
RSA and Public Key

Cryptography

CR

Cryptography

Chester Rebeiro

IIT Madras

STINSON : chapter 5, 6

Ciphers

• Symmetric Algorithms
– Encryption and Decryption use the same key

– i.e. KE = KD

– Examples:
• Block Ciphers : DES, AES, PRESENT, etc.

• Stream Ciphers : A5, Grain, etc.

CR

• Stream Ciphers : A5, Grain, etc.

• Asymmetric Algorithms
– Encryption and Decryption keys are different

– KE ≠ KD

– Examples:
• RSA

• ECC

2

Asymmetric Key Algorithms

Alice Bob

Plaintext

untrusted communication link
E D

KE KD

“Attack at Dawn!!”
encryption decryption

#%AR3Xf34^$

(ciphertext)

CR

Plaintext

“Attack at Dawn!!”

The Key K is a secret

3

Encryption Key KE not same as decryption key KD

KE known as Bob’s public key;

KD is Bob’s private key

Advantage : No need of secure

key exchange between Alice and

Bob

Asymmetric key algorithms based on trapdoor one-way functions

One Way Functions

• Easy to compute in one direction

• Once done, it is difficult to inverse

CR

Press to lock

(can be easily done)

Once locked it is

difficult to unlock

without a key

4

Trapdoor One Way Function

• One way function with a trapdoor

• Trapdoor is a special function that if possessed can be used to

easily invert the one way

CR

Locked

(difficult to unlock) Easily Unlocked

trapdoor

5

Public Key Cryptography

(An Anology)
• Alice puts message into box and locks it

• Only Bob, who has the key to the lock can open it and read

the message

CR 6

Mathematical Trapdoor One way

functions
• Examples

– Factorization of two primes

• Given P, Q are two primes

• and N = P * Q

– It is easy to compute N

– However given N it is difficult to factorize into P and Q

CR

– However given N it is difficult to factorize into P and Q

• Used in cryptosystems like RSA

– Discrete Log Problem

• Consider b and g are elements in a finite group and bk = g, for some k

• Given b and k it is easy to compute g

• Given b and g it is difficult to determine k

• Used in cryptosystems like Diffie-Hellman

• A variant used in ECC based crypto-systems

7

Applications of Public key

Cryptography
• Encryption

• Digital Signature :

“Is this message really from Alice?”

• Alice signs by ‘encrypting’ with private key

CR

• Anyone can verify signature by ‘decrypting’ with Alice’s public key

• Why it works?

– Only Alice, who owns the private key could have signed

8

Applications of Public key

Cryptography
• Key Establishment :

“Alice and Bob want to use a block cipher for encryption. How

do they agree upon the secret key”

Alice and Bob agree upon a prime p and a generator g.

This is public information

Diffie-Hellman

Key Exchange

CR 9

This is public information

choose a secret a

compute A = ga mod p

choose a secret b

compute B = gb mod p

B A

Compute K = Ba mod p Compute K = Ab mod p

Ab mod p = (ga)b mod p = (gb)a mod p = Ba mod p

RSA

CR

Shamir, Rivest, Adleman (1977)

10

More Number Theory

Mathematical Background

CR

Mathematical Background

11

RSA : Key Generation

Bob first creates a pair of keys (one public the other private)

))(mod(Compute.4

1))(,gcd(and))(1(randomaChoose.3

)1)(1()(andCompute.2

)(,primeslargetwoGenerate.1

1 nba

nbnbb

qpnqpn

qpqp

φ

φφ
φ

−=

=<<

−−=×=

≠

CR 12

),,('

),('

))(mod(Compute.4 1

aqpiskeyprivatesBob

bniskeypublicsBob

nba φ−=

Given the private key it is easy the

public key

Given the public key it is difficult to

derive the private key

RSA Encryption & Decryption

Encryption Decryption

CR 13

n

b

K

Zxwhere

nxyxe

∈

== mod)(
nyxd a

K mod)(=

RSA Example

1)571152,13gcd(thatnote;13bkey public Choose3.

571152876652(n)572681;877653.2

877and653pprimestwoTake1.

==

=×==×=

==

n

q

φ

CR 14

12345572681 mod536754x:decryption

536754572681mod12345:

12345

571152mod13395413keyPrivate.4

395413

13

1-

≡=

≡=

=

==

yencryption

xMessage

a

Correctness

Encryption

n

b

K

Zxwhere

nxyxe

∈

== mod)(
Decryption

nyxd a

K mod)(=

1),gcd(=∈ nxandZxwhen n

CR 15

x

nxx

nx

nx

nxy

nt

nt

ab

aba

≡

≡

≡

≡

≡

+

mod)(

mod)(

mod)(

mod)(

)(

1)(

φ

φ
1)(

)(1

)(mod1

+=

=−

≡

ntab

ntab

nab

ϕ
ϕ
ϕ

From Fermat’s theorem

Correctness
1),gcd(≠∈ nxandZxwhen n

qnxorpnxpqnSince ===),gcd(),gcd(,

mod pxx

If

ab≡ 0modmod:

|

),gcd(

≡≡

===

=

ppkpxLHS

xpkxp

pxnAssume

>>

CR 16

)(

mod

mod

mod

CRTby

nxx

qxx

pxx

ab

ab

≡=

≡

≡

>

0mod:

0modmod:

≡

≡≡

pxRHS

ppkpxLHS

ab

xqx

qxx

qx

qxqx

xqimpliesitpxp

pt

ptq

qpt

ntab

≡⋅≡

⋅≡

≡

≡

==

+

+

mod)1(

mod)(

mod

modmod

1),gcd(),gcd(

)(

)()(

1)()(

1)(

ϕ

ϕφ

φφ

φ

Q

RSA Implementation

nxy c mod=

CR 17

c = 23 = (10111)2

i ei z

4 1 12* x = x

3 0 x2

2 1 x4 * x = x5

1 1 X10 * x = x11

0 1 x22 * x = x23

RSA Implementation in Software

(Multi-precision Arithmetic)
• RSA requires arithmetic in 1024 or 2048 bit numbers

• Modern processors have ALUs that are 8, 16, 32, 64 bit

– Typically can perform arithmetic on 8/16/32/64 bit numbers

• solution: multi-precision arithmetic (gmp library)

CR 18

base : 2b, where b = 64/32/16/8 bits

1024 bits

Multi-precision Addition

• ADD : a = 9876543210

b = 1357902468

base = 8 bit (256)

= (2, 76, 176, 22, 234)256

= (80, 239, 242, 132)256

i ai bi cin ai+bi+cin(mod 256) Carry? cout

CR 19

i ai bi cin ai+bi+cin(mod 256) Carry? cout

0 234 132 0 110 (110 < 234)? 1

1 22 242 1 9 (9 < 22)? 1

2 176 239 1 160 (160 ≤ 176)? 1

3 76 80 1 157 (157 ≤ 76)? 0

4 2 0 0 2 (2 ≤ 2)? 0

a + b = (2, 157, 160, 9, 110)256

= 11234445678

“Computational Number Theory”, Abhijit Das, CRC Press

Multi-precision Subtraction

• SUB : a = 9876543210

b = 1357902468

base = 256 (8 bit)

= (2, 76, 176, 22, 234)256

= (80, 239, 242, 132)256

i ai bi Cin Borrow? Cout ai-bi-cin(mod 256)

CR 20

i ai bi Cout ai-bi-cin(mod 256)

0 234 132 0 (234 < 132)? 0 102

1 22 242 0 (22 < 242)? 1 36

2 176 239 1 (176 < 239)? 1 192

3 76 80 1 (76 < 80)? 1 251

4 2 0 1 (2 < 0)? 0 1

a - b = (1, 251, 192, 36, 102)256

= 8658640742

Multi-precision Multiplication

(Classical Multiplication)
• MUL : a = 1234567

b = 76543210

base = 8 bit (256)

= (18, 214, 135)256

= (4, 143, 244, 234)256

a * b =

CR 21

a * b =

(0 85 241 247 25 195 102)256

= 99447721140070

Multi-precision Multiplication

(Karatsuba Multiplication)

mm

l

m

h

l

m

h

bBbb

aBaa

nmLet

nba

+++=×

+=

+=

=

−

2/

.wordsaryBwithintegerssionmultiprecitwobe,Let

2

CR 22

()

llhllhhhlhlh

ll

m

lhlhllhh

m

hh

ll

m

hllh

m

hh

bababababbaa

baBbbaababaBba

baBbabaBbaba

+−−=−−

+−−+++=

+++=×

))((using

))(()(

)()(

2

2

Karatsuba multiplication converts n bit multiplications into 3 multiplications of n/2 bits

The penalty is an increased number of additions

Multi-precision Multiplication

(Karatsuba Multiplication)

B = 256;

a = 123456789 = (7, 91, 205, 21)
256

b = 987654321 = (58, 222, 104, 177)
256

n=4; m=2

a
h

= (7, 91); a
l
= (205, 21)

a
h
b

h
= (1, 176, 254, 234)

256

a
l
b

l
= (83, 222, 83, 133)

256

a
h

- b
h

= -(197, 186)
256

a
l

- b
l

= -(45, 211)
256

(a b) (a b) = (35, 100, 170, 78)

CR 23

a
h

= (7, 91); a
l
= (205, 21)

a = (7, 91)2562 + (205, 21)

b
h

= (58, 222); b
l
= (104, 177)

b = (58, 222)2562 + (104, 177)

(a
h -

b
h
) (a

l -
b

l
) = (35, 100, 170, 78)

256

a
h
b

l
+ a

l
b

h

= a
h
b

h
+ a

l
b

l
- (a

h
- b

h
) (a

l
- b

l
)

= (50, 42, 168, 33)
256

1 176 254 234

50 42 168 33

83 222 83 133

1 177 49 20 251 255 83 133 ab

Speeding RSA decryption with CRT

• Decryption is done as follows :

x = ya mod n

• Bob can also decrypt by using CRT

x = ya mod p

CR

x = y mod p

x = ya mod q

(since he knows the factors of n, i.e. p,q)

• CRT turns out to be much faster since the size (in

bits) of p and q is about ½ that of n

24

Multi-precision libraries

• GMP : GNU Multi-precision library

• Make use of Intel’s SSE/AVX instructions

– These are SIMD instructions that have large

registers (128, 256, 512 bit)

CR

registers (128, 256, 512 bit)

• Crypto libraries

– OpenSSL, PolarSSL, NaCL, etc.

25

Finding Primes

CR 26

Test for Primes

• How to generate large primes?

– Select a random large number

– Test whether or not the number is prime

• What is the probability that the chosen number is a

CR

• What is the probability that the chosen number is a

prime?

– Let π(N) be the number of primes < N

– From number theory, π(N) ≈ N/ln N

– Therefore probability of a random number (< N) being a

prime is 1/ln N

• As N increases, it becomes increasingly difficult to find large

primes

27

GIMPS

• There are infinite prime numbers (proved by Euclid)

• Finding them becomes increasingly difficult as N

increases

• GIMPS : Great Internet Mersenne Prime Search

CR

• GIMPS : Great Internet Mersenne Prime Search

– Mersenne Prime has the form 2n – 1

– Largest known prime (found in 2016) has 22 million digits

2274,207,281 − 1

• $3000 to beat this ☺

28
https://en.wikipedia.org/wiki/Largest_known_prime_number

Primality Tests with Trial Division

• School book methods (trial division)

– Find if N divides any number from 2 to N-1

– find if N divides any number from 2 to N1/2

– Find if N divides any prime number from 2 to N1/2

CR

– Too slow!!!

• Need to divide by N-1 numbers

• Need to divide by N1/2 numbers

• Need to divide by (N/lnN)1/2 primes

– For example, if n is approx 21024, then need to check around 2507

numbers

• Need something better for large primes

– Randomized algorithms

29

Randomized Algorithms for

Primality Testing
• Monte-carlo Randomized Algorithms

– Always runs in polynomial time

– May produce incorrect results with bounded probablity

CR

– Yes-based Monte-carlo method

• Answer YES is always correct, but answer NO may be wrong

– No-based Monte-carlo method

• Answer NO is always correct, but answer YES may be wrong

30

Finding Large Primes

(using Fermat’s Theorem)

){(_

Zapick

nprimeis

n

≡

←
−

If n is prime, then

is true for any ‘a’

If n is composite

nan mod11 ≡−

nan mod11 ≡−

CR 31

}

)mod1(1

FALSEreturn

else

TRUEreturn

naif n ≡− If n is composite

is false but may be true for some

values of a.

For example: n = 221 and a = 38

38220 mod 221 ≡ 1.

We need to increase our confidence

with more values of a

nan mod11 ≡−

Fermat’s Primality Test

• Increasing confidence with multiple bases

0

){(_

c

ntestprimality

=

CR 32

}

}

))(_(

){;1000;0(

PRIMEprobablyreturn

COMPOSITEreturn

FALSEnprimeisif

iiifor

==

++<=

Flaw in the Fermat’s Primality Test

Some composites act as primes.

Irrespective of the ‘a’ chosen, the test

passes.

for example Carmichael numbers are composite numbers which

nan mod11 ≡−

CR 33

for example Carmichael numbers are composite numbers which

satisfy Fermat’s little theorem irrespective of the value of a.

Strong probable-primality test

• If n is prime, the square root of an-1 is either

+1 or -1

na mod12 ≡

CR 34

naornaeither

naa

na

mod0)1(mod0)1(

mod0)1)(1(

mod12

≡−≡+

≡−+

≡−

Miller-Rabin Primality Test

• Yes-base primality test for composites

• Does not suffer due to Carmichael numbers

• Write n-1 = 2sd

– where d is odd and s is non-negative

CR

– where d is odd and s is non-negative

– n is a composite if

35

sthanlessrnumberallfor

naandna
rdd mod1)(mod1 2 −≠≠

Proof of Miller-Rabin test

• Write n-1 = 2sd

• Proof: We prove the contra-positive. We will assume n to be

sthanlessrnumberallfor

naandna
rdd mod1)(mod1 2 −≠≠

CR

• Proof: We prove the contra-positive. We will assume n to be

prime. Thus,

36

sthanlessrnumbersomefor

naorna
rdd mod1)(mod1 2 −≡≡

Proof of Miller-Rabin test

Proof: We prove the contra-positive. We will assume n to be

prime. Thus we prove,

sthanlessrnumbersomefor

naorna
rdd mod1)(mod1 2 −≡≡

CR

• Consider the sequence :

– The roots of x2 = 1 mod n is either +1 or -1

– In the sequence, if ad is 1, then all elements in the sequence will be 1

– If ad is not 1, then there should be some element in the sequence

which is -1, in order to have the final element as 1

37

sthanlessrnumbersomefor

ddddd s

aaaaa 2222 ,,,,,
321

LL

1 (Fermat ‘s)

Miller-Rabin Algorithm

(test for composites)

'primeis',1

modCompute.3

nonzeroarandomatSelect.2

21thatsuchintegeroddanFind.1

nreturnbIf

nabT

ZaT

dndT

d

n

s

±=

=

∈

=−

Input n

CR 38

'compositeis'Otherwise.5

'primeis',1

modbc calculate,1,,1For.4

'primeis',1
i2

nreturnT

nreturncIf

nriT

nreturnbIf

−=

≡−=

±=

L

Quadratic Residues

• Example : m=13, square elements in Z13.

1,4,9, 3, 12, 10, 10, 12, 3, 9, 4, 1

CR

1,4,9, 3, 12, 10, 10, 12, 3, 9, 4, 1

The quadratic residues Z13 are therefore

{1, 4, 3, 9, 10, 12}

39

If an element is not a quadratic resiidue, then it is a quadratic non-residue

quadratic non-residues in Z13 are {2, 5, 6, 7, 8, 11}

Legendre Symbol






=







pQRaisaif

apif

p

a
mod1

|0

CR 40





−

=





pQNRaisaif

pQRaisaif
p

mod1

mod1

Given p is an odd prime

Euler’s Criteria

pa
p

a
p

mod2

1−

≡








A result from Euler

CR 41

1

mod

mod

mod..,when

1

2

)1(
2

2

1

2

≡

≡

≡=

≡∈∃

−

−−

px

pxa

pxatsZxQRaisa

p

pp

p

>
pa

ap

p

mod0

|when

2

1

≡
−

when Quadratic Non Residue

pasquaring

primeoddanispifevenispnotepaconsider

pxatsexistsZxsuchnoQNRaisa

p

p

p

1mod:

),1(mod:

mod..,when

2

1

2

1

2



≡

−

≡∈

−

−

−

CR 42

paThus

pa

paThus

paso

p

p

p

p

mod1

QRanotisasince,mod1

mod1,

mod1,

2

1

2

1

2

1

2

2

1

−≡

≠

±≡

≡








−

−

−

−

Examples

pa
p

a
p

mod2

1−

≡








13mod5

113mod413mod4

13mod4

62

113

≡≡
−

QNRais

QRais

C
o
n
g
u
re

n
c
e

a
lw

a
y
s
 h

o
ld

s
 w

h
e

n

n
 is

 a
n
 o

d
d
 p

rim
e

CR 43

113mod1213mod5

13mod5

6 −≡≡

QNRais

215mod715mod7 72

115

−≡≡
−

115mod1415mod14 72

115

−≡≡
−

Euler’s Witness

Euler’s Liar

a
lw

a
y
s
 h

o
ld

s
 w

h
e

n

n
 is

 a
n
 o

d
d
 p

rim
e

C
o
n
g
u
re

n
c
e

m
a
y

o
r m

a
y
 n

o
t h

o
ld

w
h
e
n

n
 is

 a
n
 o

d
d
 p

rim
e

Solovay Strassen Primality Test

)0(

compute

11that suchintegerrandomachoose

){(

COMPOSITEreturnxif

n

a
x

n-a a

nASSENSOLOVAYSTR

=








=

≤≤

How to compute

CR 44

}

)mod(

mod

)0(

2

1

COMPOSITEreturnelse

PRIMEpossiblyreturnnyxif

naycompute

COMPOSITEreturnxif

n

≡

=

=
−

error probability is at most ½

after k invocations of this algorithm,

Legendre’s symbol

Jacobi Symbol

• Jacobi Symbol is a generalization of the Legendre symbol

• Let n be any positive odd integer and a>=0 any integer. The

Jacobi symbol is defined as:

ionfactorizatprimewithintegerpositiveoddanisSuppose n

CR 45

...ppppn

ionfactorizatprimewithintegerpositiveoddanisSuppose

4321 e

4

e

3

e

2

e

1 ×××=

n

L×







×








×








×








=








4321

4321

eeee

p

a

p

a

p

a

p

a

n

a

Then,

T

Jacobi Properties










=









±≡−

±≡
=
















=






≡

baab

nif

nif

n

n

b

n

a
thennbaIf

.3P

8mod31

8mod112
.2P

mod.1P

CR 46



















≡≡






−
=
























=






=












=





otherwise
a

n

anif
a

n

n

a

oddisaif

n

t

nn

a
taevenisaif

nnn

k

k

4mod3

,.5P

2
,2,.4P

.3P

Computing Jacobi

From the theorem

P5, P1, then P2

P5, P1, P5, P1, P3, P2

CR 47

P5, P1, P5, P1, P3, P2

P5, P1

and 1 is a QR mod 13

Factoring Algorithms

CR 48

Factorization to get the private key

• Public information (n, b)

• If Mallory can factorize n into p and q then,
• She can compute φ(n) = (p-1)(q-1)

• She can then computethe private key by finding a ≡ b-1 mod φ(n)

CR 49

How to factorize n?

Trial Division

Fundamental theorem of arithmetic

Any integer number (greater than 1) is either prime or a product of prime

powers
ke

k

eee
ppppn L321

321=

CR 50

prime generation algorithm

Prime factors of n cannot be

greater than  n

n = n / p : remove this factor from n

Running Time of algorithm order of π(2n/2)

Pollard p-1 Factorization

qpn ×=

.1gcdascasethenotlikelymostisthisHowever,

factor.primeaisthen,1),gcd(If

).1(integerrandomachoose

=

≠

<<

(a,n)

ana

naa1

).1(computetouseWe

.1such that LangetweSuppose

−LaL

L|-pmagically2
How to find the magic L?

4

CR 51

1|,

)'(mod1

)1(|1

).1(computetouseWe

)1(

−

≡≡

=−=−

−

−

L

kpL

L

apThus

TheoremLittlesFermatbypaa

LkpLp

aL

>

anything. concludeCannot also.1|then n,n)1,-gcd(aif

n.offactorafoundhavewethen,),1gcd(ifThus

.be alsomay andeitheris),1gcd(

,1|and|,Since

),1gcd(computeNow

L −=

≠−

−

−

−

L

L

L

L

L

aq

nna

npna

apnp

na

3

No easy way, trial and error!!

Factorials have a lot of divisors. So that

is a nice way.

So, take L as a factorial of some

number r.

Pollard p-1 Factorization

 of next value with 1 fromagain start ,

1gcdcompute 3

done. are wen, offactor prime a is gcd then this,1gcdif2

21

aSndif

, n)-(ad.S

(a, n) > .S

a.S

r!

=

←

←

Pollard p-1 factorization for n.

CR 52

done! are we; offactor prime theis

3repeat andincrement , 1

 of next value with 1 fromagain start ,

nelse d

Sr d ifelse

aSndif

=

=

r = 2,3, 4, H..

Will the algorithm terminate?

Pollard Rho Algorithm

• Form a sequence S1 by selecting randomly (with replacement)

from the set Zn

• Also assume we magically find a

new sequence S2 comprising of

L,,,,,1 43210 xxxxxS =

pxx

pxx

pxx

mod

mod

mod

11

00

≡

≡

≡

CR

new sequence S2 comprising of

• If we keep adding elements to

S1, we will eventually find an xi and xj (i≠j) such that

When this happens,

53

L,,,,,2 43210 xxxxxS =

pxx

pxx

pxx

mod

mod

mod

44

33

22

≡

≡

≡
where

ji xx =

!!.)),gcd((,|

)(|

noffactorafoundWepisnxxalsonp

xxp

ji

ji

−

−

Q

Doing without magic

• Form a sequence S1 by selecting randomly (with replacement)

from the set Zn

• For every pair i,j in the sequence compute

L,,,,,1 43210 xxxxxS =

CR

• For every pair i,j in the sequence compute

• If d > 1 then it is a factor of n

54

),gcd((nxxd ji −←

Selecting elements of S1

To choose the next element of S1, Pollard suggests

using a function

with requirement that the output looks random.

nn ZZf →:

Example : nxxf mod1)(2 +=

CR 55

Example : nxxf mod1)(2 +=
















=>
=

−)(0
1

1

00

iii

n

xfxandix

Zfromrandomlychosenisxwherex
S

Example

• N= 82123, x0 = 631, f(x) = x2 + 1

DrawbackH

Large number of GCD

This column is just

for understanding.

In reality we will not know this

CR 56

41)82123,63222gcd(),gcd(103 ==− Nxx A factor of N

Large number of GCD

computations. In this case

55.

Can we reduce the number

of gcd computations?

Given xi mod N, we compute gcds of every pair until we find a gcd greater

than 1

The Rho in Pollard-Rho

• N= 82123, x0 = 631, f(x) = x2 + 1

40

2

5

26
21

32

0

1

CR 57

pxx ltt mod+=
• The smallest value of t and l, for which the above congruence holds is t=3, l=7

• For l=7, all values of t > 3 satisfy the congruence

• This leads to a cycle as shown in the figure

(and a shape like the Greek letter rho)

16

11

40

3mod ≥= + tpxx ljj

Reducing gcd computations

• GCD computations can be expensive.

• Use Floyd’s cycle detection algorithm to reduce the number of

GCD computations.

00 ∈= nZyxrandomachoose

5

26
21

32

CR 58

))((

)(

12

1

00

−

−

==

=

∈=

iii

ii

n

yffxy

xfx

Zyxrandomachoose

16

11

40

2 0

1

claim : The first time xi = yi mod p occurs when i ≤ t + l

dreturnNyxdIf ii ,0),gcd(>−=

lo
o
p

The first time xi = yi mod p occurs

is when i ≤ t + l
• l is the number of points in the cycle

• t is the smallest value of i such that Nyx ii mod≡

xi and yi meet at the same point in the cycle

Therefore, yi must have traversed (some) cycles more

CR 59

ilkil

iil

Nxx

Nyx

ii

ii

==

−

≡

≡

>|

)2(|

mod

mod

2

ltlkl

lkconsider

+≤+=

+)1(

Expected number of operations

before a collision

• Can be obtained from Birthday paradox

to be p

CR 60

Congruences of Squares

• Given N=p x q, we need to find p and q

• Suppose we find an x and y such that

• Then,

• This implies,

Nyx mod22 ≡

))((|)(| 22 yxyxNyxN +−=− >

CR

• This implies,

61

NyxNyxN factors))(,gcd(or))(,gcd(+−

Example

• Consider N = 91

)137(|91

)310)(310(|91

91mod310 22

×

+−

≡

2642|91

)834)(834(|91

91mod834 22

×

−+

≡

CR 62

)137(|91 ×

7)42,91gcd(

13)26,91gcd(

2642|91

=

=

×

7)7,91gcd(

13)13,91gcd(

=

=

SoH we can use x and y to factorize N.

Nyx mod22 ≡
But how do we find such pairs?

Another Example

• N = 1649

32 and 200 are not perfect squares.

However (32x200 = 6400) = 802

is a perfect square1649mod20043

1649mod3241

2

2

≡

≡

CR 63

1649mod80

1649mod)20032()4341(

2

2

≡

×≡×

Thus, it is possible to combine non-squares to form

a prefect square

the examples are borrowed from Mark Stamp (http://cs.sjsu.edu/faculty/stamp/)

Forming Perfect Squares

Recall, Fundamental theorem of arithmetic

Any integer number (greater than 1) is either prime or a product of prime

powers

ke

k

eee
ppppn L321

321=

Thus, a number is a perfect square if it prime factors have even powers.

CR 64

Thus, a number is a perfect square if it prime factors have even powers.

eveniseee ,...,, 321

Thus,

32 = 2550 not a perfect square

200 = 2352 not a perfect square

(32x200) = 2550 x 2352 = 2852 = (2451)2 is a prefect square

Dixon’s Random Squares

Algorithm
1. Choose a set B comprising of ‘b’ smallest primes. Add -1 to

this set.

(A number is said to be b-smooth, if its factors are in this set)

2. Select an r at random

– Compute Nry mod2=

CR

– Compute

– Test if y factors completely in the set B.

– If NO, then discard. ELSE save (y, r) (these are called B-smooth

numbers)

3. Repeat step 2, until we have b+1 such (y,r) pairs

4. Solve the system of linear congruencies

65

Nry mod=

Example

• N = 1829

• b = 6 B = {-1, 2,3,5,7,11,13}

• Choose random values of r, square and factorize

CR 66

All numbers are B-smooth

except 60 and 75.

Leave these and

consider all others

Check Exponents

-1 2 3 5 7 11 13

-65 1 0 0 1 0 0 1

20 0 2 0 1 0 0 0

63 0 0 2 0 1 0 0

-11 1 0 0 0 0 1 0

CR

-91 1 0 0 0 1 0 1

80 0 4 0 1 0 0 0

67

Check Exponents

-1 2 3 5 7 11 13

-65 1 0 0 1 0 0 1

20 0 2 0 1 0 0 0

63 0 0 2 0 1 0 0

-11 1 0 0 0 0 1 0

CR

-91 1 0 0 0 1 0 1

80 0 4 0 1 0 0 0

68

Find rows where exponents sum is even

-65, 20, 63, -91

sum 2 2 2 2 2 0 2

1829mod9011459

1829mod)1375321()85614342(

22

22

≡

×××××−≡×××

Final Steps

1829mod9011459

1829mod)1375321()85614342(

22

22

≡

×××××−≡×××

59)2360,1829gcd(2360|1829

)9011459)(9011459(|1829

==

−+

>

CR 69

31591829

31)558,1829gcd(558|1829

59)2360,1829gcd(2360|1829

×=

==

==

Thus

>

>

State of the Art

Factorization Techniques
• Quadratic Sieve

– Fastest for less than 100 digits

• General Number field Sieve

– Fastest technique known so far for greater than 100 digits

– Open source code (google GGNFS)

• RSA factoring challenge

CR

• RSA factoring challenge

– Best so far is 768 bit factorization

– Current challenges 896 bits (reward $75,000), 1024 bit ($100,000)

70
https://en.wikipedia.org/wiki/RSA_Factoring_Challenge

RSA Attacks

attacks that don’t require

CR

attacks that don’t require

factorization algorithms

71

Φ(n) leaks

• If an attacker gets Φ(n) then n can be factored

)1)(1()(

/

++−=

−−=

==

qpn

pnqpqn

φ

CR 72

0)1)((

1)()(

1)(

2 =++−−

++−=

++−=

npnnp

p

n
pnn

qppq

φ

φ

Solve to get p (a factor of n)

square roots of

1 mod n
There are two trivial and two non-trivial solutions for

The trivial solutions are +1 and -1

ny mod12 ≡





≡

≡
〈=〉≡

qy

py
ny

mod1

mod1
mod1

2

2

2

By CRT, these congruences

are equivalent





−≡

≡

py

py

mod1

mod1

 ≡ qy mod1

CR 73

 ≡ qy mod1





−≡

≡

qy

qy

mod1

mod1

qy

py

mod1

mod1

−≡

+≡

qy

py

mod1

mod1

+≡

−≡

To get the non-trivial solutions solve using CRT

Example

• n=403 = 13 x 31

• To get the non-trivial solutions of solve using CRT

qy

py

mod1

mod1

−≡

+≡

qy

py

mod1

mod1

+≡

−≡

ny mod12 ≡

CR 74

31191403

92403mod)1213831(

403mod)31mod131313mod3131(11

=−

≡⋅−⋅

⋅−⋅ −−

403mod131192: 22 ≡≡Note
The non-trivial solutions are 92 and 311

What happens when we solve
qy

py

mod1

mod1

+≡

+≡

Decryption exponent leaks

• If the decryption exponent ‘a’ leaks, then n can be factored

• The attacker can then compute

• Now, for any message x ≠ 0

)1()()(mod1 −=≡ abnknab φφ

ab

CR

• Now, for any message x ≠ 0

75

nxab mod11 ≡−

• Attack Plan, take square root :

i.e.,

nxy
ab

mod2

1−

≡

)1)(1(|

)1(|mod1 22

+−=

−=≡

yyn

ynny

>

>

noffactoraisyn)1,gcd(−

However we

need

to have a non-

trivial result

1±≠y

The Attack (basic idea)

modput.4

messageanychoose.3

2

1
Represent.2

1computegiven.1

nxy

x

ab
t

aba

t=

−
=

−

)1)(1(|

mod0)1(,

mod1

2

1

2

1

1

−+

≡−

≡=
−

yyn

nythus

nxy
ab

1)(

)(mod1

−=

≡

abnk

nab

φ
φ

we assume we know the private

key a

CR 76

""

4step;2/)evenis(.7

;"disnoffactora",1.6

),1gcd(compute.5

modput.4

failurereturnelse

gototttif

exitreturndif

nyd

nxy t

=

≠

−←

=)1)(1(| −+ yyn

This will only work if y ≠±1 mod n.

If y = ±1 mod n. then goto step 7

Probability of success of the attack is at-least 1/2

Example

• N=403, b=23, a=47

311403mod2403mod270
540

:2

1403mod2403mod540
2

1080
:1

210801

270

540

xytloop

xytloop

xabt

t

t

≡=≡==

≡=≡==

==−=

CR 77

)(31)403,310gcd(

311403mod2403mod270
2

:2

noffactora

xytloop

=

≡=≡==

1403mod9403mod135
2

270
:3

1403mod9403mod270
2

540
:2

1403mod9403mod540
2

1080
:1

910801

135

270

540

≡=≡==

≡=≡==

≡=≡==

==−=

t

t

t

xytloop

xytloop

xytloop

xabt

can’t divide 135 further. failure

Small Encryption Exponent

• In order to improve efficiency of encryption, a small

encryption exponent is preferred

• However, this can lead to a vulnerability

CR 78

Small Encryption Exponent
Alice m3mod N1

m
m3mod N2

m3mod N2

c1

c2

c3

CR 79

• Consider, Alice sending the same message x to 3 different people.

• Each having a different N (say N1, N2, N3)

• But same public key b (say 3)

Insecure channel

Small Encryption Exponent
Alice m3mod N1

m
m3mod N2

m3mod N2

c1

c2

c3 3

3

3

2

3

2

1

3

1

mod

mod

mod

Nmc

Nmc

Nmc

≡

≡

≡

CR 80

• Consider, Alice sending the same message x to 3 different people.

• Each having a different N (say N1, N2, N3)

• But same public key b (say 3)

• This allows Mallory to snoop in and get 3 ciphertexts

Insecure channel

Small Encryption Exponent

• Thus, Mallory can compute X

)mod(

mod

mod

mod

321

3

3

3

3

2

3

2

1

3

1

NNNmX

Nmc

Nmc

Nmc

⋅⋅≡〈=〉








≡

≡

≡

By CRT

CR

• Thus, Mallory can compute X

• Since m < N1, m<N2, m<N3 => n < (N1 x N2 x N3)

• Thus, X1/3=m

– i.e. The message can be decrypted

81

It is tempting to have small private and public keys, so that encryption or

decryption may be carried out efficiently. However you would do this at

the cost of security!!

Low Decryption Exponent

• The attack applies when the private key a is

small,

• In such a case ‘a’ can be computed efficiently

3

4 n
a <

CR

• In such a case ‘a’ can be computed efficiently

82

Partial Information of Plaintexts

Computing Jacobi of the plaintext

oddbemusttherefore,evenis)1)(1(

111gcd Thus,

1))(gcd(andkey public theis

messagethe;ciphertexttheismod

bqp

)))(q-(b, (p-

nb, φb

xynxy b

−−

=

=

≡

CR 83

oddissince

1

b

n

x

n

x

n

y

n

y

Jacobiconsider

b








=






=








±=








thus, RSA encryption leaks the value of the Jacobi symbol 







n

x

Partial Information of Plaintexts

first half or second half?

• given y = xbmod n,

– is it possible to determine if

(0 ≤ x < n/2) or (n/2 ≤ x < n-1)
first half second half

CR 84

• We prove that RSA does not leak this information

• If there exists an efficient algorithm that can

determine if x is in the first or second half then,

the entire plaintext can be obtained

Binary Search Trees on x

0)(13mod3 == xHALFx









−<≤

<≤
=

1
2

1

2
00

)(

nx
n

if

n
xif

xHALF

Consider this function

example

[0-6.5) [6.5,13)

[0,13)

[0,3.25)

[0,1.625)

0

0

1

CR 85

1)16(13mod916

1)8(13mod118

1)4(13mod124

0)2(13mod62

0)(13mod3

=≡

=≡

=≡

=≡

==

xHALFx

xHALFx

xHALFx

xHALFx

xHALFx
[0,1.625)

[1.625,3.25)

1

3

Partial Information of Plaintexts
(first or second half proof)

• Assume a hypothetical oracle called HALF as follows









−<≤

<≤
=

1
2

1

2
00

),,(

nx
n

if

n
xif

ybnHALF

nxy

nxy

nxy

bb

bb

b

mod)4(4

mod)2(2

mod

≡⋅

≡⋅

≡

)[,00)(
n

xyHALF ∈==

CR 86

nxy

nxy

nxy

bb

bb

bb

mod)16(16

mod)8(8

mod)4(4

≡⋅

≡⋅

≡⋅)[
2

,00)(
n

xyHALF ∈== >

)[
2

,
4

1)2(
nn

xyHALF b ∈== >)[
4

,00)2(
n

xyHALF b ∈== >

)[
8

,00)2(2 n
xyHALF b ∈== >)[

4
,

8
0)2(2 nn

xyHALF b ∈== >

Example

1

0

1

0

1

1

hi

n=1457, b=779, y=722

CR 87

1

1

1

1

0

0

Thus, if we have an efficient function HALF, we can recover

the plaintext message.

Man in the Middle Attack

• The process of encryption with a public key

cipher

CR 88

Bob decrypts

with his private

key

Man in the Middle Attack

• The process of encryption with a public key

cipher Man in the middle

Intercepts messages

CR 89

Bob decrypts

with his private

key

Mallory decrypts

with her private

key and re-

encrypts

with Bob’s

public key

Searching the Message Space

• Suppose message space is small,

– Mallory can try all possible messages, encrypt

them (since she knows Bob’s public key) and check

if it matches Alice’s ciphertext

CR 90

Bob decrypts

with his private

key

if it matches Alice’s ciphertext

Bad Prime Generation Algorithms

• Suppose the prime generation was faulty

– So that, primes generated were always from a

small subset

– Then, RSA can be broken

CR

– Then, RSA can be broken

• Pairwise GCD of over a million RSA modulii

collected from the Internet showed that

– 2 in 1000 have a common prime factor

91Ron was Wrong, Whit is right, 2012

Discrete Log Problem, ElGamal,

and Diffie Hellman

CR

and Diffie Hellman

92STINSON : chapter 6

Primitive Elements of a Group

enelement th primitive a is If

.order hasit if a as termedis

1 = such that integer smallest theis oforder The

G,Let

.order ofgroupabeLet

m

∈

⋅

α
α

αα

α

nelementprimitive

m

n)(G,

CR 93

Gin elements all generates1}-n i 0 : { i ≤≤= αα

}1,2,4,8,3,6,12,11,9,5,10,7{7

,7Let

12orderofgroupaforms),(

}12,,3,2,1{

*

13

*

13

*

13

=

∈

⋅

=

Z

Z

ZConsider L

<7> has order 12

and generates all elements in Z.

Thus, 7 is a primitive element

Discrete Log Problem

}10:{

settheDefine

orderwithgrouptheinelementprimitiveabe

),(

−≤≤=

∈

⋅

ni

nGLet

groupabeGLet

iαα

α

CR 94

ββ
βα

α oflogarithmdiscretetheaslogDenote

let

),10(integeruniqueanyFor

=

=

−≤≤

a

naa

a

Given α and a, it is easy to compute β

Given α and β it is computationally difficult to determine what a was

ElGamal Public Key Cryptosystem

• Fix a prime p (and group Zp)

• Let be a primitive element

• Choose a secret ‘a’ and compute

pZ∈α

pa modαβ ≡

Private key :Public keys : p,,βα a

CR 95

Private key :Public keys : p,,βα a

Encryption

pxy

pywhere

yyxe

Zkretrandomachoose

k

k

k

p

mod

,mod

),()(

)(sec

2

1

21

β

α

⋅=

=

=

←

Decryption

x

px

px

pyyxd

kaka

kak

a

k

≡

⋅=

⋅=

=

−

−

−

mod)(

mod)(

mod)()(

1

1

1

12

αα

αβ

ElGamal Example

• p = 2579, α = 2 (α is a primitive element mod p)

• Choose a random a = 765

• Compute β ≡ 2765 mod 2579

Encryption of message x = 1299

CR 96

choose a random key k = 853

y1 = 2853 mod 2579 = 435

y2 = 1299 x 949853 = 2396

Decryption of cipher (435, 2396)

2396 x (435765)-1 mod p

= 1299

Finding the Log

• Brute force (compute intensive)

compute

pa modαβ ≡

Given α and β it is computationally difficult to determine what a was

......,,, 432 αααα (until you reach β)

CR

compute

this would definitely work, but not practical if p is large

complexity O(p), space complexity O(1)

• Memory Intensive

precompute (all values). Sort and store.

For any given β look up the table of stored values.

complexity O(1) but space complexity O(n)

97

......,,, αααα (until you reach β)

......,,, 432 αααα

Shank’s Algorithm
(also known as Baby-step Giant-step)

pa modαβ ≡

 pmwhere

Rewrite

=

+= rmqaasa

CR 98

 

() p

p

rqm

rmq

mod

mod

ααβ

ααβ

≡

≡
−

We neither know q nor r, so we need to try out several

values for q and r until we find a collision

Shank’s Algorithm

(example)

• p= 31 and α=3. Suppose β=6.

• What is a?

  631 ==m
231mod)3(61 =−

006 =⋅=−αβcollision

CR 99

31mod26319

31mod1981

27

9

3

5

4

3

2

≡⋅=

≡=

≡

≡

≡

α

α

α

α

α

31mod326)(

31mod1726)(

2426)(

1226)(

626)(

446

336

226

116

006

≡⋅=

≡⋅=

=⋅=

=⋅=

=⋅=

−

−

−

−

−

αβ

αβ

αβ

αβ

αβcollision

Thus, m=6, q=4, r=1, a= mq+r = 25

L
is

t
1

L
is

t
2

Shank’s Algorithm

Create List 1

CR 100

Create List 1

Create List 2

Find collision

Complexity of Shank’s Algorithm

O(m)

O(mlog m)

CR 101

O(m)

O(mlog m)

O(log m)

O(mlogm) ~ O(m) = O(p1/2)

Other Discrete Log Algorithms

• Pollard-Hellman Algorithm

used when n is a composite

na modαβ ≡

CR

used when n is a composite

• Pollard-Rho Algorithm

about the same runtime as the Shank’s

algorithm, but has much less memory

requirements

102

Diffie Hellman Problem

}10:{

settheDefine

orderwithgrouptheinelementprimitiveabe

),(

−≤≤=

∈

⋅

ni

nGLet

groupabeGLet

iαα

α

CR 103

abba findandgiven ααα , Computational DH (CDH)

nabcandgiven cba modifdetermine,, ≡ααα
Decision DH (DDH)

Recall…

Diffie Hellman Key Exchange

Alice and Bob agree upon a prime p and a generator g.

This is public information

choose a secret a

compute A = ga mod p

choose a secret b

compute B = gb mod p

CR 104

B A

Compute K = Ba mod p Compute K = Ab mod p

Ab mod p = (ga)b mod p = (gb)a mod p = Ba mod p

