
Chapter 10

Chapter Summary
� Graphs and Graph Models

� Graph Terminology and Special Types of Graphs

� Representing Graphs and Graph Isomorphism

� Connectivity

� Euler and Hamiltonian Graphs

Section 10.1

Section Summary
� Introduction to Graphs

� Graph Taxonomy

� Graph Models

Graphs
Definition: A graph G = (V, E) consists of a nonempty set V of vertices (or

nodes) and a set E of edges. Each edge has either one or two vertices associated
with it, called its endpoints. An edge is said to connect its endpoints.

Remarks:

� We have a lot of freedom when we draw a picture of a graph. All that matters is the connections made
by the edges, not the particular geometry depicted. For example, the lengths of edges, whether edges
cross, how vertices are depicted, and so on, do not matter

� A graph with an infinite vertex set is called an infinite graph. A graph with a finite vertex set is called a
finite graph. We restrict our attention to finite graphs.

a

c

b

d

Example:
This is a graph
with four
vertices and five
edges.

Some Terminology
� in a simple graph each edge connects two different vertices and no two

edges connect the same pair of vertices.

� multigraphs may have multiple edges connecting the same two
vertices. When m different edges connect the vertices u and v, we say
that {u,v} is an edge of multiplicity m.

� an edge that connects a vertex to itself is called a loop.

� a pseudograph may include loops, as well as multiple edges connecting
the same pair of vertices.

Remark: There is no standard
terminology for graph theory. So, it is
crucial that you understand the
terminology being used whenever you
read material about graphs.

Example:
This pseudograph
has both multiple
edges and a loop.

a b

c

Directed and Undirected Graphs
Definition: An directed graph (or digraph) G = (V, E)
consists of a nonempty set V of vertices (or nodes) and a
set E of directed edges (or arcs). Each edge is associated
with an ordered pair of vertices. The directed edge
associated with the ordered pair (u,v) is said to start at u
and end at v.

Remark:
� Graphs where the end points of an edge are not ordered

are said to be undirected graphs. Such undirected edges
are often denoted with curly braces {u,v}, as typical for
(unordered) sets.

Some Terminology (continued)
� A simple directed graph has no loops and no multiple edges.

� A directed multigraph may have multiple directed edges. When there
are m directed edges from the vertex u to the vertex v, we say that (u,v)
is an edge of multiplicity m.

a b

c

c

a b
In this directed multigraph the
multiplicity of (a,b) is 1 and the
multiplicity of (b,c) is 2.

Example:

This is a directed graph with
three vertices and four edges.

Example:

Graph Models:

Computer Networks
� When we build a graph model, we use the appropriate type of graph to

capture the important features of the application.
� We illustrate this process using graph models of different types of

computer networks. In all these graph models, the vertices represent
data centers and the edges represent communication links.

� To model a computer network where we are only concerned whether
two data centers are connected by a communications link, we use a
simple graph. This is the appropriate type of graph when we only care
whether two data centers are directly linked (and not how many links
there may be) and all communications links work in both directions.

Graph Models:

Computer Networks (continued)
• To model a computer network

where we care about the number
of links between data centers, we
use a multigraph.

• To model a network with multiple one-
way links, we use a directed multigraph.
Note that we could use a directed graph
without multiple edges if we only care
whether there is at least one link from a
data center to another data center.

Graph Terminology: Summary
� To understand the structure of a graph and to build a graph

model, we ask these questions:
• Are the edges of the graph undirected or directed (or both)?

• If the edges are undirected, are multiple edges present that
connect the same pair of vertices? If the edges are directed,
are multiple directed edges present?

• Are loops present?

Other Applications of Graphs
� We will illustrate how graph theory can be used in models of:

� Social networks

� Communications networks

� Information networks

� Software design

� Transportation networks

� Biological networks

� Neural networks

� It’s a challenge to find a subject to which graph theory has
not yet been applied. Can you find an area without
applications of graph theory?

Graph Models: Social Networks
� Graphs can be used to model social structures based on

different kinds of relationships between people or groups.
� In a social network, vertices represent individuals or

organizations and edges represent relationships between them.
� Useful graph models of social networks include:

� friendship graphs - undirected graphs where two people are
connected if they are friends (in the real world, on Facebook,
or in a particular virtual world, and so on.)

� collaboration graphs - undirected graphs where two people
are connected if they collaborate in a specific way

� influence graphs - directed graphs where there is an edge
from one person to another if the first person can influence
the second person

Graph Models: Social Networks

(continued)

Example: A friendship
graph where two people
are connected if they are
Facebook friends.

Example: An
influence graph

Next Slide: Collaboration Graphs

Examples of Collaboration Graphs
� The Hollywood graph models the collaboration of actors in films.

� We represent actors by vertices and we connect two vertices if the
actors they represent have appeared in the same movie.

� An academic collaboration graph models the collaboration of
researchers who have jointly written a paper in a particular subject.

� We represent researchers in a particular academic discipline using
vertices.

� We connect the vertices representing two researchers in this
discipline if they are coauthors of a paper.

� We will study the academic collaboration graph for mathematicians
when we discuss Erdős numbers.

Applications to Information Networks
� Graphs can be used to model different types of networks

that link different types of information.

� In a web graph, web pages are represented by vertices and
links are represented by directed edges.
� A web graph models the web at a particular time.

� The web graph is used by search engines.

� In a citation network:
� Research papers in a particular discipline are represented by

vertices.

� When a paper cites a second paper as a reference, there is an
edge from the vertex representing this paper to the vertex
representing the second paper.

Transportation Graphs
� Graph models are extensively used in the study of

transportation networks.

� Airline networks can be modeled using directed
multigraphs where
� airports are represented by vertices

� each flight is represented by a directed edge from the vertex
representing the departure airport to the vertex representing
the destination airport

� Road networks can be modeled using graphs where
� vertices represent intersections and edges represent roads.

� undirected edges represent two-way roads and directed edges
represent one-way roads.

Software Design Applications
� Graph models are extensively used in software design. We will introduce two such

models here; one representing the dependency between the modules of a
software application and the other representing restrictions in the execution of
statements in computer programs.

� When a top-down approach is used to design software, the system is divided into
modules, each performing a specific task.

� We use a module dependency graph to represent the dependency between these
modules. These dependencies need to be understood before coding can be done.

� In a module dependency graph vertices represent software modules and there is an
edge from one module to another if the second module depends on the first.

Example: The dependencies between the
seven modules in the design of a web
browser are represented by this module
dependency graph.

� We can use a directed graph called a precedence graph to
represent which statements must have already been
executed before we execute each statement.
� Vertices represent statements in a computer program
� There is a directed edge from a vertex to a second vertex if the

second vertex cannot be executed before the first

Software Design Applications

(continued)

Example: This precedence
graph shows which statements
must already have been executed
before we can execute each of
the six statements in the
program.

Biological Applications
� Graph models are used extensively in many areas of the

biological science. We will describe two such models, one
to ecology and the other to molecular biology.

� Niche overlap graphs model competition between species
in an ecosystem
� Vertices represent species and an edge connects two vertices

when they represent species who compete for food resources.

Example: This is the
niche overlap graph for
a forest ecosystem
with nine species.

Biological Applications (continued)
� We can model the interaction of proteins in a cell using a protein

interaction network.
� In a protein interaction graph, vertices represent proteins and vertices

are connected by an edge if the proteins they represent interact.
� Protein interaction graphs can be huge and can contain more than

100,000 vertices, each representing a different protein, and more than
1,000,000 edges, each representing an interaction between proteins

� Protein interaction graphs are often split into smaller graphs, called
modules, which represent the interactions between proteins involved
in a particular function.

Example: This is a module of
the protein interaction graph of
proteins that degrade RNA in a
human cell.

Section 10.2

Section Summary
� Basic Terminology

� Some Special Types of Graphs

� Bipartite Graphs

� New Graphs from Old

Basic Terminology
Definition 1. Two vertices u, v in an undirected graph G are
called adjacent (or neighbors) in G if there is an edge e between
u and v. Such an edge e is called incident with the vertices u and
v and e is said to connect u and v.

Definition 2. The set of all neighbors of a vertex v of G = (V, E),
denoted by N(v), is called the neighborhood of v. If A is a subset
of V, we denote by N(A) the set of all vertices in G that are
adjacent to at least one vertex in A. So,

Definition 3. The degree of a vertex in a undirected graph is the
number of edges incident with it, except that a loop at a vertex
contributes two to the degree of that vertex. The degree of the
vertex v is denoted by deg(v).

Degrees and Neighborhoods of

Vertices
Example: What are the degrees and neighborhoods of the
vertices in the graphs G and H?

Solution:
G: deg(a) = 2, deg(b) = deg(c) = deg(f) = 4, deg(d) = 1,

deg(e) = 3, deg(g) = 0.

N(a) = {b, f }, N(b) = {a, c, e, f }, N(c) = {b, d, e, f }, N(d) = {c},
N(e) = {b, c , f }, N(f) = {a, b, c, e}, N(g) = ∅ .

H: deg(a) = 4, deg(b) = deg(e) = 6, deg(c) = 1, deg(d) = 5.

N(a) = {b, d, e}, N(b) = {a, b, c, d, e}, N(c) = {b},
N(d) = {a, b, e}, N(e) = {a, b ,d}.

Degrees of Vertices

Theorem 1 (Handshaking Theorem): If G = (V,E) is an undirected
graph with m edges, then

2� � � deg (�)
 ∈"

Proof:

Each edge contributes twice to the degree count of all vertices. Hence,
both the left-hand and right-hand sides of this equation equal twice
the number of edges.

Think about the graph where vertices represent the people at a party and
an edge connects two people who have shaken hands.

Handshaking Theorem
We now give two examples illustrating the usefulness of the
handshaking theorem.

Example: How many edges are there in a graph with 10 vertices of
degree six?

Solution: Because the sum of the degrees of the vertices is
6 ⋅ 10 = 60, the handshaking theorem tells us that 2m = 60.
So the number of edges m = 30.

Example: If a graph has 5 vertices, can each vertex have degree 3?

Solution: This is not possible by the handshaking theorem,
because the sum of the degrees of the vertices 3 ⋅ 5 = 15 is odd.

Degree of Vertices (continued)
Theorem 2: An undirected graph has an even number of
vertices of odd degree.

Proof: Let V1 be the vertices of even degree and V2 be the
vertices of odd degree in an undirected graph G = (V, E)
with m edges. Then

must be
even since
deg(v) is
even for
each v ∈ V1

even

This sum must be even because 2m
is even and the sum of the degrees
of the vertices of even degrees is
also even. Because this is the sum of
the degrees of all vertices of odd
degree in the graph, there must be
an even number of such vertices.

Directed Graphs

Definition: A directed graph G = (V, E) consists of V, a
nonempty set of vertices (or nodes), and E, a set of
directed edges or arcs. Each edge is an ordered pair of
vertices. The directed edge (u,v) is said to start at u
and end at v.

Definition: Let (u,v) be an edge in G. Then u is the
initial vertex of this edge and is adjacent to v and v is
the terminal vertex (or end vertex) of this edge and is
adjacent from u. The initial and terminal vertices of a
loop are the same.

Recall the definition of a directed graph.

Directed Graphs (continued)
Definition: The in-degree of a vertex v, denoted
deg−(v), is the number of edges which terminate at v.
The out-degree of v, denoted deg+(v), is the number of
edges with v as their initial vertex. Note that a loop at a
vertex contributes 1 to both the in-degree and the out-
degree of the vertex.

Example: In the graph G we have

deg−(a) = 2, deg−(b) = 2, deg−(c) = 3, deg−(d) = 2,
deg−(e) = 3, deg−(f) = 0.

deg+(a) = 4, deg+(b) = 1, deg+(c) = 2, deg+(d) = 2,
deg+ (e) = 3, deg+(f) = 0.

deg−

deg+

Directed Graphs (continued)
Theorem 3: Let G = (V, E) be a graph with directed edges.
Then:

Proof: The first sum counts the number of outgoing edges
over all vertices and the second sum counts the number of
incoming edges over all vertices. It follows that both sums
equal the number of edges in the graph.

Special Types of Simple Graphs:

Complete Graphs
A complete graph on n vertices, denoted by Kn, is the
simple graph that contains exactly one edge between
each pair of distinct vertices.

Special Types of Simple Graphs:

Cycles and Wheels
A cycle Cn for n ≥ 3 consists of n vertices v1, v2 ,⋯ , vn,
and edges {v1, v2}, {v2, v3} ,⋯ , {vn-1, vn}, {vn, v1}.

A wheel Wn is obtained by adding an additional vertex
to a cycle Cn for n ≥ 3 and connecting this new vertex
to each of the n vertices in Cn by new edges.

Special Types of Graphs and

Computer Network Architecture
Various special graphs play an important role in the design of computer networks.

� Some local area networks use a star topology, which is a complete bipartite graph K1,n ,as
shown in (a). All devices are connected to a central control device.

� Other local networks are based on a ring topology, where each device is connected to
exactly two others using Cn ,as illustrated in (b). Messages may be sent around the ring.

� Others, as illustrated in (c), use a Wn – based topology, combining the features of a star
topology and a ring topology.

� Various special graphs also play a role in parallel processing where processors need to be
interconnected as one processor may need the output generated by another.
� The n-dimensional hypercube, or n-cube, Qn, is a common way to connect processors in

parallel, e.g., Intel Hypercube.
� Another common method is the mesh network, illustrated here

for 16 processors.

defined 3 slides later

Bipartite Graphs
Definition: A simple graph G is bipartite if V can be partitioned
into two disjoint subsets V1 and V2 such that every edge connects
a vertex in V1 and a vertex in V2. In other words, there are no
edges which connect two vertices in V1 or in V2.

It is not hard to show that an equivalent definition of a bipartite
graph is a graph where it is possible to color the vertices red or
blue so that no two adjacent vertices are the same color.

H is not bipartite
since if we color a
red, then the
adjacent vertices f
and b must both
be blue.

G is
bipartite

Bipartite Graphs (continued)
Example: Show that C6 is bipartite.
Solution: We can partition the vertex set into
V1 = {v1, v3, v5} and V2 = {v2, v4, v6} so that every edge of C6
connects a vertex in V1 and V2 .

Example: Show that C3 is not bipartite.
Solution: If we divide the vertex set of C3 into two
nonempty sets, one of the two must contain two vertices.
But in C3 every vertex is connected to every other vertex.
Therefore, the two vertices in the same partition are
connected. Hence, C3 is not bipartite.

Complete Bipartite Graphs
Definition: A complete bipartite graph Km,n is a graph that
has its vertex set partitioned into two subsets V1 of size m
and V2 of size n such that there is an edge from every
vertex in V1 to every vertex in V2.

Example: We display four complete bipartite graphs here.

Bipartite Graphs and Matching
� Bipartite graphs are used to model applications that involve matching the

elements of one set to elements in another, for example:

� Job assignments - vertices represent the jobs and the employees, edges link
employees with those jobs they have been trained to do. A common goal is to
match jobs to employees, e.g. so that all jobs are done while the constraints
are satisfied (e.g. no more than one job per qualified employee).

� Marriages on an island - vertices represent the men and the women and
edges link a a man and a woman if they are an acceptable spouse. We may
wish to find the largest number of possible marriages.

blue edges show
a feasible assignment

in this case there is no
feasible assignment
(can you prove this?)

New Graphs from Old
Definition: A subgraph of a graph G = (V,E) is a graph (W,F), where W ⊂ V
and F ⊂ E. A subgraph H of G is a proper subgraph of G if H ≠ G.

Example: Here we show K5 and
one of its subgraphs.

Definition: Let G = (V, E) be a simple graph. The subgraph induced by a
subset W of the vertex set V is the graph (W,F), where the edge set F
contains an edge in E if and only if both endpoints are in W.

Example: Here we show K5 and the subgraph
induced by W = {a,b,c,e}.

New Graphs from Old (continued)
Definition: The union of two simple graphs
G1 = (V1, E1) and G2 = (V2, E2) is the simple graph with
vertex set V1 ⋃ V2 and edge set E1 ⋃ E2. The union of
G1 and G2 is denoted by G1 ⋃ G2.

Example:

Section 10.3

Section Summary
� Adjacency Lists

� Adjacency Matrices

� Incidence Matrices

� Isomorphism of Graphs

Representing Graphs:

Adjacency Lists
Definition: An adjacency list can be used to represent
a graph with no multiple edges by specifying the
vertices that are adjacent to each vertex of the graph.

Example:

Example:

Representation of Graphs:

Adjacency Matrices
Definition: Suppose that G = (V, E) is a simple graph
where |V| = n. Arbitrarily list the vertices of G as
v1, v2, … , vn. The adjacency matrix AG of G, with respect
to the listing of vertices, is the n × n zero-one matrix
with 1 as its (i, j)th entry when vi and vj are adjacent, and
0 as its (i, j)th entry when they are not adjacent.
� In other words, if the graphs adjacency matrix is

AG = [aij], then

Note: matrix A is symmetric for undirected graphs

Adjacency Matrices (continued)
Example: The ordering of vertices is

a, b, c, d.

Note: The adjacency matrix of a simple (undirected) graph is symmetric, i.e., aij = aji

Also, since there are no loops, the main diagonal contains only zeros, i.e. aij=0 for all i.

When a graph is sparse, that is, it
has few edges relatively to the
total number of possible edges, it
is much more efficient to
represent the graph using an
adjacency list than an adjacency
matrix. But for a dense graph,
which includes a high percentage
of possible edges, an adjacency
matrix is preferable.

Adjacency Matrices (continued)
� Adjacency matrices can also be used to represent graphs with

loops and multiple edges.
� A loop at the vertex vi is represented by a 1 at the (i, i)th position

of the matrix.
� When multiple edges connect the same pair of vertices vi and vj,

(or if multiple loops are present at the same vertex), the (i, j)th
entry equals the number of edges connecting the pair of vertices.

Example: We give the adjacency matrix of the pseudograph
shown here using the ordering of vertices a, b, c, d.

Adjacency Matrices (continued)
� Adjacency matrices can also be used to represent

directed graphs. The matrix for a directed graph G =
(V, E) has a 1 in its (i, j)th position if there is an edge
from vi to vj, where v1, v2, … vn is a list of the vertices.
� In other words, if the graphs adjacency matrix is AG = [aij], then

� The adjacency matrix for a directed graph does not have to be
symmetric, because there may not be an edge from vi to vj, when
there is an edge from vj to vi.

� To represent directed multigraphs, the value of aij is the number
of edges connecting vi to vj.

Representation of Graphs:

Incidence Matrices
Definition: Let G = (V, E) be an undirected graph with
vertices where v1, v2, … vn and edges e1, e2, … em.
The incidence matrix with respect to the ordering of V
and E is the n × m matrix M = [mij], where

Incidence Matrices (continued)
Example: Simple Graph and Incidence Matrix

The rows going from top to
bottom represent v1 through
v5 and the columns going
from left to right represent e1
through e6.

Example: Pseudograph and Incidence Matrix

The rows going from top to
bottom represent v1 through
v5 and the columns going
from left to right represent e1
through e8.

Isomorphism of Graphs
Definition: The simple graphs G1 = (V1, E1) and G2 = (V2, E2)
are isomorphic if there is a bijective (one-to-one and onto)
function f from V1 to V2 with the property that a and b are
adjacent in G1 if and only if f(a) and f(b) are adjacent in G2 ,
for all a and b in V1 .

Such a function f is called an isomorphism. Two simple
graphs that are not isomorphic are called nonisomorphic.

Isomorphism of Graphs (cont.)
Example: Show that the graphs G =(V, E) and
H = (W, F) are isomorphic.

Solution: The function f with f(u1) = v1,
f(u2) = v4, f(u3) = v3, and f(u4) = v2 is a
one-to-one correspondence between V and W.
Note that adjacent vertices in G are u1 and u2, u1 and
u3, u2 and u4, and u3 and u4. Each of the pairs f(u1) = v1
and f(u2) = v4, f(u1) = v1 and f(u3) = v3 , f(u2) = v4 and
f(u4) = v2 , and f(u3) = v3 and f(u4) = v2 consists of two
adjacent vertices in H.

Isomorphism of Graphs (cont.)
� It is difficult to determine whether two simple graphs are isomorphic

using brute force because there are n! possible one-to-one
correspondences between the vertex sets of two simple graphs with n
vertices.

� The best algorithms for determining weather two graphs are
isomorphic have exponential worst case complexity in terms of the
number of vertices of the graphs.

� Sometimes it is not hard to show that two graphs are not isomorphic.
We can do so by finding a property, preserved by isomorphism, that
only one of the two graphs has. Such a property is called graph
invariant.

� There are many different useful graph invariants that can be used to
distinguish nonisomorphic graphs, such as the number of vertices,
number of edges, and degree sequence (list of the degrees of the
vertices in nonincreasing order). We will encounter others in later
sections of this chapter.

Isomorphism of Graphs (cont.)
Example: Determine whether these two graphs
are isomorphic.

Solution: Both graphs have eight vertices and ten edges.
They also both have four vertices of degree two and four of degree three.
However, G and H are not isomorphic...

Note that since deg(a) = 2 in G, a must correspond to t, u, x, or y in H,
because these are the vertices of degree 2. But each of these vertices is
adjacent to another vertex of degree two in H, which is not true for a in G.

Isomorphism of Graphs (cont.)
Example: Determine whether these two graphs
are isomorphic.

Solution: Both graphs have six vertices and seven edges.
They also both have four vertices of degree two and two of degree three.
The subgraphs of G and H consisting of all the vertices of degree two and the edges
connecting them are isomorphic. So, it is reasonable to try to find an isomorphism f.

We define an injection f from the vertices of G to the vertices of H that preserves the
degree of vertices. We will determine whether it is an isomorphism.

The function f with f(u1) = v6, f(u2) = v3, f(u3) = v4, and f(u4) = v5 , f(u5) = v1, and f(u6) =
v2 is a one-to-one correspondence between G and H. Showing that this correspondence
preserves edges is straightforward, so we will omit the details here. Because f is an
isomorphism, it follows that G and H are isomorphic graphs.

See the text for an illustration of how adjacency matrices can be used for this verification.

Algorithms for Graph Isomorphism
� The best algorithms known for determining whether two

graphs are isomorphic have exponential worst-case time
complexity (in the number of vertices of the graphs).

� However, there are algorithms with linear average-case
time complexity.

� You can use a public domain program called NAUTY to
determine in less than a second whether two graphs with as
many as 100 vertices are isomorphic.

� Graph isomorphism is a problem of special interest
because it is one of a few NP problems not known to be
either tractable or NP-complete.

Applications of Graph Isomorphism
� The question whether graphs are isomorphic plays an important

role in applications of graph theory. For example,
� chemists use molecular graphs to model chemical compounds.

Vertices represent atoms and edges represent chemical bonds.
When a new compound is synthesized, a database of molecular
graphs is checked to determine whether the graph representing the
new compound is isomorphic to the graph of a compound that this
already known.

� Electronic circuits are modeled as graphs in which the vertices
represent components and the edges represent connections
between them. Graph isomorphism is the basis for
� the verification that a particular layout of a circuit corresponds to

the design’s original schematics.
� determining whether a chip from one vendor includes the

intellectual property of another vendor.

Section 10.4

Section Summary
� Paths

� Connectedness in Undirected Graphs

� Connectedness in Directed Graphs

� Counting Paths between Vertices

Paths
Informal Definition: A path is a sequence of edges
that begins at a vertex of a graph and travels from
vertex to vertex along edges of the graph. As the path
travels along its edges, it visits the vertices along this
path, that is, the endpoints of these.

Applications: Numerous problems can be modeled
with paths formed by traveling along edges of graphs
such as:

� determining whether a message can be sent between
two computers.

� efficiently planning routes for mail delivery.

Paths
Definition: Let n be a nonnegative integer and G an undirected graph. A path of
length n from u to v in G is a sequence of n edges e1, … , en of G for which there
exists a sequence x0 = u, x1, …, xn-1, xn = v of vertices such that ei has, for i = 1,
…, n, the endpoints xi-1 and xi.

� When the graph is simple, one can denote this path by its vertex sequence
x0, x1, … , xn(since listing the vertices uniquely determines the path).

� The path is a circuit if it begins and ends at the same vertex (u = v) and
has length greater than zero.

� The path is said to pass through the vertices x1, x2, … , xn-1 and traverse
the edges e1, … , en.

� A path is simple if it does not contain the same edge more than once.

This terminology is readily extended
to directed graphs.

Paths (continued)
Example: In the simple graph here:

� a, d, c, f, e is a simple path of length 4.

� d, e, c, a is not a path because e is not connected to c.

� b, c, f, e, b is a circuit of length 4.

� a, b, e, d, a, b is a path of length 5, but it is not a simple path.

Degrees of Separation
Example: Paths in Acquaintanceship Graphs. In an
acquaintanceship graph there is a path between two
people if there is a chain of people linking these people,
where two people adjacent in the chain know one another.

In this graph there is a chain of six people linking Kamini
and Ching.

Some have speculated that almost
every pair of people in the world are
linked by a small chain of no more
than six, or maybe even, five people.
The play Six Degrees of Separation by
John Guare is based on this notion.

Erdős numbers
Example: Erdős numbers.
In a collaboration graph, two people a and b are
connected by a path when there is a sequence
of people starting with a and ending with b
such that the endpoints of each edge in the
path are people who have collaborated.

� In the academic collaboration graph of people who have
written papers in mathematics, the Erdős number of a
person m is the length of the shortest path between m
and the prolific mathematician Paul Erdős.

� To learn more about Erdős numbers, visit
http://www.ams.org/mathscinet/collaborationDistance.html

Paul Erdős

Connectedness in Undirected

Graphs
Definition: An undirected graph is called connected if
there is a path between every pair of vertices.
An undirected graph that is not connected is called
disconnected. We say that we disconnect a graph when we
remove vertices or edges, or both, to produce a
disconnected subgraph.
Example: G1 is connected because there is a path between
any pair of its vertices, as can be easily seen. However G2 is
not connected because there is no path between vertices a
and f, for example.

Connected Components
Definition: A connected component of a graph G is a
maximal connected subgraph of G (a connected subgraph
that is not a proper subgraph of another connected
subgraph of G). A graph G that is not connected has two or
more connected components that are disjoint and have G
as their union.
Example: The graph H is the union of three disjoint
subgraphs H1, H2, and H3, none of which are proper
subgraphs of a larger connected subgraph of G. These three
subgraphs are the connected components of H.

Connectedness in Directed Graphs
Definition: A directed graph is strongly connected if
there is a path from a to b and a path from b to a
whenever a and b are vertices in the graph.

Definition: A directed graph is weakly connected if
there is a path between every two vertices in the
underlying undirected graph, which is the undirected
graph obtained by ignoring the directions of the edges
of the directed graph.

Connectedness in Directed Graphs

(continued)
Example: G is strongly connected
because there is a path between any
two vertices in the directed graph.
Hence, G is also weakly connected.
The graph H is not strongly connected, since there is no directed path
from a to b, but it is weakly connected.

Definition: The subgraphs of a directed graph G that are strongly
connected but not contained in larger strongly connected subgraphs,
that is, the maximal strongly connected subgraphs, are called the
strongly connected components or strong components of G.

Example (continued): The graph H has three strongly connected
components, consisting of the vertex a; the vertex e; and the subgraph
consisting of the vertices b, c, d and edges (b,c), (c,d), and (d,b).

The Connected Components of the

Web Graph

� Recall that at any particular instant the Web graph provides a snapshot of the
web, where vertices represent web pages and edges represent links. According
to a 1999 study, the Web graph at that time had over 200 million vertices and
over 1.5 billion edges. (The numbers today are several orders of magnitude
larger.)

� The underlying undirected graph of this Web graph has a connected
component that includes approximately 90% of the vertices.

� There is a giant strongly connected component (GSCC) consisting of more
than 53 million vertices. A Web page in this component can be reached by
following links starting in any other page of the component. There are three
other categories of pages with each having about 44 million vertices:
� pages that can be reached from a page in the GSCC, but do not link back.
� pages that link back to the GSCC, but can not be reached by following links

from pages in the GSCC.
� pages that cannot reach pages in the GSCC and can not be reached from pages

in the GSCC.

Counting Paths between Vertices
� We can use the adjacency matrix of a graph to find the number of paths between two

vertices in the graph.

Theorem: Let G be a graph with adjacency matrix A with respect to the ordering
v1, … , vn of vertices (with directed or undirected edges, multiple edges and loops
allowed). The number of different paths of length r from vi to vj, where r >0 is a positive
integer, equals the (i,j)th entry of Ar.

Proof by mathematical induction:
Basis Step: By definition of the adjacency matrix, the number of paths from vi to vj of length 1
is the (i,j)th entry of A.
Inductive Step: For the inductive hypothesis, we assume that that the (i,j)th entry of Ar is the
number of different paths of length r from vi to vj.
� Because Ar+1 = Ar A, the (i,j)th entry of Ar+1 equals bi1a1j + bi2a2j + ⋯ + binanj, where bik is

the (i,k)th entry of Ar. By the inductive hypothesis, bik is the number of paths of length r
from vi to vk.

� A path of length r + 1 from vi to vj is made up of a path of length r from vi to some vk , and
an edge from vk to vj. By the product rule for counting, the number of such paths is the
product of the number of paths of length r from vi to vk (i.e., bik) and the number of edges
from from vk to vj (i.e, akj). The sum over all possible intermediate vertices vk is bi1a1j +
bi2a2j + ⋯ + binanj .

Counting Paths between Vertices

(continued)
Example: How many paths of length four are there from a to d
in the graph G.

Solution: The adjacency matrix of G (ordering
the vertices as a, b, c, d) is given above. Hence
the number of paths of length four from a to d is
the (1, 4)th entry of A4 . The eight paths are as:

G
adjacency
matrix of G

A4 =

a, b, a, b, d a, b, a, c, d
a, b, d, b, d a, b, d, c, d
a, c, a, b, d a, c, a, c, d
a, c, d, b, d a, c, d, c, d

A =

Section 10.5

Section Summary
� Euler Paths and Circuits

� Hamilton Paths and Circuits

� Applications of Hamilton Circuits

Euler Paths and Circuits
� The town of Kӧnigsberg was divided into four sections by the branches

of the Pregel river. In the 18th century seven bridges connected these
regions.

� People wondered whether it was possible to follow a path that crosses
each bridge exactly once and returns to the starting point.

� The German-Russian mathematician Leonard Euler proved that no
such path exists. This result is often considered to be the first theorem
ever proved in graph theory.

Leonard Euler
(1707-1783)

The 7 Bridges of Kӧnigsberg

Multigraph
Model of the
Bridges of
Kӧnigsberg

Euler Paths and Circuits (continued)
Definition: An Euler circuit in a graph G is a simple circuit containing
every edge of G.

An Euler path in G is a simple path containing every edge of G.
(unlike Euler circuit, Euler path does not need to end at the same node)

Example: Which of the undirected graphs G1, G2, and G3 has a Euler
circuit? Of those that do not, which has an Euler path?

Solution: The graph G1 has an Euler circuit (e.g., a, e, c, d, e, b, a). But,
as can easily be verified by inspection, neither G2 nor G3 has an Euler
circuit. Note that G3 has an Euler path (e.g., a, c, d, e, b, d, a, b), but
there is no Euler path in G2, which can be verified by inspection.

Necessary Conditions for Euler Circuits

and Paths
� An Euler circuit begins with a vertex a and continues with an edge

incident with a, say {a, b}. The edge {a, b} contributes one to deg(a).
� Each time the circuit passes through a vertex it contributes two to the

vertex’s degree.
� Finally, the circuit terminates where it started, contributing one to

deg(a). Therefore deg(a) must be even.
� We conclude that if a graph has an Euler circuit then the degree of

every vertex must be even.
� By the same reasoning, we see that the initial vertex and the final vertex

of an Euler path have odd degree, while every other vertex has even
degree. If a graph has an Euler path (but not an Euler curcuit) then
exactly two of its vertices have an odd degree.

� In the next slide we will show that these necessary conditions are also
sufficient conditions.

Sufficient Conditions for Euler Circuits

and Paths
Suppose that G is a connected multigraph with ≥ 2 vertices, all of even degree. Let x0 = a
be a vertex of even degree. Choose an edge {x0, x1} incident with a and proceed to build a
simple path {x0, x1}, {x1, x2}, …, {xn-1, xn} by adding edges one by one until another edge
can not be added.

� The path begins at a with an edge of the form {a, x}; we show that it must terminate at a
with an edge of the form {y, a}. Since each vertex has an even degree, there must be an
even number of edges incident with this vertex. Hence, every time we enter a vertex other than a, we can leave it. Therefore, the path can only end at a.

� If all of the edges have been used, an Euler circuit has been constructed. Otherwise,
consider the subgraph H obtained from G by deleting the edges already used.

We illustrate this idea in the graph G here.
We begin at a and choose the edges
{a, f}, {f, c}, {c, b}, and {b, a} in succession.

In the example H consists of the
vertices c, d, e.

Sufficient Conditions for Euler Circuits

and Paths (continued)

� Because G is connected, H must have at least one vertex in common with the circuit that
has been deleted.

� Every vertex in H must have even degree because all the vertices in G have even degree
and for each vertex, pairs of edges incident with this vertex have been deleted. Beginning
with the shared vertex construct a path ending in the same vertex (as was done before).
Then splice this new circuit into the original circuit.

� Continue this process until all edges have been used. This produces an Euler circuit.
Since every edge is included and no edge is included more than once.

� Similar reasoning can be used to show that a graph with exactly two vertices of odd
degree must have an Euler path connecting these two vertices of odd degree

In the example, the vertex is c.

In the example, we end up with the circuit a, f,
c, d, e, c, b, a.

Algorithm for Constructing an

Euler Circuits
In our proof we developed this algorithms for
constructing a Euler circuit in a graph with no vertices of
odd degree.

procedure Euler(G: connected multigraph with all vertices of even degree)
circuit := a circuit in G beginning at an arbitrarily chosen vertex with edges

successively added to form a path that returns to this vertex.
H := G with the edges of this circuit removed
while H has edges

subcircuit := a circuit in H beginning at a vertex in H that also is
an endpoint of an edge in circuit.

H := H with edges of subcircuit and all isolated vertices removed
circuit := circuit with subcircuit inserted at the appropriate vertex.

return circuit{circuit is an Euler circuit}

Necessary and Sufficient Conditions for

Euler Circuits and Paths (continued)
Theorem: A connected multigraph with at least two vertices
has an Euler circuit if and only if each of its vertices has an
even degree and it has an Euler path if and only if it has
exactly two vertices of odd degree.

Example: Two of the vertices in the multigraph model of the
Kӧnigsberg bridge problem have odd degree. Hence, there is
no Euler circuit in this multigraph and it is impossible to
start at a given point, cross each bridge exactly once, and
return to the starting point.

Euler Circuits and Paths

Example:

G1 contains exactly two vertices of odd degree (b and d). Hence it has
an Euler path, e.g., d, a, b, c, d, b.

G2 has exactly two vertices of odd degree (b and d). Hence it has an
Euler path, e.g., b, a, g, f, e, d, c, g, b, c, f, d.

G3 has six vertices of odd degree. Hence, it does not have an Euler path.

Applications of Euler Paths and

Circuits
� Euler paths and circuits can be used to solve many practical

problems such as finding a path or circuit that traverses
each
� street in a neighborhood,

� road in a transportation network,

� connection in a utility grid,

� link in a communications network.

� Other applications are found in the
� layout of circuits,

� network multicasting,

� molecular biology, where Euler paths are used in the
sequencing of DNA.

Hamilton Paths and Circuits
� Euler paths and circuits contained every edge only once. Now we look at paths and circuits that

contain every vertex exactly once.
� William Hamilton invented the Icosian puzzle in 1857. It consisted of a wooden dodecahedron (with

12 regular pentagons as faces), illustrated in (a), with a peg at each vertex, labeled with the names of
different cities. String was used to used to plot a circuit visiting 20 cities exactly once

� The graph form of the puzzle is given in (b).

� The solution (a Hamilton circuit) is given here.

William Rowan
Hamilton
(1805- 1865)

Hamilton Paths and Circuits
Definition: A simple path in a graph G that passes through every
vertex exactly once is called a Hamilton path, and a simple circuit in a
graph G that passes through every vertex exactly once is called a
Hamilton circuit.

That is, a simple path x0, x1, …, xn-1, xn in the graph G = (V, E) is called a
Hamilton path if V = {x0, x1, … , xn-1, xn } and xi ≠ xj for 0≤ i < j ≤ n, and
the simple circuit x0, x1, …, xn-1, xn, x0 (with n > 0) is a Hamilton
circuit if x0, x1, … , xn-1, xn is a Hamilton path.

Hamilton Paths and Circuits

(continued)
Example: Which of these simple graphs has a
Hamilton circuit or, if not, a Hamilton path?

Solution: G1 has a Hamilton circuit: a, b, c, d, e, a.
G2 does not have a Hamilton circuit (Why?), but does
have a Hamilton path : a, b, c, d.
G3 does not have a Hamilton circuit, or a Hamilton
path. Why?

Necessary Conditions for

Hamilton Circuits
� Unlike for an Euler circuit, no simple necessary and sufficient

conditions are known for the existence of a Hamiton circuit.
� However, there are some useful sufficient conditions. We

describe two of these now.

Dirac’s Theorem: If G is a simple graph with n ≥ 3 vertices such
that the degree of every vertex in G is ≥ n/2, then G has a
Hamilton circuit.

Ore’s Theorem: If G is a simple graph with n ≥ 3 vertices such
that deg(u) + deg(v) ≥ n for every pair of nonadjacent vertices,
then G has a Hamilton circuit.

Gabriel Andrew Dirac
(1925-1984)

Øysten Ore
(1899-1968)

Applications of Hamilton Paths and

Circuits
� Applications that ask for a path or a circuit that visits each

intersection of a city, each place where pipelines intersect
in a utility grid, or each node in a communications network
exactly once, can be solved by finding a Hamilton path in
the appropriate graph.

� The famous traveling salesperson problem (TSP) asks for
the shortest route a traveling salesperson should take to
visit a set of cities. This problem reduces to finding a
Hamilton circuit such that the total sum of the weights of
its edges is as small as possible.

� A family of binary codes, known as Gray codes, which
minimize the effect of transmission errors, correspond to
Hamilton circuits in the n-cube Qn.

