finding Primes

Test for Primes

* How to generate large primes?
— Select a random large number
— Test whether or not the number is prime

 What is the probability that the chosen number is a
prime?
— Let t(N) be the number of primes < N
— From number theory, m(N) = N/In N

— Therefore probability of a random number (< N) being a
primeis 1/In N

* As N increases, it becomes increasingly difficult to find large
primes

27

GIMPS

* There are infinite prime numbers (proved by Euclid)
* Finding them becomes increasingly difficult as N

Increases

— Mersenne Prime has the form 2"—-1

— Largest known prime (found in 2016) has 22 million digits

2274,207,281 -1

e S3000 to beat this ©

GIMPS : Great Internet Mersenne Prime Search

https://en.wikipedia.org/wiki/Largest_known_prime_number

28

Primality Tests with Trial Division

e School book methods (trial division)
— Find if N divides any number from 2 to N-1
— find if N divides any number from 2 to N1/2
— Find if N divides any prime number from 2 to N/2

— Too slow!!!
Need to divide by N-1 numbers
Need to divide by N¥2 humbers

Need to divide by (N/InN)/2 primes

— For example, if n is approx 21924, then need to check around 2°%7
numbers

Need something better for large primes

— Randomized algorithms

29

Randomized Algorithms for
Primality Testing

* Monte-carlo Randomized Algorithms
— Always runs in polynomial time
— May produce incorrect results with bounded probablity

— Yes-based Monte-carlo method
* Answer YES is always correct, but answer NO may be wrong

— No-based Monte-carlo method
* Answer NO is always correct, but answer YES may be wrong

30

Finding Large Primes
(using Fermat’s Theorem)

is prime(n){
pick a <« Z,
if (a"' =1mod n)
return TRUE

else
return FALSE

If nis prime, then ¢"' =1modn
is true for any ‘a’

If n is composite ¢"' =1modn
is false but may be true for some
values of a.

For example: n = 221 and a = 38
38220 mod 221 = 1.

We need to increase our confidence
with more values of a

31

Fermat’s Primality Test

* |Increasing confidence with multiple bases

primality test(n){
c=0
for(i=0;i <1000;+ +1){
if (is prime (n)== FALSE)
return COMPOSITE

b
return probably PRIME

;

32

Flaw in the Fermat’s Primality Test

Some composites act as primes.
Irrespective of the ‘a’ chosen, the testa"' =1modn
passes.

for example Carmichael numbers are composite numbers which
satisfy Fermat’s little theorem irrespective of the value of a.

33

Strong probable-primality test

* If nis prime, the square root of a"! is either
+1or-1

a’ =1modn

a’—1= modn
(a+D(a—1) =0modn
either (a+1) =0modn or(a—1) =0modn

34

Miller-Rabin Primality Test

* Yes-base primality test for composites
e Does not suffer due to Carmichael numbers
 Write n-1 = 25d

— where d is odd and s is non-negative

— nis a composite if

a® #1modn and (a®)* #—1modn

for all number r less than s

35

Proof of Miller-Rabin test

* Write n-1 =25d
a’ #1modn and (a’)* #-1modn

for all number r less than s

* Proof: We prove the contra-positive. We will assume n to be
prime. Thus,

a’ =1modn or (a®)* =—1modn

for some number r less than s

36

Proof of Miller-Rabin test

Proof: We prove the contra-positive. We will assume n to be
prime. Thus we prove,

a’ =lmodn or (a*)* =-1modn

for some number r less than s

Consider the sequence :

d 24 224 234
a ,a ,a ,a gttt ,

— The roots of x2=1 mod n is either +1 or -1

1 (Fermat ‘s)

— In the sequence, if a is 1, then all elements in the sequence will be 1

— If adis not 1, then there should be some element in the sequence
which is -1, in order to have the final element as 1

37

Input n

Miller-Rabin Algorithm
(test for composites)

T'l. Find an odd integer d such that n —1=2"d
T2. Select at random a nonzero a € Z,
T3. Compute b =a“modn
If b==l1, return 'nis prime'
T4.Fori=1,---,r—1,calculate c= b mod 7
If ¢ =—1, return 'nis prime'

T'5. Otherwise return 'nis composite '

» Pr(input=composite | ans=composite)= 1
= Pr(ans=prime | input=composite)<1/2
» Pr(input=composite | ans=prime) < 1/4

38

Quadratic Residues

Definition. Ler a,m € [, Then a is a quadratic residue of m iff

(a,m) = | and there is an x € T. 5o that x> = a (mod m).

* Example : m=13, square elements in Z.
1,4,9,3,12,10,10,12,3,9,4,1
The quadratic residues Z,, are therefore
{1, 4, 3,9, 10, 12}

If an element is not a quadratic resiidue, then it is a quadratic non-residue

quadratic non-residues in Z,; are {2, 5, 6, 7, 8, 11}

39

Legendre Symbol

0 if pla
j:< 1 if aisaQRmod p
—1 if aisaONRmod p

Given p is an odd prime

40

A result from Euler

when p |a

‘"c
N

a

= (0mod p

Euler’s Criteria

p—1

=g * modp

4
p

p-1 2(p—l)

=> a x % modp

x”'mod p
1

when aisaQR,3xe Z st. a = x*mod p

41

when Quadratic Non Residue

when ais a ONR, no such x € Z jexists s.t. a = x> mod p

p—1

consider : a > mod p (note p —1 is even,if pisanodd prime)

squaring : a”'mod p =1
o132
SO,[CZ j =1mod p

Thus , aTEilmodp
p-1
a * #1lmod p, since aisnot a QR

p—1

Thus a > =—1mod p

42

Examples

4 isaQRmodl13
13-1

4 2 modl3=4°modl3=1
S5isaONRmod13
5°mod13=12mod13=-1

Euler’s Withess <~——|

15-1

7 2 modl5=7"modl5=-2

Euler's Liar < |

15-1

14 2 mod15=14" mod15 = -1

J\

|
awiid ppo ue si u
uaym spjoy sAemje aosualnbuo)

|

awud ppo ue si u

usym
p|oy Jou Aew Jo

Aew aouainbuon

SN
w

Solovay Strassen Primality Test

SOLOVAYSTRASSEN (n) 1

choose a randominteger asuch thatl < a< n-1

a
P S compute x = (;)

How to compute ,
if (x=0)return COMPOSITE
Legendre’s symbol n-1

computey =a * modn
if (x = ymodn)return possiblyPRIME
else return COMPOSITE

error probability is at most
after k invocations of this algorithm,

Jacobi Symbol

Jacobi Symbol is a generalization of the Legendre symbol

Let n be any positive odd integer and a>=0 any integer. The
Jacobi symbol is defined as:

Suppose n1s an odd positive integer with prime factorization

€

— i P) 3 €4
@ n=p, Xp, Xp; XPy ...

Then,

GGG

45

Jacobi Properties
@D Ifa bmodnthen(%jz(%j
®(2)-[| 1o
o)
® vaeno-2) 1)(7

@ifaisodd

—(Ej if n=a=3mod4
n .
o)

Computing Jacobi

T 11 13
907 (QQUT) (QQUT)' From the theorem
9907 2
_(-)=—(? = i, P5. P1. then P2
907 7 11 1
—_— = — | — = | = = - = P P1
=) (”) (_,) (?) | P5,P1. P5, P1, P3. P2
EIEH]T) 1y 1
and 1isa QR mod 13

Factoring Algorithms

Factorization to get the private key

e Public information (n, b)

* If Mallory can factorize n into p and q then,

e She can compute ¢(n) = (p-1)(g-1) ~
* She can then computethe private key by finding a = b-* mod cb(n)

How to factorize n?

49

Trial Division

Fundamental theorem of arithmetic
Any integer number (greater than 1) is either prime or a product of prime
powers

— €1 €2 .63 €
n=p P, Py Py

def trial division(n):
""r"Return a list of the prime factors for a npatural npumber,"""

if n o= 2: » prime generation algorithm
return []

prime_factors = []

for p in prime sieve(int(n**8.5) + 1): Prime factors of n cannot be
2Fiptp > 0 Braak reater than
while n % p == B: 9 LJ;J

prime factors.append(p)

n//=p
if o> 1;
prime factors.appendin)

return prime factors — n=n/p:remove this factor fromn

Running Time of algorithm order of 1(2"2)

50

Pollard p-1 Facto

n=pxq

choose arandom integera (1 < a < n).
If gcd(a,n) #1,then a is a prime factor.

However, this is most likely not the case as ged(a,n)=1.

rization

e Supposewe magicaﬁy getan Lsuch that p-1|L. \\ } How to find the magic L?

Weuse L tocompute(a” —1).
p—1l|L=>(p-1k=L

(p-Dk

a' =a =1lmod p (by Fermat sLittleTheorem)

Thus, pla"—1

No easy way, trial and error!!

Factorials have a lot of divisors. So that
is a nice way.

So, take L as a factorial of some
numberr.

Now compute ged(a” —1,n)
Since, p|n and p|a’ —1,
ged(a® —1,n) is either p and may also be n.

Thus if gcd(a” —1,n) # n, then we have found a factor of n.

if gcd(a" -1,n) =n, then g|a” —1 also. Cannot conclude anything.

51

Pollard p-1 Factorization

Pollard p-1 factorization for n.

Sl.a<«2
S2.1f ged(a, n) > 1, then this gcd 1s a prime factor of n, we are done.
S3.computed < ged(a”-1, n)

if d =n, start again from S1 with next value of a

else if d =1,increment r and repeat S3

else d 1s the prime factor of n; we are done!

Will the algorithm terminate?

52

Pollard Rho Algorithm

 Form a sequence S1 by selecting randomly (with replacement)

from the set Z_ — — q
Sl=x,,%,,%,,X;,X,, -1 X0 =X, M0A P

* Also assume we magically find a x1 = x, mod p

new sequence S2 comprising of x> =x, mod p

S2:xo X1 ;2 ;3 ;4 ... Where —
T x3 =x,mod p

* If we keep adding elements to X4 =Xy moc_lp B
51, we will eventually find an x; and x; (i#j) such that x; = x;
When this happens,

P | (xi _xj)
v plnalso, ged((x; —x;),n)is p.We found a factor of n!!

53

Doing without magic

Form a sequence S1 by selecting randomly (with replacement)
from the set Z_

ST=2x,,x,X%,,X5,%X,,

For every pair i,j in the sequence compute
d < ged((x; —x,,n)

If d > 1 thenitis afactor of n

54

Selecting elements of S1

To choose the next element of S1, Pollard suggests

using a function f:Z — Z
with requirement that the output

ooks random.

Example :f(x) = x* +1mod

n

§1 L {xo where x,, is chosen randomly from Z, j

l

X. i>0andx; = f(x,_,)

55

Example

N= 82123, x, = 631, f(x) = x2 + 1

This column is just
for understanding.
In reality we will not know this

ilz; mod N |Fi=1; mod p i |7 mod N |& =1; mod p

() 631 16 10 HhRG 2

1 6H96TO 11 | § | 14314 9 Drawback .

2 2RO86 40 12 TH835 26 Large number of GCD

3 69907 - 13 37782 21 computations. In this case
1| 13166 5 14| 17539 32 55

5 64027 26 15 bH88T ()

6| 40816 21 16| 74990 1 Can we reduce the number
d 5“8{3“’_} ?;,2 171 45553 ‘? of gcd computations?

ol 20459 () 13 73969 a

4 T1874 1 19 210 26

Given x;mod N, we compute gcds of every pair until we find a gcd greater

than 1

ged(x; —x,y, N) = ged(63222,82123) =41 <—— A factor of N

56

The Rho in Pollard-Rho

N= 82123, x, = 631, f(x) = x2 + 1

i|z; mod N |Ti=1; mod p : | x; mod N | F = x;

() 631 16 10 HORG 2
1| 69670 11 11 14314 A
2 2RO86 A1) 12 TH835 26
3 69007 2 13 J7782 21
1 13166 3 14 17539 32
5 64027 26 15 GHRIT ()
6 40816 21 16 74990 1
7 0802 32 7 45553 2
& 20459 () 18 73969 H
4 T1874 1 19 20210 26

X: =X mod p

» The smallest value of t and |, for which the above congruence holds is t=3, [=7

» For [=7, all values of t > 3 satisfy the congruence

* This leads to a cycle as shown in the figure
(and a shape like the Greek letter rho)

;j :;J-Hmodp t>3

57

Reducing gcd computations

 GCD computations can be expensive.

* Use Floyd’s cycle detection algorithm to reduce the number of
21

GCD computations. 26

choose arandom x,=y,e€ Z,

—

x, = f(x,,)
yi=xy=f(f(y,)

If d =ged(x,—y,,N)>0,return d

—

loop
A

claim : The first time x;, =y, mod p occurs wheni<t+]|

58

The first time x, = y. mod p occurs
iswhenis<t+]

* [isthe number of points in the cycle
* tisthe smallest value of i such that x;, = y, mod N

X; and y; meet at the same point in the cycle
Therefore, y; must have traversed (some) cycles more

x, =y, mod N

Y =x. mod N consider (k +1)l

i V21

l|(2i—i) =kl +]<t+]
[|i=>lk=i

VI) Kt (k+1)l=i

59

Expected number of operations
before a collision
* Can be obtained from Birthday paradox

tobe ./p

60

Congruences of Squares

Given N=p x g, we need to find p and g

Suppose we find an x and y such that|x* = y> mod N

Then,

N (x>=y*)=> N|[(x-y)x+y)
This implies,

ogcd(N,(x—yp)) or gcd(N,(x + y)) factors N

61

Example

e Consider N =91

10° =3° mod91 34° =8° mod91
911 (10-3)(10+3) 91| (34+8)(34-98)
91| (7x13) 91|42%x26
ged(91,13) =13 gcd(91,26) =13

gcd(91,7)="7

gcd(91,42) =7

So... we can use x and y to factorize N.

x*=y°mod N
But how do we find such pairs?

62

Another Example

* N=1649

2 _ 32 and 200 are not perfect squares.
41" =32mod1649 However (32x200 = 6400) = 802

43% =200mod 1649 is a perfect square

(41x43)* = (32x200)mod 1649
= 80° mod 1649

Thus, it is possible to combine non-squares to form
a prefect square

the examples are borrowed from Mark Stamp (http://cs.sjsu.edu/faculty/stamp/)

63

Forming Perfect Squares

Recall, Fundamental theorem of arithmetic
Any integer number (greater than 1) is either prime or a product of prime
powers

— €1 €2 .63 €
n=p, P, Py Py

Thus, a number is a perfect square if it prime factors have even powers.
€,,6,,65,... ISeven

Thus,
32 = 2°59 not a perfect square

200 = 2352 not a perfect square
(32x200) = 2550 x 2352 = 2852 = (2457)2 is a prefect square

64

Dixon’s Random Squares
Algorithm

Choose a set B comprising of ‘b’ smallest primes. Add -1 to
this set.

(A number is said to be b-smooth, if its factors are in this set)
Select an r at random

— Compute y=r’modN

— Test if y factors completely in the set B.

— If NO, then discard. ELSE save (y, r) (these are called B-smooth
numbers)

Repeat step 2, until we have b+1 such (y,r) pairs
Solve the system of linear congruencies

65

Example

e N=1829
e b=6 B={-1,2,3,5,7,11,13}
 Choose random values of r, square and factorize

42° = 1764 = —65=—1-5-13 (mod 1829)
432 =20 =2°.5 (mod 1829)

602 = 1771 = —58 = —1-2-29 (mod 1829) All numbers are B-smooth
e except 60 and 75.

Ble=063=3":7 (Iﬂﬂd 1829) Leave these and

74% = 1818 = —11 = —1- 11 (mod 1829) consider all others

752 = 138 = 2-3- 23 (mod 1829)
/852 = 1738 = —91 = —1-7-13 (mod 1829)
‘/ 862 = 80 = 2* - 5 (mod 1829)

66

Check Exponents

1

0

0

1

0

1 0

-65
20

63

-11
-91
80

67

Check Exponents

1 0 0 1 0 0 1
20 0 2 0 1 0 0 0
63 0 0 2 0 1 0 0
-11 1 0 0 0 0 1 0
-91 1 0 0 0 1 0 1
80 0 4 0 1 0 0 0

Find rows where exponents sum is even
-65, 20, 63, -91

(42x43x61x85)” = (—1x2x3x5x7x13)* mod1829
1459° =901° mod 1829

68

Final Steps
(42x43x61x85)* = (~1x2x3x5%x7x13)> mod1829
1459% =901° mod 1829

1829 [(1459 +901)(1459 —901)
—>1829(2360 gcd(1829,2360) = 59
=>1829(558 gcd(1829,558) =31

Thus 1829 =59x31

69

State of the Art
Factorization Techniques

Quadratic Sieve
— Fastest for less than 100 digits

General Number field Sieve
— Fastest technique known so far for greater than 100 digits
— Open source code (google GGNFS)
RSA factoring challenge
— Best so far is 768 bit factorization
— Current challenges 896 bits (reward $75,000), 1024 bit ($100,000)

https://en.wikipedia.org/wiki/RSA Factoring_Challenge

70

RSA Attacks

attacks that don’t require
factorization algorithms

®d(n) leaks

* |f an attacker gets ®(n) then n can be factored

n=pq q=n/p
p(n)=(p—-1(g-1)
=pq—(p+q)+1
p(my=n—(p+-)+1
P

p’—(n—g(mn)+Dp+n=0

Solve to get p (a factor of n)

72

square roots of
1 mod n

There are two trivial and two non-trivial solutions for y2 =I1modn
The trivial solutions are +1 and -1

By CRT, these congruences
are equivalent /% y=Ilmod p
2 — _
= Imod y=—Imgp
y* =lmodn (=) y2 &
vy~ =1lmodg

\{ y=1modg

y=-1modgqg

To get the non-trivial solutions solve using CRT

y=+1mod p y=-1lmod p
ys—lmodq ys+1m0dq

73

Example

* n=403=13x31
* To get the non-trivial solutions ofy2 =Imodn solve using CRT

y=+Imod p y=-1mod p
y=-Imodg y=+Imodg

(31-31"'mod13-13-13"" mod 31) mod 403
(31-8—13-12)mod 403 =92
403-91=311

L0972 — 2112 —
The non-trivial solutions are 92 and 311 Note:927 =311" =Imod403

What happens when we solve ¥ =+1modp
y=+I1modg

74

Decryption exponent leaks

e If the decryption exponent ‘a’ leaks, then n can be factored

* The attacker can then compute b
ab =1mod ¢@(n) kg(n) =(ab—-1)
* Now, for any message x # 0

x® 1 =1modn

ab—1
e Attack Plan, take squareroot: y =x * modn

ie., yv°’=lmodn => n|(y’-1)

However we

=> n|(y =Dy +D need
y ==l

gcd(n,y —1)is a factor of n

to have a non-
trivial result

The Attack (basic idea)

we assume we know the private

key a

ab =1mod¢(n)

1.given a computeab —1

-1
2.Represent ¢ = %

3. choose any message x

4.put y = x' modn

5.computed <« gcd(y—1,n)

6.if d # 1, return"a factorof nisd"; exit
7.if (¢t i1s even) t =t/2; goto step4

elsereturn" failure"

Probability of success of the attack is at-least 1/2

kg(n)=ab—1

ab-1
y,=x 2 =1lmodn

thus,(y, —1)=0modn
n|(y+D(y-1)

This will only work if y #£1 mod n.
If y = +1 mod n. then goto step 7

76

Example

* N=403, b=23, a=47

t=ab—-1=1080

loop] : tz@ =540

loop?2 : tz% =270

x=2

y=x'mod403 =2 mod403 =1

y=x"mod403 =2*""mod403 =311

gcd(310,403) =31 (a factor of n)

t=ab—-1=1080

loopl: t zg =540

loop2 : tz% =270

loop3: tz?zl?ﬁ

x=9

y =x'mod 403 =9* mod403 =1
y =x'mod403 =9° mod403 =1

y=x'mod403 =9 mod403 =1

can’t divide 135 further. failure

77

Small Encryption Exponent

In order to improve efficiency of encryption, a small
encryption exponent is preferred

However, this can lead to a vulnerability

78

Small Encryption Exponent

. C
m3mod N, !
l m
; C
a1} m3mod N, £
C
m3mod N,]3

Insecure channel

« Consider, Alice sending the same message x to 3 different people.
« Each having a different N (say N,, N,, N;)
« But same public key b (say 3)

Small Encryption Exponent

- 3

C1 '¢;_ 't"\
m3mod N, (Y

¢, =m’ mod N,

m3mod N,

m3mod N,
1\’ A 4

« Consider, Alice sending the same message x to 3 different people.
« Each having a different N (say N,, N,, N;)
« But same public key b (say 3)

« This allows Mallory to snoop in and get 3 ciphertexts

c, =m’ mod N,

¢, =m’mod N,

Insecure channel

80

Small Encryption Exponent

By CRT

¢, =m’ mod N,
c,=m’modN, (=)X =m’mod(N,-N,-N,)

¢, =m’mod N,

* Thus, Mallory can compute X
* Sincem < N;, m<N,, m<N;=> n<(N;xN,xN;)
 Thus, X3=m

— i.e. The message can be decrypted

It is tempting to have small private and public keys, so that encryption or
decryption may be carried out efficiently. However you would do this at
the cost of security!!

81

Low Decryption Exponent

* The attack applies when the private key a is
small, a<i/7

* |[n such a case ‘@’ can be computed efficiently

82

Partial Information of Plaintexts

Computing Jacobi of the plaintext

y=x"modn yis the ciphertext; x the message
b1s the public key and gcd(b, p(n)) =1

Thus, ged (b, (p-1)(g-1))=1
(p—1)(g—1) iseven, therefore » must be odd

consider Jacobi

()
(-6

since b1sodd

X
thus, RSA encryption leaks the value of the Jacobi symbol (—]
n

83

Partial Information of Plaintexts
first half or second half?

* giveny =x°mod n,

— is it possible to determine if
(0<x<n/2) or(n/2<x<n-1)

 We prove that RSA does not leak this information

* If there exists an efficient algorithm that can
determine if x is in the first or second half then,
the entire plaintext can be obtained

84

Binary Search Trees on x

Consider this function

0 if 0<x<2
HALF (x) = 2

n
1 if —<x<n-1
f2

example [0,3.25)

x=3mod13 HALF (x)=0
2x=6mod13 HALF(2x)=0
4x=12mod13 HALF(4x)=1
8x=11mod13 HALF(8x)=1
16x=9mod13 HALF(16x)=1

[0,1.625)
1.625,3.25)

Partial Information of Plaintexts
(first or second half proof)

* Assume a hypothetical oracle called HALF as follows

0 if 0<x<2

HALF (n,b,y) = . 2
ysxbmodn 1 l'fESx<n—l
2".y=(2x)" modn
4" .y =(4x)" modn HALF(y)=0 => xe[O,%J
8" -y =(8x)" modn
16 -y =(16x)" modn (/\\

HALF(2'y)=0 =>xe[0,7) |HALF(2b »=1 =l>xe[%,ﬂ

T

HALF(2*y)=0 => xe [o,gj HALF(2*y)=0 => xe [%%

86

Example

n=1457, b=779, y=722

hi i lo med hi
) 170 0.00| 72850 | 1457.00
Algorithm : ORACLE RSA DECRYPTION(n, b, y) 0 172850 109275 | 1457.00
external HALF 1 2| 72850 | 910.62 | 1092.75
k + [log, n| 0 3910621 1001.69 | 1092.75
forz < Otok 1 41910.62| 956.16 | 1001.69
u{h”‘”""z'j,(”*’“g) 1 5|956.16 | 978.92 | 1001.69
I e 0y<—(yx) mod n 1 6(978.92| 990.30 | 1001.69
bi e n 1 7990.30 | 996.00 | 1001.69
for i < 0 to k 1 8| 996.00 | 998.84 | 1001.69
mid{_(hgjqa}/'g 0 9 998.84 | 1000.26 | 1001.69
ifh; =1 0 10 | 998.84 | 999.55 | 1000.26
do 9 then lo « mid 998.84 | 999.55 | 99955

else hi + mad
return (| ht])

the plaintext message.

Thus, if we have an efficient function HALF, we can recover

87

Man in the Middle Attack

* The process of encryption with a public key
cipher

s

Bob decrypts
with his private
key

88

Man in the Middle Attack

* The process of encryption with a public key

C|pher Man in the middle
Ea Intercepts messages

oy

ic ke
sends her public Yy
AW Mallory decrypts
With Mallo p S _ with her private
"Y'S public key, keyandre- — S o
encrypts ob decrypts
with Bob’s \livith his private
ey

public key

89

Searching the Message Space

* Suppose message space is small,

— Mallory can try all possible messages, encrypt
them (since she knows Bob’s public key) and check
if it matches Alice’s ciphertext

Bob sends his public keY e |

_ | Bob decrypts
IC€ encrypts with Bob’s public key

with his private
key

90

Bad Prime Generation Algorithms

e Suppose the prime generation was faulty

— So that, primes generated were always from a
small subset

— Then, RSA can be broken

e Pairwise GCD of over a million RSA modulii
collected from the Internet showed that

— 2 in 1000 have a common prime factor

Ron was Wrong, Whit is right, 2012

91

Discrete Log Problem, ElIGamal,
and Diffie Hellman

STINSON : chapter 6

92

Primitive Elements of a Group

Let (G,-)bea group of order n.
Leta € G,

If « 1s a primitive element then

The order of « is the smallest integer m such that o™ =1

a 1s termed as a primitive element if 1t has order n.

<a> ={a':0<i<n-1} generatesallelementsin G

Consider Z" ={1,2,3,---,12}
(Z,;,") formsa group of order12

Let7eZ,,
(7)=1{7,10, 5,9,11,12,6,3,8,4,2,1}

<7> has order 12
and generates all elements in Z.
Thus, 7 is a primitive element

93

Discrete Log Problem

Let (G,")bea group
Let a € G beaprimitiveelement in the group with order
Define the set

(a)={a':0<i<n-1}

Foranyuniqueintegera (0 <a <n-1),
let a® =pf
Denote a =log, B asthediscretelogarithmof

Given a and a, it is easy to compute 3
Given a and (3 it is computationally difficult to determine what a was

94

ElGamal Public Key Cryptosystem

* Fixa prime p (and group Z)
* Let ¢eZ, be a primitive element
* Choose a secret ‘@’ and compute f=a“ mod p

Public keys :a, S, p Private key :a

Encryption Decryption =
choose arandom (secret) k < Z, d r (x) = Vs (yla)_1 mod
e, (%)= (31, 72) = x-B (") ' mod p

where y, =a" mod p,

ka ka~\ —1
=x-a (a mod
y2=X°,Bkm0dp () p

=X 95

ElGamal Example

e p=2579,a=2 (aisaprimitive element mod p)
* Choose arandom a =765
« Compute B =279 mod 2579

Encryption of message x = 1299
choose a random key k = 853
y;=2%3 mod 2579 =435
y, = 1299 x 9498>3 = 2396

Decryption of cipher (435, 2396)
2396 x (4357%°)1 mod p
= 1299

96

Finding the Log

f=a"modp

Given a and (3 it is computationally difficult to determine what a was

* Brute force (compute intensive)

compute 05,0(2,053,0(4 (until you reach B)
this would definitely work, but not practical if p is large

complexity O(p), space complexity O(1)
* Memory Intensive

precompute o,a’,a’,a"......(all values). Sort and store.
For any given B look up the table of stored values.

complexity O(1) but space complexity O(n)

97

Shank’s Algorithm

(also known as Baby-step Giant-step)

f=a“modp

Rewrite a as a=mg+r

where m:’_\/g-‘
p=a™a modp

,B(a"")q =qa' mod p

We neither know g nor r, so we need to try out several
values for q and r until we find a collision

98

Shank’s Algorithm

ple)

(37)°mod31=2

Bla) =6-2° =6
Bla™) =6-2' =12

(QV

3 Ba) =62" =24

—
L(a®) =6-2° =17mod31

(exam
 p=31 and a=3. Suppose B=6.
e Whatis a?
mz‘\/i ‘=6
0 =3 collision
a’=9

E o’ =27
a*=81=19mod31
a’=19-3=26mod31

>IB(05_6)4 —=6-2* =3mod31

Thus, m=6, q=4, r=1,

a= mq+r =25

99

Shank’s Algorithm

Algorithm 6.1: SHANKS(G, n,a, 3)

1. m« [y/n]

(2. forj —0Otom —1 D
do compute o™

3. Sort the m ordered pairs (7, @™ with respect to their second coordinates,

__Obtaining a list L, J

A, fori«—O0tom — 1 D
do compute o~}

5. Sort the m ordered pairs (z, Sa™") with respect to their second coordi-

__ hates, obtaining a list L,)

6. Find a pair (j,y) € L, and a pair (i,y) € L2 (i.e., find two pairs havlng

identical second coordinates)
7 log 3¢ (mj i) mo_d n .

Create List 1

Create List 2

Find collision

100

Complexity of Shank’s Algorithm

Algorithm 6.1: SHANKS(G, n,a, 3)

L m e [Vl
(2. forj «—0Otom —1
do compute o™ O(m)
3. Sort the m ordered pairs (J, a™) with respect to their second coordinates, O(mlog m)

__Obtaining a list L,
A, fori—Otom — 1
do compute g~} O(m)

5. Sort the m ordered pairs (z, Sa™") with respect to their second coordi- O(mlog m)
_ _ hates, obtaining a list L,
6. Finda pair (j,¥) € L, and a pair (i, y) € L2 (i.e., find two pairs having

identical second coordinates) O(log m)
@ o1 mo_d n .

O(mlogm) ~ O(m) = O(p'?)

101

Other Discrete Log Algorithms

L =a“modn

e Pollard-Hellman Algorithm
used when n is a composite

* Pollard-Rho Algorithm
about the same runtime as the Shank’s
algorithm, but has much less memory
requirements

102

Diffie Hellman Problem

Let (G,")bea group
Let a € G beaprimitiveelement in the group with order
Define the set

(a)={a':0<i<n-1}

given o and o, find a® Computational DH (CDH)

given a*,a" and af, determineif c=abmodn
Decision DH (DDH)

103

Recall...
~ Diffie Hellman Key

Alice and Bob agree upon a prime p and a generator g.
This is public information

choose a secret a choose a secret b

compute A=g@mod p compute B = g° mod p
B
Compute K= B2 mod p Compute K= AP mod p

AP mod p = (g?)®* mod p = (g®)? mod p =B?mod p

104

