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Climbing an 

Infinite Ladder
Suppose we have an infinite ladder:
1. We can reach the first rung of the ladder.
2. If we can reach a particular rung of the ladder, then we can 

reach the next rung.

From (1), we can reach the first rung. Then by 
applying (2), we can reach the second rung. 
Applying (2) again, the third rung. And so on.  

This example motivates proof by 
mathematical induction.

We can apply (2) any number of times so that 
we can reach any particular rung, no 
matter how high up.



Principle of Mathematical Induction
Principle of Mathematical Induction: 
To prove that P(n) is true for all positive integers n, we complete these steps:

� Basis Step: Show that P(1) is true.
� Inductive Step: Show that P(k) → P(k + 1) is true for all positive integers k.

To complete the inductive step, assuming the inductive hypothesis that P(k)
holds for an arbitrary integer k, show that  must P(k + 1) be true.

Climbing an Infinite Ladder Example:
� BASIS STEP: By (1), we can reach rung 1.
� INDUCTIVE STEP: Assume the inductive hypothesis that we can reach rung k. 

Then by (2), we can reach rung k + 1.
Hence, P(k) → P(k + 1) is true for all positive integers k. We can reach every 
rung on the ladder.



Important Points About Using 

Mathematical  Induction
� Mathematical induction can be expressed  as the 

rule of inference

where the domain is the set of positive integers.

� In a proof by mathematical induction, we don’t 
assume that P(k) is true for all positive integers! We 
show that if we assume that P(k) is true, then
P(k + 1) must also  be true. 

� Proofs by mathematical induction do not always 
start at the integer 1. In such a case, the basis step 
begins at a starting point b where b is an integer. We 
will see examples of this soon.

(P(1) ∧			∀k (P(k) → P(k + 1))) →			 ∀n P(n),



Validity of Mathematical Induction
� Mathematical induction is valid because of the well ordering property, which states 

that “every nonempty subset of the set of positive integers has a least element”.

Here is the proof (by contradiction) that mathematical induction is valid:

� Suppose that P(1) holds and P(k)→ P(k + 1) is true for all positive integers k. 
� Assume there is at least one positive integer  n for which P(n) is false. Then the 

set S of positive integers for which P(n) is false is nonempty. 
� By the well-ordering property, S has a least element, say m.
� We know that m can not be 1 since  P(1) holds. 
� Since m is positive and greater than 1, m − 1 must be a positive integer.        

Since m − 1 < m, it is not in S, so P(m − 1) must be true. 
� But then, since the conditional P(k)→ P(k + 1) for every positive integer k

holds, P(m) must also be true. This contradicts P(m) being false. 
� Hence, P(n) must be true for every positive integer n.



Remembering How Mathematical 

Induction Works

Consider  an infinite 
sequence  of dominoes, 
labeled 1,2,3, …, where 
each domino is standing. 

We know that the first domino is 
knocked down, i.e., P(1) is true .

We also know that  if  whenever 
the k-th domino is knocked over, 
it knocks over the (k + 1)-st
domino, i.e, P(k) → P(k + 1) is 
true for all positive integers k. 

Let P(n) be the 
proposition that the 
n-th domino is 
knocked over. 

Hence, all dominos are knocked over.

P(n) is true for all positive integers n.



Proving a Summation Formula by 

Mathematical Induction
Example: Show that:  

Solution:

� BASIS STEP: P(1) is true since 1(1 + 1)/2 = 1.

� INDUCTIVE STEP: Assume true for P(k).

The inductive hypothesis is

Under this assumption,   

Note: Once we have this 
conjecture, mathematical 
induction can be used to 
prove it correct.

that is, true for P(k+1).



Conjecturing and Proving Correct a 

Summation Formula
Example: Conjecture a formula for the sum of the first n positive odd integers. Then prove your conjecture.
Solution: We have:   1=	1,						1	+	3	=	4,		1	+	3	+	5	=	9,									1	+	3	+	5	+	7	=	16,							1	+	3	+	5	+	7	+	9	=	25.
� We can conjecture that the sum of the first n positive odd integers is n2, 

� We will prove the conjecture is proved correct with mathematical induction:

BASIS STEP: P(1) is true since 12 = 1.
INDUCTIVE	STEP:		prove	P(k) → P(k + 1) for every positive integer k.

Assume the inductive hypothesis holds and then show that P(k) holds has well.

So, assuming P(k), it follows that:

Hence, we have shown that P(k + 1) follows from P(k). 
Therefore the sum of the first n positive odd integers is n2. 

1	+	3	+	5	+		∙∙∙		+	(2n − 1)		=		n2	.		

Inductive	Hypothesis		P(k):			1	+	3	+	5	+	∙∙∙+	(2k − 1)		=k2

1	+	3	+	5	+	∙∙∙+	(2k − 1)	+	(2(k +	1)-1)		=		[1	+	3	+	5	+	∙∙∙+	(2k − 1)]	+	(2k +	1)

= k2	+	(2k +	1)		(by	the	inductive	hypothesis)
=	k2	+	2k +	1	

=	(k +	1) 2



Proving Inequalities
Example: Use mathematical induction to prove that         

n < 2n for all positive integers n.

Solution: Let P(n) be the proposition that n < 2n.

� BASIS STEP: P(1) is true since 1 <   2 =  21.

� INDUCTIVE STEP: Assume P(k) holds, i.e., k < 2k, for an 
arbitrary positive integer k.

� Must show that P(k + 1) holds. Since by the inductive 
hypothesis, k < 2k, it follows that:

k + 1 <   2k + 1 ≤    2k + 2k =    2 ∙ 2k    =    2k+1

Therefore n < 2n holds for all positive integers n.



Proving Inequalities
Example: Use mathematical induction to prove that  

2n < n! for every integer n ≥ 4.

Solution: Let P(n) be the proposition that 2n < n!
� BASIS STEP: P(4) is true since 24 = 16		<		24		=		4!

� INDUCTIVE STEP: Assume P(k) holds, i.e., 2k < k! for an 
arbitrary integer k ≥ 4. Must show that P(k + 1) holds: 

2k+1 =  2∙2k  

<  2∙ k! by the inductive hypothesis P(k)

<  (k + 1)k!

=  (k + 1)!

Therefore, 2n < n! holds, for every integer n ≥ 4.

Note that here the basis step is P(4), since P(0), P(1), P(2),  and P(3) are all false.  



Proving Divisibility Results
Example: Use mathematical induction to prove that 
n3−	n is divisible by 3, for every positive integer n.

Solution: Let P(n) be the proposition that n3−	n is divisible by 3.
� BASIS STEP: P(1) is true since 13 −	1 = 0,	which	is	divisible	by	3.

� INDUCTIVE STEP: Assume P(k) holds, i.e., k3−	k is divisible by 3,	for	
an	arbitrary	positive	integer	k. To show that P(k + 1) follows: 

(k + 1)3 −	(k + 1) = (k3 + 3k2	+ 3k + 1)	− (k + 1) 

= (k3 −	k) + 3(k2	+ k)

By the inductive hypothesis, the first term (k3 −	k) is divisible by 3 and 
the second term is divisible by 3 since it is an integer multiplied by 3. 
By part (i) of Theorem 1 (Sec.4.1),  (k + 1)3 −	(k + 1) is divisible by 3. 

Therefore, n3−	n is divisible by 3, for every integer positive integer n.



Number of Subsets of a Finite Set
Example: Use mathematical induction to show that if S
is a finite set with n elements, where n is a nonnegative 
integer, then S has  2n subsets.

That is, cardinality of the  power set  for  S is  |P (S)|= 2k

Solution: Let P(n) be the proposition that a set with n
elements has 2n subsets.
� Basis Step: P(0) is true, because the empty set has only one 

subset (itself) and  1	= 20.

� Inductive Step: Assume P(k) is true for an arbitrary 
nonnegative integer k.

continued →



Number of Subsets of a Finite Set

� Let T be a set with k + 1 elements. Choose any element  a ∈ T .
Then T = S ∪ {a},  where  S = T − {a}.   Note that  |S| = k.

� For each subset  X of S there are exactly two subsets of T, 
i.e.,   X and   X ∪	>a}.	

� By	the	inductive	hypothesis	S	 has	2k subsets. 
Since there are two subsets of T  for each subset of S, the number of      
subsets of T is   2 ∙2k = 2k+1 .

Inductive Hypothesis: For an arbitrary nonnegative integer k, every set with k
elements has 2k subsets.  



Tiling Checkerboards
Example: Show that every 2n ×2n checkerboard with one square removed can 
be tiled using right  triominoes

Solution: Let P(n) be the proposition that every 2n ×2n checkerboard with one 
square removed can be tiled using right triominoes. Use mathematical 
induction to prove that P(n) is true for all positive integers n.
� BASIS STEP:  P(1) is true, because each of the four 2 ×2 checkerboards with 

one square removed can be tiled using one right triomino.

� INDUCTIVE STEP:  Assume that  P(k) is true for every  2k ×2k checkerboard, for 
some positive integer k.

continued →

A right triomino is an L-shaped tile which covers 
three squares at a time.



Tiling Checkerboards

� Consider a 2k+1 ×2k+1 checkerboard with one square removed. Split this checkerboard into four checkerboards of 
size 2k ×2k,by dividing it in half in both directions.

� Remove a square from one of the four 2k ×2k checkerboards. By the inductive hypothesis, this board can be tiled.  
� Also by the inductive hypothesis, the other three boards can be tiled with the square from the corner of the 

center of the original board removed. We can then cover the three adjacent squares with a triominoe. 
� Hence, the entire 2k+1 ×2k+1 checkerboard with one square removed can be tiled using right triominoes.

Inductive Hypothesis: Every 2k ×2k checkerboard, for some 
positive integer k,  with one square removed can be tiled using 
right triominoes.



An Incorrect “Proof” by 

Mathematical Induction
Example: Let P(n) be the statement that every set of n lines in 
the plane, no two of which are parallel, meet in a common point. 
Here is a “proof” that P(n) is true for all positive integers n ≥	2.		

� BASIS STEP: The statement P(2) is true because any two lines in the 
plane that are not parallel meet in a common point.

� INDUCTIVE STEP: The inductive hypothesis is the statement that 
P(k) is true for the positive integer k ≥	2, i.e., every set of k lines in 
the plane, no two of which are parallel, meet in a common point.

� We must show that if P(k) holds, then P(k + 1) holds, i.e.,  if every 
set of k lines in the plane, no two of which are parallel, k ≥	2,	meet 
in a common point, then every set of k + 1 lines in the plane, no two 
of which are parallel, meet in a common point. 

continued →



An Incorrect “Proof” by 

Mathematical Induction

� Consider a set  of k + 1 distinct lines in the plane, no two parallel. By 
the inductive hypothesis, the first k of these lines must meet in a 
common point p1. By the inductive hypothesis, the last k of these lines 
meet in a common point p2. 

� If p1 and p2 are different points, all lines containing both of them must 
be the same line since two points determine a line. This contradicts the 
assumption that the lines are distinct. Hence, point  p1 = p2 lies on all 
k + 1 distinct lines, and therefore  P(k + 1)  holds. Assuming that  k ≥2,	
distinct	lines	meet	in	a	common	point,	then	every	 k + 1 lines	meet	in	a	
common	point.

� There	must	be	an	error	in	this	proof		since	the	conclusion	is	absurd.	But	
where	is	the	error?

� Answer: P(k)→ P(k + 1) only holds for  k ≥3.	It is not the case that P(2) implies P(3). The first two 
lines must meet in a common point p1 and the second two must meet in a common point p2. They do 
not have to be the same point since only the second line is common to both sets of lines.

Inductive Hypothesis: Every set of k lines in the plane, where   
k ≥	2, no two of which are parallel, meet in a common point.



Guidelines:

Mathematical Induction Proofs
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Strong Induction
� Strong Induction: 

To prove that P(n) is true for all positive integers n, 
where P(n) is a propositional function, complete two 
steps:

� Basis Step: Verify that the proposition P(1) is true.

� Inductive Step: Show the conditional statement                
[P(1) ∧ P(2) ∧∙∙∙ ∧ P(k)] → P(k + 1) holds for all positive 
integers k. 

Strong Induction is sometimes called 
the second principle of mathematical 
induction or complete induction.



Strong Induction and  

the Infinite Ladder
Strong induction tells us that we can reach all rungs if:
1. We can reach the first rung of the ladder.
2. For every integer k, if we can reach the first k rungs, then 

we can reach the (k + 1)st rung. 

To conclude that we can reach every rung by strong 
induction:
• BASIS STEP:  P(1) holds
• INDUCTIVE STEP:  Assume P(1) ∧ P(2) ∧∙∙∙ ∧ P(k)
holds	for	an	arbitrary	integer	k,	and	show	that		

P(k + 1) must also hold.
We  will have then shown by strong induction that for 
every positive integer n, P(n) holds, i.e., we can 
reach the n-th rung of the ladder.



Which Form of Induction Should Be Used?

� We can always use strong induction instead of  
mathematical induction. But there is no reason to use 
it if it is simpler to use mathematical induction. 

� In fact, the principles of mathematical induction, 
strong induction, and the well-ordering property are 
all equivalent. 

� Sometimes it is clear how to proceed using one of the 
three methods, but not the other two. 



Completion of the proof of the 

Fundamental Theorem of Arithmetic
Example: Show that if n is an integer greater than 1, then n can be written 
as the product of primes.

Solution: Let P(n) be the proposition that n can be written as a product of 
primes.
� BASIS STEP: P(2) is true since 2 itself is prime.
� INDUCTIVE STEP: The inductive hypothesis is P(j) is true for all integers 

j with 2 ≤ j ≤ k. To show that P(k + 1) must be true under this 
assumption, two cases need to be considered:
� If k + 1		is	prime,	then	P(k + 1) is true.
� Otherwise, k + 1		is	composite	and	can	be	written	as	the	product	of	two	positive	

integers	a and	b with	2 ≤ a ≤ b < k + 1.	By	the	inductive	hypothesis	a and	b can	be	
written	as	the	product	of	primes	and	therefore	k + 1	can	also	be	written	as	the	
product	of	those	primes.

Hence, it has been shown that every integer greater than 1 can be written 
as the product of primes.



Proof using Strong Induction
Example: Prove that every amount of postage of 12 cents or more can 
be formed using just 4-cent and 5-cent stamps. 

Solution: Let P(n) be the proposition that postage of n cents can be 
formed using 4-cent and 5-cent stamps.
� BASIS STEP: P(12), P(13), P(14), and P(15) hold.

� P(12) uses three 4-cent stamps.
� P(13) uses two 4-cent stamps and one 5-cent stamp.
� P(14) uses one 4-cent stamp and two 5-cent stamps.
� P(15) uses three 5-cent stamps.

� INDUCTIVE STEP: The inductive hypothesis  states that P(j) holds for 
12 ≤ j ≤ k, where k ≥ 15.		Assuming	the	inductive	hypothesis,	 it can be 
shown that P(k + 1) holds. 

� Using the inductive hypothesis, P(k −	3)	holds	since	k −	3	≥	12. To	
form	postage	of		k + 1	cents,	add	a	4-cent stamp to the postage for k −	3	
cents.

Hence, P(n) holds for all n ≥	12.



Proof of Same Example using 

Mathematical Induction
Example: Prove that every amount of postage of 12 cents or more can 
be formed using just 4-cent and 5-cent stamps. 

Solution: Let P(n) be the proposition that postage of n cents can be 
formed using 4-cent and 5-cent stamps.
� BASIS STEP: Postage of 12 cents can be formed using three 4-cent stamps. 

Thus, P(12) holds.       We also checked P(13), P(14), P(15).
� INDUCTIVE STEP: The inductive hypothesis P(k) for any positive integer 

k>15 is that postage of k cents can be formed using 4-cent and 5-cent 
stamps. To show P(k + 1) where   k ≥	12 , we consider two cases:
� If	at	least	one	4-cent stamp has been used, then a 4-cent stamp can be replaced 

with a 5-cent stamp to yield a total of k + 1	cents.
� Otherwise,	no		4-cent stamp have been used and at least three 5-cent stamps 

were used. Three 5-cent stamps can be replaced by four 4-cent stamps to yield a 
total of k + 1	cents.

Hence, P(n) holds for all n ≥	12.



Well-Ordering Property
� Well-ordering property: Every nonempty set of nonnegative 

integers has a least element.

� The well-ordering property is one of the axioms of the 
positive integers listed in Appendix 1. 

� The well-ordering property can be generalized. 

Definition: 

A set is well ordered if every subset has a least element.

� N is well ordered under ≤.

� The set of finite strings over an alphabet using lexicographic 
ordering is well ordered.



Well-Ordering Property
Example: Use the well-ordering property to prove the 
division algorithm, which states that if a is an integer and d is 
a positive integer, then there are unique integers q and r with 
0 ≤ r < d, such that   a = dq + r.
Solution: Given a and d >0, let S be the set of nonnegative 
integers of the form  a −	dq where	q is	an	integer.	The	set	is	
nonempty	since		−dq can be made as large as needed. 
� By the well-ordering property, S has a least element                     

r =  a −	dq0. The integer r is nonnegative. 
� It also must be the case that r < d. If it were not, then there 

would be a smaller nonnegative element in S, namely,                                                       
r* :=  a −	d(q0	+ 1)		=			a −	dq0	−	d =			r −	d    >  0.

� Therefore, there are integers q and r with 0 ≤ r < d.

(uniqueness of q and r is Exercise 37)

− 2 .
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Sierpinski Triangle
Sierpinski triangles are formed by starting with a 
triangle and then forming 3 triangles (black)
within the original by connecting the midpoints
of the sides of the original triangle.

iteration 1 iteration 2 iteration 3

iteration 4 iteration 5 iteration 6
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triangle and then forming 3 triangles (black)
within the original by connecting the midpoints
of the sides of the original triangle.

iteration 1 iteration 2 iteration 3

iteration 4 iteration 5 iteration 6



Recursively Defined Functions
Definition:  A recursive or inductive definition of a 
function consists of two steps.

� BASIS STEP: Specify the value of the function at zero.

� RECURSIVE STEP: Give a rule for finding function’s value 
at an integer from its values at smaller integers.

� NOTE: a function f(n) is the same as a sequence a0, a1, … 
where f(n) = an. We previously used recurrence relations 
to define sequences (Section 2.4). The above is 
essentially the same.



Recursively Defined Functions
Example:  Suppose f is defined by:

f(0) =   3
f(n + 1) =  2f(n) + 3

Find f(1), f(2), f(3), f(4)
Solution:

� f(1) = 2f(0) + 3	=	2∙3	+	3	=	9

� f(2) = 2f(1)+ 3	=	2∙9	+	3	=	21

� f(3) = 2f(2) + 3	=	2∙21	+	3	=	45

� f(4) = 2f(3) + 3	=	2∙45	+	3	=	93

Example:  Give a recursive definition of the factorial function n!:
Solution:

f(0) = 1
f(n + 1) = (n + 1)∙ f(n)



Recursively Defined Functions
Example: Give a recursive definition of:

Solution: The first part of the definition is

The second part is



Fibonacci Numbers
Example : The Fibonacci numbers are defined as 
follows:

f0	 = 0

f1 = 1

fn = fn−1 + fn−2

Find f2, f3	, f4	, f5	.
� f2	 = f1	 + f0	 = 1 + 0 = 1

� f3	 = f2	 + f1	 = 1 + 1 = 2

� f4 = f3 + f2	 = 2 + 1 = 3

� f5 = f4	 + f3	 = 3 + 2 = 5

Fibonacci 
(1170- 1250)



Recursively Defined Sets and Structures
Recursive definitions of sets have two parts:
� The basis step specifies an initial collection of elements.

� The recursive step gives the rules for forming new elements in 
the set from those already known to be in the set.

� Sometimes the recursive definition has an exclusion rule, 
which specifies that the set contains nothing other than 
those elements specified in the basis step and generated by 
applications of the rules in the recursive step. 

We will always assume that the exclusion rule holds,   
even if it is not explicitly mentioned. 

� We will later develop a form of induction, called structural 
induction, to prove results about recursively defined sets. 



Recursively Defined Sets and Structures

Example : Subset of Integers  S:

BASIS STEP:	3 ∊ S.

RECURSIVE STEP: If x ∊ S and y ∊ S, then x + y is in S.

� Initially 3 is in S, then 3 + 3 = 6, then 3 + 6 = 9, etc.

Example: The natural numbers N.

BASIS STEP:	0	∊ N.

RECURSIVE STEP: If n is in N, then n + 1 is in N.

� Initially 0 is in S, then 0 + 1 = 1, then 1 + 1 = 2, etc.



Strings
Definition: The set  Σ* of strings over the alphabet Σ:

BASIS STEP:		λ ∊ Σ* (λ is the empty string)

RECURSIVE STEP:  If  w ∊	Σ* and x ∊	Σ then wx ∈ Σ*.

Example:  If Σ = {0,1}, the strings in in Σ* are the set of all 
bit strings:  λ, 0, 1,	00, 01,	10,	11,	000,	001,	010,…		etc.

Example:  If  Σ = {a,b},  show that aab is in Σ*.
� Since	λ ∊ Σ* and a ∊ Σ, a ∊ Σ*.

� Since	a ∊ Σ* and a ∊ Σ, aa ∊ Σ*.

� Since	aa ∊ Σ* and b ∊ Σ, aab ∊ Σ*.



Length of a String
Example: Give a recursive definition of  function 

l :  Σ*→ Z+ specifying length of any given string in  Σ*.

Solution: The length of a string can be recursively 
defined by:

l(λ) = 0;

l(wx) = l(w) + 1				if  w ∊ Σ*  and  x ∊ Σ. 



String Concatenation
Definition: Two strings can be combined via the operation of 
concatenation. Let Σ be a set of symbols and Σ* be the set of 
strings formed from the symbols in Σ. We can recursively define 
the concatenation operator “ ∙	” mapping	two	strings	to	a	string	

(“operator  ∙					:					Σ* × Σ* → Σ*   )

BASIS STEP:				If				w ∈ Σ* then w ∙ λ =  w
RECURSIVE STEP: If		w1 ∈ Σ*  and w2 ∈ Σ*  and  x ∈ Σ then

w ∙ (w2	x)  =  (w1	∙ w2)x

� Often concatenation of two strings  v ∙ u is written as   v u
� If  v = “abra” and  u =  “cadabra”,   the concatenation is        

v u =  “abracadabra”



Rooted Trees
Definition: The set of rooted trees, where a rooted tree 
consists of a set of vertices containing a distinguished 
vertex called the root, and edges connecting these vertices, 
can be defined recursively by these steps:

BASIS STEP: A single vertex r is a rooted tree.

RECURSIVE STEP: Suppose that T1, T2, …,Tn are disjoint rooted 
trees with roots r1, r2,…,rn respectively. Then the structure 
formed by starting with a root r (which is not in any of the 
rooted trees T1, T2, …,Tn)   and adding an edge from r to each 
of the vertices r1, r2,…,rn is also a rooted tree.



Building Up Rooted Trees

Next we look at a special type of tree, the full binary tree. 



Full Binary Trees
Definition: The set of full binary trees can be defined 
recursively by these steps.

BASIS STEP: There is a full binary tree consisting of only a 
single vertex r.

RECURSIVE STEP: If T1 and T2 are disjoint full binary 
trees, there is a full binary tree  (denoted by T1∙T2) 
consisting of a root r together with edges connecting the 
root to each of the roots of the left subtree T1 and the 
right subtree T2. 



Building Up Full Binary Trees



Induction and Recursively Defined Sets
Example:  Show that the set S (defined by specifying that 3 ∊ S and that if  
x ∊ S and  y ∊ S, then  x + y is in  S) is the set of all positive integers that 
are multiples of 3.
Solution: Let A be the set of all positive integers divisible by 3. To prove 
that     A = S,    show that A is a subset of S and S is a subset of A. 
� A ⊂ S:    Let P(n) be the statement that 3n belongs to S. 

BASIS STEP: 3∙1	=	3	∊ S, by the first part of recursive definition.
INDUCTIVE STEP: Assume P(k) is true. By the second part of the recursive definition, 
if 3k ∊ S, then since 3	∊ S, 3k + 3 = 3(k+	1)	∊ S. Hence, P(k + 1) is true. 

� S ⊂	A:
BASIS STEP: 3	∊ S by the first part of recursive definition, and   3 =	3∙1.

INDUCTIVE STEP:  The second part of the recursive definition adds x +y to S, if both x
and y are in S. If x and y are both in A, then both x and y are divisible by 3. By part (i) 
of Theorem 1 of Section 4.1, it follows that  x + y is divisible by 3. 

structural induction



Structural Induction
Definition: To prove a property of the elements of a 
recursively defined set, we use  structural induction. 

BASIS STEP: Show that the result holds for all elements 
specified in the basis step of the recursive definition.

RECURSIVE STEP: Show that if the statement is true for 
each of the (old) elements used to construct new
elements in the recursive step of the definition, then  
the result holds for these new elements. 

� The validity of structural induction can be shown to 
follow from the principle of mathematical induction. 



Full Binary Trees
Definition: The height h(T) of a full binary tree T is 
defined recursively as follows:
� BASIS STEP: The height of a full binary tree T consisting of 

only a root r is h(T) = 0.
� RECURSIVE STEP: If T1 and T2 are full binary trees, then the 

full binary tree T = T1∙T2 has height                                           
h(T) = 1 + max(h(T1),h(T2)).

� The number of vertices  n(T) of a full binary tree T satisfies 
the following recursive formula:
� BASIS STEP: The number of vertices of a full binary tree T 

consisting of only a root r is n(T) = 1.
� RECURSIVE STEP: If T1 and T2 are full binary trees, then the  

full binary tree T = T1∙T2 has the number of vertices                                                                 
n(T) = 1 + n(T1) + n(T2).



Structural Induction and Binary Trees

Theorem: If T is a full binary tree, then   n(T) ≤ 2h(T)+1 – 1.

Proof: Use structural induction.
� BASIS  STEP: The result holds for a full binary tree consisting only 

of a root, n(T) = 1 and h(T) = 0.  Hence, n(T) = 1 ≤ 20+1 – 1 = 1.

� RECURSIVE STEP:  Assume n(T1) ≤ 2h(T1)+1 – 1 and also                   
n(T2) ≤ 2h(T2)+1		– 1 whenever T1 and T2 are full binary trees.

n(T)   =  1	+ n(T1) + n(T2)                        - by recursive formula of n(T)

≤ 1 + (2h(T1)+1 – 1) + (2h(T2)+1	– 1)    - by inductive hypothesis

≤ 2∙max(2h(T1)+1 ,2h(T2)+1) – 1	

= 2∙2max(h(T1),h(T2))+1 – 1 - since max(2x , 2y) = 2max(x,y)

= 2∙2h(T) – 1 - by recursive definition of h(T)

= 2h(T)+1 – 1 − 2 .



Section 5.4



Section Summary
� Recursive Algorithms

� Proving Recursive Algorithms Correct



Recursive Algorithms
Definition: An algorithm is called recursive if it solves 
a problem by reducing it to an instance of the same 
problem with smaller input.

� For the algorithm to terminate, the instance of the 
problem must eventually be reduced to some initial 
case for which the solution is known.



Recursive Factorial Algorithm
Example: Give a recursive algorithm for computing n!, 
where n is a nonnegative integer. 

� Solution: Use the recursive definition of the factorial 
function.

procedure factorial(n: nonnegative integer)

if n = 0 then return	1

else return	n∙	(n −	1)!
{output is n!}



Recursive Exponentiation Algorithm

Example: Give a recursive algorithm for computing an, 
where a is a nonzero real number and  n is a 
nonnegative integer.

Solution: Use the recursive definition of an.

procedure power(a: nonzero real number, n: nonnegative integer)

if n = 0 then return	1

else return	a∙	power (a, n −	1)
{output is an}



Recursive GCD Algorithm
Example: Give a recursive algorithm for computing 
the greatest common divisor of two nonnegative 
integers a and b with a < b.

Solution: Use the reduction

gcd(a,b)  =  gcd(b mod a, a) 

and the condition  gcd(0,b)  =  b when b > 0.

procedure gcd(a,b: nonnegative integers  such that  a < b)

if a = 0 then return	b
else return	 gcd (b mod a,  a)
{output is gcd(a, b)}



Proving Recursive Algorithms Correct
� Both mathematical and str0ng induction are useful techniques to show that recursive 

algorithms always produce the correct output.

Example: Prove that the algorithm for computing the powers of real numbers is correct.

Solution: Use mathematical induction on the exponent n.
BASIS STEP: a0 =1 for every nonzero real number a, and power(a,0) = 1.
INDUCTIVE STEP: The inductive hypothesis is that power(a,k) = ak, for all a ≠0. 
Assuming the inductive hypothesis, the algorithm correctly computes ak+1, since

power(a,k + 1) = a∙	power (a, k) = a∙	ak = ak+1 .

procedure power(a: nonzero real number, n: nonnegative integer)

if n = 0 then return	1

else return	a∙	power (a, n −	1)

{output is an}

− 2 .


