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Graphs
Definition: A graph G = (V, E) consists of a nonempty set V of vertices (or 

nodes) and a set E of edges. Each edge has either one or two vertices associated 
with it, called its endpoints.  An edge is said to connect its endpoints.

Remarks: 

� We have a lot of freedom when we draw a picture of a graph.   All that matters is the connections made 
by the edges, not the particular geometry depicted.   For example, the lengths of edges, whether edges 
cross, how vertices are depicted, and so on, do not matter

� A graph with an infinite vertex set  is called an infinite graph. A graph with a finite vertex set is called a 
finite graph. We restrict our attention to finite graphs.
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Example:
This is a graph 
with four 
vertices and five 
edges.



Some Terminology
� in a simple graph each edge connects two different vertices and no two 

edges connect the same pair of vertices.

� multigraphs may have multiple edges connecting the same two 
vertices. When m different edges connect the vertices u and v, we say 
that {u,v} is an edge of multiplicity m. 

� an edge that connects a vertex to itself is called a loop.

� a pseudograph may include loops, as well as multiple edges connecting 
the same pair of vertices.

Remark: There is no standard 
terminology for graph theory. So, it is 
crucial that you understand the 
terminology being used whenever you 
read material about graphs.

Example: 
This pseudograph
has both multiple 
edges and a loop.
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Directed and Undirected Graphs
Definition: An directed graph (or digraph) G = (V, E)
consists of a nonempty set V of vertices (or nodes) and a 
set E of directed edges (or arcs). Each edge is associated 
with an ordered pair of vertices.  The directed edge 
associated with the ordered pair (u,v) is said to start at u
and end at v. 

Remark: 
� Graphs where the end points of an edge are not ordered 

are said to be undirected graphs. Such undirected edges 
are often denoted with curly braces {u,v}, as typical for 
(unordered) sets.



Some Terminology (continued)
� A simple directed graph has no loops and no multiple edges.

� A directed multigraph may have multiple directed edges.  When there 
are m directed edges from the vertex u to the vertex v,  we say that  (u,v)
is an edge of multiplicity m.
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In this directed multigraph the 
multiplicity of (a,b) is 1 and the 
multiplicity of (b,c) is 2.

Example:

This is a directed graph with 
three vertices and four edges.

Example:



Graph Models: 

Computer Networks
� When we build a graph model, we use the appropriate type of graph to 

capture the important features of the application. 
� We illustrate this process using graph models of different types of 

computer networks. In all these graph models, the vertices represent 
data centers and the edges represent communication links.

� To model a computer network where we are only concerned whether 
two data centers are connected by a communications link, we use a 
simple graph. This is the appropriate type of graph when we only care 
whether two data centers are directly linked (and not how many links 
there may be) and all communications links work in both directions.



Graph Models: 

Computer Networks (continued)
• To model  a computer network 

where we care about the number 
of links between data centers, we 
use a multigraph. 

• To model a network with multiple one-
way links, we use a directed multigraph.   
Note that we could use a directed graph 
without multiple edges if we only care 
whether there is at least one link from a 
data center to another data center.



Graph Terminology: Summary
� To understand the structure of a graph and to build a graph 

model, we ask these questions:
• Are the edges of the graph undirected or directed  (or both)?

• If the edges are undirected, are multiple edges present that 
connect the same pair of vertices? If the edges are directed, 
are multiple directed edges present?

• Are loops present?



Other Applications of Graphs
� We will illustrate how graph theory can be used in models of:

� Social networks

� Communications networks

� Information networks

� Software design

� Transportation networks

� Biological networks

� Neural networks

� It’s a challenge to find a subject to which graph theory has 
not yet been applied.  Can you find an area without 
applications of graph theory?



Graph Models: Social Networks
� Graphs can be used to model social structures based on 

different kinds of relationships between people or groups. 
� In a social network, vertices represent individuals or 

organizations and edges represent relationships between them.
� Useful graph models of social networks include:

� friendship graphs - undirected graphs where two people are 
connected if they are friends (in the real world, on Facebook, 
or in a particular virtual world, and so on.)

� collaboration graphs - undirected graphs where two people 
are connected if they collaborate in a specific way

� influence graphs - directed graphs where there is an edge 
from one person to another if the first person can influence 
the second person



Graph Models: Social Networks 

(continued)

Example: A friendship 
graph where two people 
are connected if they are 
Facebook friends.

Example: An 
influence graph

Next Slide: Collaboration Graphs



Examples of  Collaboration Graphs
� The Hollywood graph models the collaboration of actors in films.

� We represent actors by vertices and we connect two vertices if the 
actors they represent have appeared in the same movie.

� An academic collaboration graph models the collaboration of 
researchers who have jointly written a paper in a particular subject.

� We represent researchers in a particular academic discipline using 
vertices.

� We connect the vertices representing two researchers in this 
discipline if they are coauthors of a paper.

� We will study the academic collaboration graph for mathematicians 
when we discuss Erdős numbers.



Applications to Information Networks
� Graphs can be used to model different types of networks 

that link different types of information.

� In a web graph, web pages are represented by vertices and 
links are represented by directed edges.
� A web graph models the web at a particular time.

� The web graph is used by search engines.

� In a citation network: 
� Research papers in a particular discipline are represented by 

vertices.

� When a paper cites a second paper as a reference,  there is an 
edge from the vertex representing this paper to the vertex 
representing the second paper.



Transportation Graphs
� Graph models are extensively used in the study of  

transportation networks.

� Airline networks can be modeled using directed 
multigraphs where
� airports are represented by vertices

� each flight is represented by  a directed edge from the vertex 
representing the departure airport to the vertex representing 
the destination airport

� Road networks can be modeled using graphs where
� vertices represent intersections and edges represent roads.

� undirected edges represent two-way roads and directed edges 
represent one-way roads.



Software Design Applications
� Graph models are extensively used in software design. We will introduce two such 

models here; one representing the dependency between the modules of a 
software application  and the other representing restrictions in the execution of 
statements in computer programs.

� When a top-down approach is used to design software, the system is divided into 
modules, each performing a specific task.    

� We use a module dependency graph to represent the dependency between these 
modules.  These dependencies need to be understood before coding can be done.

� In a module dependency graph vertices represent software modules and there is an 
edge from one module to another if the second module depends on the first.

Example: The dependencies between the 
seven modules in the design of a web 
browser are represented by this module 
dependency graph.



� We can use a directed graph called a precedence graph to 
represent which statements must have already been 
executed before we execute each statement.
� Vertices represent statements in a computer program
� There is a directed edge from a vertex to a second vertex if the 

second vertex cannot be executed before the first

Software Design Applications 

(continued)

Example: This precedence 
graph shows which statements 
must already have been executed 
before we can execute each of 
the six statements in the 
program.



Biological Applications
� Graph models are used extensively in many areas of the 

biological science.  We will describe two such models, one 
to ecology and the other to molecular biology.

� Niche overlap graphs model competition between species 
in an ecosystem
� Vertices represent species and an edge connects two vertices 

when they represent species who compete for food resources.

Example: This is the 
niche overlap graph for 
a forest ecosystem 
with nine species.



Biological Applications (continued)
� We can model the interaction of proteins in a cell using a protein 

interaction network.
� In a protein interaction graph, vertices represent proteins  and vertices 

are connected by an edge if the proteins they represent interact.
� Protein interaction graphs can be huge and can contain more than 

100,000 vertices, each representing a different protein, and more than 
1,000,000 edges, each representing an interaction between proteins

� Protein interaction graphs are often split into smaller graphs, called 
modules,  which represent the interactions between proteins involved 
in a particular function.

Example:  This is a module of 
the protein interaction graph of 
proteins that degrade RNA in a 
human cell.



Section 10.2



Section Summary
� Basic Terminology

� Some Special Types of Graphs

� Bipartite Graphs

� New Graphs from Old



Basic Terminology
Definition 1. Two vertices u, v in  an undirected graph G are 
called adjacent (or neighbors)  in G if there is an edge e between 
u and v. Such an edge e is called incident with the vertices u and 
v and e is said to connect u and v. 

Definition 2. The set of all neighbors of a vertex v of G = (V, E), 
denoted by N(v), is called the neighborhood of v. If A is a subset 
of V, we denote by N(A) the set of all vertices in G that are 
adjacent to at least one vertex in A. So,

Definition 3. The degree of a vertex in a undirected graph is the 
number of edges incident with it, except that a loop at a vertex 
contributes two to the degree of that vertex. The degree of the 
vertex v is denoted by deg(v).



Degrees and Neighborhoods of 

Vertices
Example:  What are the  degrees  and neighborhoods of the 
vertices in the graphs G and H?

Solution: 
G:    deg(a) = 2, deg(b) = deg(c) = deg(f ) = 4, deg(d ) = 1,

deg(e) = 3, deg(g) = 0. 

N(a) = {b, f }, N(b) = {a, c, e, f }, N(c) = {b, d, e, f }, N(d) = {c},  
N(e) = {b, c , f }, N(f) = {a, b, c, e}, N(g) = ∅ . 

H:    deg(a) = 4, deg(b) = deg(e) = 6,  deg(c) = 1, deg(d) = 5.  

N(a) = {b, d, e},  N(b) = {a, b, c, d, e}, N(c) = {b},
N(d) = {a, b, e},  N(e) = {a, b ,d}. 



Degrees of Vertices

Theorem 1 (Handshaking Theorem):  If  G = (V,E) is  an undirected 
graph with m edges, then

2� � � deg (�)
 ∈"

Proof:

Each edge contributes twice to the degree count of all vertices. Hence, 
both the left-hand and right-hand sides of this equation equal twice 
the number of edges.

Think about the graph where vertices represent the people at a party and 
an edge connects two people who have shaken hands.



Handshaking Theorem
We now give two examples illustrating the usefulness of the 
handshaking theorem.

Example: How many edges are there in a graph with 10 vertices of 
degree six?

Solution: Because the sum of the degrees of the vertices is                
6 ⋅ 10 = 60, the handshaking theorem tells us that 2m = 60.             
So the number of edges m = 30.

Example: If a graph has 5 vertices, can each vertex have degree 3?

Solution: This is not possible by the handshaking theorem, 
because the sum of the degrees of the vertices 3 ⋅ 5 = 15 is odd.



Degree of Vertices (continued)
Theorem 2: An undirected graph has an even number of 
vertices of odd degree.

Proof: Let V1 be the vertices of even degree and V2 be the 
vertices of odd degree in an undirected graph G = (V, E) 
with m edges. Then 

must be 
even since 
deg(v) is 
even for 
each v ∈ V1

even

This sum must be even because 2m
is even and the sum of the degrees 
of the vertices of even degrees is 
also even. Because this is the sum of 
the degrees of all vertices of odd 
degree in the graph, there must be 
an even number of such vertices.



Directed Graphs

Definition: A directed graph G = (V, E) consists of V, a 
nonempty set of vertices (or nodes), and E, a set of 
directed edges or arcs. Each edge is an ordered pair of 
vertices.  The directed  edge (u,v) is said to start at u
and end at v.

Definition:  Let (u,v) be an edge in G. Then u is the 
initial vertex of this edge and is adjacent to v and v is 
the terminal vertex (or end vertex) of this edge and is 
adjacent from u. The initial and terminal vertices of a 
loop are the same.

Recall the definition of a directed graph.



Directed Graphs (continued)
Definition: The in-degree of a vertex v, denoted        
deg−(v), is the number of edges which terminate at v. 
The out-degree of v, denoted deg+(v), is the number of 
edges with v as their initial vertex. Note that a loop at a 
vertex contributes 1 to both the in-degree and the out-
degree of the vertex.

Example:  In the graph G we have

deg−(a) = 2, deg−(b) = 2, deg−(c) = 3, deg−(d) = 2, 
deg−(e) = 3, deg−(f) = 0.

deg+(a) = 4, deg+(b) = 1, deg+(c) = 2, deg+(d) = 2, 
deg+ (e) = 3, deg+(f) = 0.

deg−

deg+



Directed Graphs (continued)
Theorem 3: Let G = (V, E) be a graph with directed edges. 
Then:

Proof: The first sum counts the number of outgoing edges 
over all vertices and the second sum counts the number of 
incoming edges over all vertices. It follows that both sums 
equal the number of edges in the graph.



Special Types of Simple Graphs: 

Complete Graphs
A complete graph on n vertices, denoted by Kn, is the 
simple graph that contains exactly one edge between 
each pair of distinct vertices. 



Special Types of Simple Graphs: 

Cycles and Wheels
A cycle Cn for n ≥  3 consists of n vertices v1, v2 ,⋯ , vn, 
and edges {v1, v2}, {v2, v3} ,⋯ , {vn-1, vn}, {vn, v1}.

A wheel Wn is obtained by adding an additional vertex 
to a cycle Cn for n ≥  3 and connecting this new vertex 
to each of the n vertices in Cn by new edges.



Special Types of Graphs and 

Computer Network Architecture
Various special graphs play an important role in the design of computer networks.

� Some local area networks use a star topology, which is a complete bipartite graph K1,n ,as 
shown in (a). All devices are connected to a central control device.

� Other local networks are based on a ring topology, where each device is connected to 
exactly two  others using Cn ,as illustrated in (b). Messages may be sent around the ring. 

� Others, as illustrated in (c), use a Wn – based topology, combining the features of a star 
topology and a ring topology. 

� Various special graphs also play a role in parallel processing where processors need to be 
interconnected as one processor may need the output generated by another. 
� The n-dimensional hypercube, or n-cube, Qn, is a common way to connect processors in 

parallel, e.g., Intel Hypercube. 
� Another common method is the mesh network, illustrated here                                                  

for 16 processors. 

defined 3 slides later 



Bipartite Graphs
Definition: A simple graph G is bipartite if V can be partitioned 
into two disjoint subsets V1 and V2 such that every edge connects 
a vertex in V1 and a vertex in V2. In other words, there are no 
edges which connect two vertices in V1 or in V2.

It is not hard to show that an equivalent definition of a bipartite 
graph is a graph where it is possible to color the vertices red or 
blue so that no two adjacent vertices are the same color.

H is  not bipartite
since if we color a
red, then the 
adjacent vertices f
and b must both 
be blue.

G is  
bipartite



Bipartite Graphs (continued)
Example:  Show that C6 is bipartite.
Solution: We can partition the vertex set into                         
V1 = {v1, v3, v5} and V2 = {v2, v4, v6} so that every edge of C6
connects a vertex in V1 and V2 .

Example:  Show that C3 is not bipartite.
Solution:  If we divide the vertex set of C3 into two 
nonempty sets, one of the two must contain two vertices. 
But in C3 every vertex is connected to every other vertex. 
Therefore, the two vertices in the same partition are 
connected. Hence, C3 is not bipartite.



Complete Bipartite Graphs
Definition: A complete bipartite graph Km,n is a graph that 
has its vertex set partitioned into two subsets  V1 of size m
and  V2 of size n such that there is an edge from every 
vertex in V1 to every vertex in V2.

Example: We display four complete bipartite graphs here.



Bipartite Graphs and Matching
� Bipartite graphs are used to model applications that involve matching the 

elements of one set to elements in another, for example:

� Job assignments - vertices represent the jobs and the employees, edges link 
employees with those jobs they have been trained to do. A common goal is to 
match jobs to employees, e.g. so that all jobs are done while the constraints 
are satisfied (e.g. no more than one job per qualified employee).

� Marriages on an island - vertices represent the men and the women and 
edges link a a man and a woman if they are an acceptable spouse.  We may 
wish to find the largest number of possible marriages.

blue edges  show 
a feasible assignment

in this case there is no 
feasible assignment
(can you prove this?)



New Graphs from Old 
Definition: A subgraph of a graph  G = (V,E)  is a graph (W,F),  where  W ⊂ V
and F ⊂ E. A subgraph H of G is a proper subgraph of G if H ≠ G.

Example: Here we show K5 and                                                                                              
one of its subgraphs.

Definition:  Let G = (V, E) be a simple graph.  The subgraph induced  by a 
subset W of the vertex set V is the graph (W,F),  where  the edge set F  
contains an edge in E if and only if both endpoints are in W. 

Example: Here we show K5  and the subgraph
induced by W = {a,b,c,e}.



New Graphs from Old (continued)
Definition: The union of two simple graphs                     
G1 = (V1, E1) and G2 = (V2, E2) is the simple graph with 
vertex set V1 ⋃ V2 and edge set E1 ⋃ E2. The union of
G1 and G2 is denoted by G1 ⋃ G2.

Example:
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Section Summary
� Adjacency Lists

� Adjacency Matrices

� Incidence Matrices

� Isomorphism of Graphs



Representing Graphs: 

Adjacency Lists
Definition: An adjacency list can be used to represent 
a graph with no multiple edges by specifying the 
vertices that are adjacent to each vertex of the graph.

Example:

Example:



Representation of Graphs: 

Adjacency Matrices
Definition: Suppose that G = (V, E) is a simple graph 
where |V| = n.    Arbitrarily list the vertices of G as             
v1, v2, … , vn. The adjacency matrix AG of G, with respect 
to the listing of vertices, is the n × n zero-one matrix 
with 1 as its (i, j)th entry when vi and vj are adjacent, and 
0 as its (i, j)th entry when they are not adjacent.
� In other words, if the graphs adjacency matrix is                

AG = [aij], then

Note: matrix A is symmetric for undirected graphs



Adjacency Matrices (continued)
Example:  The ordering of vertices is

a,  b,  c,  d. 

Note: The adjacency matrix of a simple (undirected) graph is symmetric, i.e., aij = aji

Also, since there are no loops, the main diagonal contains only zeros, i.e. aij=0 for all i.

When a graph is sparse, that is, it 
has few edges relatively to the 
total number of possible edges, it 
is much more efficient to  
represent the graph using an 
adjacency list than an adjacency 
matrix.  But for a dense graph, 
which includes a high percentage 
of possible edges, an adjacency 
matrix is preferable.



Adjacency Matrices (continued)
� Adjacency matrices can also be used to represent graphs with 

loops and multiple edges. 
� A loop at the vertex vi is represented by a 1 at the (i, i)th position 

of the matrix. 
� When multiple edges connect the same pair of vertices vi and vj, 

(or if multiple loops are present at the same vertex), the (i, j)th
entry equals the number of edges connecting the pair of vertices. 

Example: We give the adjacency matrix  of the pseudograph
shown here using the ordering of vertices a, b, c, d.  



Adjacency Matrices (continued)
� Adjacency matrices can also be used to represent 

directed graphs. The matrix for a directed graph  G = 
(V, E) has a 1 in its (i, j)th position if there is an edge 
from vi to vj, where v1, v2, … vn is a  list of the vertices.
� In other words, if the graphs adjacency matrix is  AG = [aij], then

� The adjacency matrix for a directed graph does not have to be 
symmetric, because there may not be an edge from vi to vj, when 
there is an edge from vj to vi. 

� To represent directed multigraphs, the value of aij is the number 
of edges connecting vi to vj. 



Representation of Graphs: 

Incidence Matrices
Definition: Let  G = (V, E)  be an undirected graph with 
vertices where v1, v2, … vn and edges   e1, e2, … em.      
The incidence matrix with respect to the ordering of V
and E is the n × m matrix M = [mij], where



Incidence Matrices (continued)
Example:  Simple Graph and Incidence Matrix

The rows going from top to 
bottom represent v1 through 
v5 and the columns going 
from left to right represent e1
through e6.

Example:  Pseudograph and Incidence Matrix

The rows going from top to 
bottom represent v1 through
v5 and the columns going 
from left to right represent e1
through e8.



Isomorphism of Graphs
Definition: The simple graphs G1 = (V1, E1) and G2 = (V2, E2)
are isomorphic if there is a bijective (one-to-one and onto) 
function f from V1 to V2 with the property that a and b are 
adjacent in G1 if and only if f(a) and f(b) are adjacent in G2 , 
for all a and b in V1 . 

Such a function f is called an isomorphism. Two simple 
graphs that are not isomorphic are called nonisomorphic.



Isomorphism of Graphs (cont.)
Example: Show that the graphs G =(V, E) and                           
H = (W, F) are isomorphic.

Solution: The function f with f(u1) = v1,
f(u2) = v4, f(u3) = v3, and f(u4) = v2 is a 
one-to-one correspondence between V and W.               
Note that adjacent vertices in G are u1 and u2, u1 and 
u3, u2 and u4, and u3 and u4. Each of the pairs f(u1) = v1
and f(u2) = v4, f(u1) = v1 and f(u3) = v3 , f(u2) = v4 and 
f(u4) = v2 , and f(u3) = v3 and f(u4) = v2 consists of two 
adjacent vertices in H.



Isomorphism of Graphs (cont.)
� It is difficult to determine whether two simple graphs are isomorphic 

using brute force because there are n! possible one-to-one 
correspondences between the vertex sets of two simple graphs with n
vertices. 

� The best algorithms for determining weather two graphs are 
isomorphic have exponential worst case complexity in terms of the 
number of vertices of the graphs.

� Sometimes it is not hard to show that two graphs are not isomorphic. 
We can do so by finding a property, preserved by isomorphism, that 
only one of the two graphs has. Such a property is called graph 
invariant. 

� There are many different useful graph invariants that can be used to 
distinguish nonisomorphic graphs, such as the number of vertices, 
number of edges, and degree sequence (list of the degrees of the 
vertices in nonincreasing order).  We will encounter others in later 
sections of this chapter.



Isomorphism of Graphs (cont.)
Example: Determine whether these two graphs                                                                              
are isomorphic.

Solution:  Both graphs have eight vertices and ten edges.
They also both have four vertices of degree two and four of degree three. 
However, G and H are not isomorphic...

Note that since deg(a) = 2 in G, a must correspond to t, u, x, or y in H, 
because these are the vertices of degree 2. But each of these vertices is 
adjacent to another vertex of degree two in H, which is not true for a in G.



Isomorphism of Graphs (cont.)
Example: Determine whether these two graphs                                                                                         
are isomorphic.

Solution:  Both graphs have six vertices and seven edges.
They also both have four vertices of degree two and two of degree three. 
The subgraphs of G and H consisting of all the vertices of degree two and the edges 
connecting them are isomorphic. So, it is reasonable to try to find an isomorphism f. 

We define an injection f from the vertices of G to the vertices of H that preserves the 
degree of vertices.   We will determine whether it is an isomorphism.

The function f with f(u1) = v6, f(u2) = v3, f(u3) = v4, and f(u4) = v5 , f(u5) = v1, and  f(u6) = 
v2 is a one-to-one correspondence between G and H. Showing that this correspondence 
preserves edges is straightforward, so we will omit the details here.  Because f is an 
isomorphism, it follows that G and H are isomorphic graphs.

See the text for an illustration of how adjacency matrices can be used for this verification.



Algorithms for Graph Isomorphism
� The best algorithms known for determining whether two 

graphs are isomorphic have exponential worst-case time 
complexity (in the number of vertices of the graphs).

� However,  there are algorithms with linear average-case 
time complexity. 

� You can use a public domain program called NAUTY to 
determine in less than a second whether two graphs with as 
many as 100 vertices are isomorphic.

� Graph isomorphism is a problem of special interest 
because it is one of a few NP problems not known to be 
either tractable or NP-complete.



Applications of Graph Isomorphism 
� The question whether graphs are isomorphic plays an important 

role in applications of graph theory. For example, 
� chemists use molecular graphs to model chemical compounds. 

Vertices represent atoms and edges represent chemical bonds. 
When a new compound is synthesized, a database of molecular 
graphs is checked to determine whether the graph representing the 
new compound is isomorphic to the graph of a compound that this 
already known. 

� Electronic circuits are modeled as graphs in which the vertices 
represent components and the edges represent connections 
between them. Graph isomorphism is the basis for 
� the verification that a particular layout of a circuit corresponds to 

the design’s original schematics. 
� determining whether a chip from one vendor includes the 

intellectual property of another vendor. 
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Section Summary
� Paths

� Connectedness in Undirected Graphs

� Connectedness in Directed Graphs

� Counting Paths between Vertices



Paths
Informal Definition: A path is a sequence of edges 
that begins at a vertex of a graph and travels from 
vertex to vertex along edges of the graph. As the path 
travels along its edges, it visits the vertices along this 
path, that is, the endpoints of these.

Applications: Numerous problems can be modeled 
with paths formed by traveling along edges of graphs 
such as:

� determining whether a message can be sent between 
two computers.

� efficiently planning routes for mail delivery.



Paths
Definition: Let n be a nonnegative integer and G an undirected graph. A path of 
length n from u to v in G is a sequence of n edges e1, … , en of G for which there 
exists a sequence   x0 = u, x1, …, xn-1, xn = v of vertices such that ei has,      for i = 1, 
…, n, the endpoints xi-1 and xi. 

� When the graph is simple, one can denote this path by its vertex sequence 
x0, x1, … , xn(since listing the vertices uniquely determines the path).

� The path is a circuit if it begins and ends at the same vertex (u = v) and 
has length greater than zero.

� The path is said to pass through the vertices x1, x2, … , xn-1 and traverse
the edges e1, … , en.

� A path is simple if it does not contain the same edge more than once.

This terminology  is readily extended 
to directed graphs. 



Paths (continued)
Example: In the simple graph here:

� a, d, c, f, e is a simple path of length 4. 

� d, e, c, a is not a path because e is not connected to c.

� b, c, f, e, b is a circuit of length 4. 

� a, b, e, d, a, b is a path of length 5, but it is not a simple path. 



Degrees of Separation
Example: Paths in Acquaintanceship Graphs. In an 
acquaintanceship graph there is a path between two 
people if there is a chain of people linking these people, 
where two people adjacent in the chain know one another. 

In this graph there is a chain of six people linking Kamini
and Ching.

Some have speculated that almost 
every pair of people in the world are 
linked by a small chain of no more 
than six, or maybe even, five people.  
The play Six Degrees of Separation by 
John Guare is based on this notion.  



Erdős numbers
Example: Erdős numbers.                                                                     
In a collaboration graph, two people a and b are                  
connected by a path when there is a sequence                           
of people starting with a and ending with b
such that the endpoints of each edge in the                          
path are people who have collaborated. 

� In the academic collaboration graph of people who have 
written papers in mathematics, the Erdős number of a 
person m is the length of the shortest path between m
and the prolific mathematician Paul Erdős.

� To learn more about Erdős numbers, visit  
http://www.ams.org/mathscinet/collaborationDistance.html

Paul Erdős



Connectedness in Undirected 

Graphs
Definition: An undirected graph is called  connected if 
there is a path between every pair of vertices.  
An undirected graph that is not connected is called 
disconnected. We say that we disconnect a graph when we 
remove vertices or edges, or both, to produce a 
disconnected subgraph. 
Example: G1 is connected because there is a path between 
any pair of its vertices, as can be easily seen.   However G2 is 
not connected because there is no path between vertices a
and f, for example. 



Connected Components
Definition: A connected component of a graph G is a 
maximal connected subgraph of G (a connected subgraph 
that is not a proper subgraph of another connected 
subgraph of G). A graph G that is not connected has two or 
more connected components that are disjoint and have G
as their union. 
Example: The graph H is the union of three disjoint 
subgraphs H1, H2, and H3, none of which are proper 
subgraphs of a larger connected subgraph of G. These three 
subgraphs are the connected components of H. 



Connectedness in Directed Graphs
Definition: A directed graph is strongly connected if 
there is a path from a to b and a path from b to a
whenever a and b are vertices in the graph. 

Definition: A directed graph is weakly connected if 
there is a path between every two vertices in the 
underlying undirected graph, which is the undirected 
graph obtained by ignoring the directions of the edges 
of the directed graph. 



Connectedness in Directed Graphs 

(continued)
Example: G is strongly connected                                                             
because there is a path between any                                                       
two vertices in the directed graph.                                                            
Hence, G is also weakly connected.                                                                
The graph H is not strongly connected, since there is no directed path 
from a to b, but it is weakly connected.

Definition: The subgraphs of a directed graph G that are strongly 
connected but not contained in larger strongly connected subgraphs, 
that is, the maximal strongly connected subgraphs, are called the 
strongly connected components or strong components of G. 

Example (continued): The graph H has three strongly connected 
components, consisting of the vertex a; the vertex e; and the subgraph
consisting of the vertices b, c, d and edges (b,c), (c,d), and (d,b).



The Connected Components of the 

Web Graph

� Recall that at any particular instant the Web graph provides a snapshot of the 
web, where vertices represent web pages and edges represent links. According 
to a 1999 study, the Web graph at that time had over 200 million vertices and 
over 1.5 billion edges. (The numbers today are several orders of magnitude 
larger.)

� The underlying undirected graph of this Web graph has a connected 
component that includes approximately 90% of the vertices.

� There is a giant strongly connected component (GSCC) consisting of  more 
than  53 million vertices.  A Web page in this component can be reached by 
following links starting in any other page of the component. There are three 
other categories of pages with each having about 44 million vertices: 
� pages that can be reached from a page in the GSCC, but do not link back.
� pages that link back to the GSCC, but can not be reached by following links 

from pages in the GSCC.
� pages that cannot reach pages in the GSCC and can not be reached from pages 

in the GSCC.



Counting Paths between Vertices
� We can use the adjacency matrix of a graph to find the number of paths between two 

vertices in the graph.

Theorem: Let G be a graph with adjacency matrix A with respect to the ordering                     
v1, … , vn of vertices (with directed or undirected edges, multiple edges and loops 
allowed). The number of different paths of length r from vi to vj, where r >0 is a positive 
integer, equals the (i,j)th entry of Ar.

Proof by mathematical induction: 
Basis Step: By definition of the adjacency matrix, the number of paths from vi to vj of length 1
is the (i,j)th entry of A. 
Inductive Step: For the inductive hypothesis, we assume that that the  (i,j)th entry of Ar is the 
number of different paths of length r from vi to vj. 
� Because  Ar+1 = Ar A,  the  (i,j)th entry of Ar+1 equals bi1a1j + bi2a2j + ⋯ + binanj, where bik is 

the (i,k)th entry of Ar. By the inductive hypothesis, bik is the number of paths of length r
from vi to vk. 

� A path of length r + 1 from vi to vj is made up of a path of length r from vi to some  vk , and 
an edge from vk to vj. By the product rule for counting, the number of such paths is the 
product of the number of paths of length r from vi to  vk (i.e., bik ) and the number of edges 
from from vk to vj (i.e, akj). The sum over all possible intermediate vertices vk is bi1a1j + 
bi2a2j + ⋯ + binanj .



Counting Paths between Vertices 

(continued)
Example: How many paths of length four are there from a to d
in the graph G. 

Solution: The adjacency matrix of G (ordering                        
the vertices as a, b, c, d) is given above. Hence                             
the number of paths of length four from a to d is                                      
the (1, 4)th entry of A4 . The eight paths are as:

G
adjacency 
matrix of G

A4 =

a, b, a, b, d      a, b, a, c, d
a, b, d, b, d      a, b, d, c, d
a, c, a, b, d      a, c, a, c, d
a, c, d, b, d      a, c, d, c, d

A =
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Euler Paths and Circuits
� The town of Kӧnigsberg was divided into four sections by the branches 

of the Pregel river. In the 18th century seven bridges connected these 
regions.

� People wondered whether it was possible to follow a path that crosses 
each bridge exactly once and returns to the starting point.

� The German-Russian mathematician Leonard Euler proved that no 
such path exists.   This result is often considered to be the first theorem 
ever proved in graph theory.

Leonard Euler 
(1707-1783)

The 7 Bridges of Kӧnigsberg

Multigraph
Model of the 
Bridges of 
Kӧnigsberg



Euler Paths and Circuits (continued)
Definition: An Euler circuit in a graph G is a simple circuit containing 
every edge of G. 

An Euler path in G is a simple path containing every edge of G.
(unlike Euler circuit, Euler path does not need to end at the same node) 

Example: Which of the undirected graphs G1, G2, and G3 has a Euler 
circuit? Of those that do not, which has an Euler path?

Solution: The graph G1 has an Euler circuit (e.g., a, e, c, d, e, b, a). But, 
as can easily be verified by inspection, neither G2 nor G3 has an Euler 
circuit. Note that G3 has an Euler path (e.g., a, c, d, e, b, d, a, b), but 
there is no Euler path in G2, which can be verified by inspection.



Necessary Conditions for Euler Circuits 

and Paths
� An Euler circuit begins with a vertex a and continues with an edge 

incident with a, say {a, b}. The edge {a, b} contributes one to deg(a). 
� Each time the circuit passes through a vertex it contributes two to the 

vertex’s degree. 
� Finally, the circuit terminates where it started, contributing one to 

deg(a). Therefore deg(a) must be even.
� We conclude that if a graph has an Euler circuit then the degree of 

every vertex must be even.
� By the same reasoning, we see that the initial vertex and the final vertex 

of an Euler path have odd degree, while every other vertex has even 
degree.  If a graph has an Euler path (but not an Euler curcuit) then
exactly two of its vertices have an odd degree.

� In the next slide we will show that these necessary conditions are also 
sufficient conditions.



Sufficient Conditions for Euler Circuits 

and Paths
Suppose that G is a connected multigraph with ≥ 2 vertices, all of even degree.  Let x0 = a
be a vertex of even degree. Choose an edge {x0, x1} incident with a and proceed to build a 
simple path {x0, x1}, {x1, x2}, …, {xn-1, xn} by adding edges one by one  until another edge 
can not be added. 

� The path begins at a with an edge of the form {a, x}; we show that it must terminate at a
with an edge of the form    {y, a}.  Since each vertex has an even degree, there must be an 
even number of edges incident with this vertex. Hence, every time we enter a vertex other than a, we can leave it. Therefore, the path can only end at a.

� If all of the edges have been used, an Euler circuit has been constructed. Otherwise, 
consider the subgraph H obtained from G by deleting the edges already used. 

We illustrate this idea in the graph  G here. 
We begin at a and choose the edges                     
{a, f}, {f, c}, {c, b}, and {b, a} in succession.

In the example H consists of the 
vertices  c, d, e. 



Sufficient Conditions for Euler Circuits 

and Paths (continued)

� Because G is connected, H must have at least one vertex in common with the circuit that 
has been deleted. 

� Every vertex in H must have even degree because all the vertices in G have even degree 
and for each vertex, pairs of edges incident with this vertex have been deleted. Beginning 
with the shared vertex construct a path  ending in the same vertex (as was done before). 
Then splice this new circuit into the original circuit.

� Continue this process until all edges have been used. This produces an Euler circuit. 
Since every edge is included and no edge is included more than once.

� Similar reasoning can be used to show that a graph with exactly two vertices of odd 
degree must have an Euler path connecting these two vertices of odd degree

In the example, the vertex is c.

In the example, we end up with the circuit    a, f, 
c, d, e, c, b, a.  



Algorithm for Constructing an  

Euler Circuits
In our proof we developed this algorithms for 
constructing a Euler circuit in a graph with no vertices of 
odd degree.

procedure Euler(G: connected multigraph with all vertices of even degree)
circuit := a circuit in G beginning at an arbitrarily chosen vertex with edges 

successively  added to form a path that returns to this vertex. 
H := G with the edges of this circuit removed
while H has edges

subcircuit := a circuit in H beginning at a vertex in H that also is 
an endpoint of an edge in circuit. 

H := H with edges of subcircuit and all isolated vertices removed
circuit := circuit with subcircuit inserted at the appropriate vertex. 

return circuit{circuit is an Euler circuit} 



Necessary and Sufficient Conditions for 

Euler Circuits and Paths (continued)
Theorem: A connected multigraph with at least two vertices 
has an Euler circuit if and only if each of its vertices has an 
even degree and it has an Euler path if and only if it has 
exactly two vertices of odd degree.

Example: Two of the vertices in the multigraph model of the  
Kӧnigsberg bridge problem have odd degree.   Hence, there is 
no Euler circuit in this multigraph and  it is impossible to 
start at a given point, cross each bridge exactly once, and 
return to the starting point. 



Euler Circuits and Paths 

Example:

G1 contains exactly two vertices of odd degree (b and d). Hence it has 
an Euler path, e.g.,  d, a, b, c, d, b.

G2 has exactly two vertices of odd degree (b and d). Hence it has an 
Euler path, e.g.,  b, a, g, f, e, d, c, g, b, c, f, d. 

G3 has six vertices of odd degree. Hence, it does not have an Euler path.



Applications of Euler Paths and 

Circuits
� Euler paths and circuits can be used to solve many practical 

problems such as finding a path or circuit that traverses 
each
� street in a neighborhood, 

� road in a transportation network,

� connection in a utility grid, 

� link in a communications network.

� Other applications are found in the 
� layout of circuits, 

� network multicasting,

� molecular biology, where Euler paths are used in the 
sequencing of DNA.



Hamilton Paths and Circuits
� Euler paths and circuits contained every edge only once. Now we look at paths and circuits that 

contain every vertex exactly once. 
� William Hamilton invented the Icosian puzzle in 1857. It consisted of a wooden dodecahedron (with 

12 regular pentagons as faces),  illustrated in (a), with a peg at each vertex, labeled with the names of 
different cities. String was used to used to plot a circuit visiting 20 cities exactly once

� The graph form of the puzzle is given in (b).  

� The solution  (a Hamilton circuit) is given  here.

William Rowan 
Hamilton 
(1805- 1865)



Hamilton Paths and Circuits
Definition: A simple path in a graph G that passes through every 
vertex exactly once is called a Hamilton path, and a simple circuit in a 
graph G that passes through every vertex exactly once is called a 
Hamilton circuit.  

That is, a simple path x0, x1, …, xn-1, xn in the graph G = (V, E) is called a 
Hamilton path if V = {x0, x1, … , xn-1, xn } and xi ≠ xj for  0≤ i < j ≤ n, and 
the simple circuit x0, x1, …, xn-1, xn, x0                         (with n > 0) is a Hamilton 
circuit if   x0, x1, … , xn-1, xn is a Hamilton path.



Hamilton Paths and Circuits 

(continued)
Example: Which of these simple graphs has a 
Hamilton circuit or, if not, a Hamilton path?

Solution: G1  has a Hamilton circuit: a, b, c, d, e, a. 
G2  does not have a Hamilton circuit (Why?), but does 
have a Hamilton path : a, b, c, d.
G3  does not have a Hamilton circuit,  or a Hamilton 
path. Why?



Necessary Conditions for

Hamilton Circuits
� Unlike for an Euler circuit, no simple necessary and sufficient 

conditions are known for the existence of a Hamiton circuit.
� However, there are some useful sufficient conditions.  We 

describe two of these now.

Dirac’s Theorem: If G is a simple graph with n ≥ 3 vertices such 
that the degree of every vertex in G is ≥ n/2, then G has a 
Hamilton circuit. 

Ore’s Theorem: If G is a simple graph with n ≥ 3 vertices such 
that deg(u) + deg(v) ≥ n for every pair of nonadjacent vertices, 
then G has a Hamilton circuit. 

Gabriel Andrew Dirac
(1925-1984)

Øysten Ore
(1899-1968)



Applications of Hamilton Paths and 

Circuits
� Applications that ask for a path or a circuit that visits each 

intersection of a city, each place where pipelines intersect 
in a utility grid, or each node in a communications network 
exactly once, can be solved by finding a Hamilton path in 
the appropriate graph.

� The famous traveling salesperson problem (TSP) asks for 
the shortest route a traveling salesperson should take to 
visit a set of cities. This problem reduces to finding a 
Hamilton circuit such that the total sum of the weights of 
its edges is as small as possible.

� A family of binary codes, known as Gray codes, which 
minimize the effect of transmission errors, correspond to 
Hamilton circuits in the n-cube Qn.  


