Counting Chapter 6

With Question/Answer Animations

Chapter Summary

- The Basics of Counting
- The Pigeonhole Principle
- Permutations and Combinations
- Binomial Coefficients and Identities
- Generalized Permutations and Combinations

The Basics of Counting

Section 6.1

Section Summary

- The Product Rule
- The Sum Rule
- The Subtraction Rule (Inclusion-Exclusion)

Basic Counting Principles: The Product Rule

The Product Rule: A procedure can be broken down into a sequence of two (or more) tasks. There are n_{1} ways to do the first task and n_{2} ways to do the second task. Then there are $n_{1} \cdot n_{2}$ ways to do the procedure.

Example: How many bit strings of length seven are there? Solution: Since each of the seven bits is either a 0 or a 1, the answer is $2^{7}=128$.

The Product Rule

Example: How many different license plates can be made if each plate contains a sequence of three uppercase English letters followed by three digits?
Solution: By the product rule, there are $26 \cdot 26 \cdot 26 \cdot 10 \cdot 10 \cdot 10=17,576,000$ different possible license plates.

Counting Functions

Counting Functions: How many functions are there from a set with m elements to a set with n elements?
Solution: Since a function represents a choice of one of the n elements of the codomain for each of the m elements in the domain, the product rule tells us that there are $n \cdot n \cdots n=n^{m}$ such functions.

Counting One-to-One Functions: How many one-to-one functions are there from a set with m elements to one with n elements?
Solution: Suppose the elements in the domain are $a_{1}, a_{2}, \ldots, a_{m}$. There are n ways to choose the value of a_{1} and $n-1$ ways to choose a_{2}, etc. The product rule tells us that there are $n(n-1)(n-2) \cdots(n-m+1)$ such functions.

Telephone Numbering Plan

Example: The North American numbering plan (NANP) specifies that a telephone number consists of 10 digits, consisting of a three-digit area code, a three-digit office code, and a four-digit station code. There are some restrictions on the digits.

- Let X denote a digit from 0 through 9 .
- Let N denote a digit from 2 through 9 .
- Let Y denote a digit that is 0 or 1 .
- In the old plan (in use in the 1960s) the format was NYX-NNX-XXXX.
- In the new plan, the format is $N X X-N X X-X X X X$.

How many different telephone numbers are possible under the old plan and the new plan?
Solution: Use the Product Rule.

- There are $8 \cdot 2 \cdot 10=160$ area codes with the format $N Y X$.
- There are $8 \cdot 10 \cdot 10=800$ area codes with the format $N X X$.
- There are $8 \cdot 8 \cdot 10=640$ office codes with the format $N N X$.
- There are $10 \cdot 10 \cdot 10 \cdot 10=10,000$ station codes with the format $X X X X$.

Number of old plan telephone numbers: $160 \cdot 640 \cdot 10,000=1,024,000,000$.
Number of new plan telephone numbers: $800 \cdot 800 \cdot 10,000=6,400,000,000$.

Counting Subsets of a Finite Set

Counting Subsets of a Finite Set: Use the product rule to show that the number of different subsets of a finite set S is $2^{|S|}$. (In Section 5.1, mathematical induction was used to prove this same result.)

Solution: When the elements of S are listed in an arbitrary order, there is a one-to-one correspondence between subsets of S and bit strings of length $|S|$. When the i-th element is in the subset, the bit string has a 1 in the i-th position and a 0 otherwise.

By the product rule, there are $2^{|S|}$ such bit strings, and therefore $2^{|S|}$ subsets.

Product Rule in Terms of Sets

- If $A_{1}, A_{2}, \ldots, A_{m}$ are finite sets, then the number of elements in the Cartesian product of these sets is the product of the number of elements of each set.

Indeed:

- The task of choosing an element in the Cartesian product $A_{1} \times A_{2} \times \cdots \times A_{m}$ is done by choosing an element in A_{1}, an element in A_{2}, \ldots, and an element in A_{m}.
- By the product rule, it follows that:

$$
\left|A_{1} \times A_{2} \times \cdots \times A_{m}\right|=\left|A_{1}\right| \cdot\left|A_{2}\right| \cdot \cdots \cdot\left|A_{m}\right|
$$

DNA and Genomes

A gene (DNA) can be abstractly represented as a string with elements from the alphabet

$$
\Sigma=\{A, T, C, G\}
$$

e.g. AGTCTCCATGAAGCACGTTTAC...

DNA and Genomes

- A gene is a segment of a DNA molecule that encodes a particular protein. The entirety of genetic information of an organism is called its genome.
- The DNA of bacteria has between 10^{5} and 10^{7} nucleotides (one of the four bases). Mammals have between 10^{8} and 10^{10} nucleotides. So, by the product rule there are at least 4^{105} different sequences of bases in the DNA of bacteria and 4^{108} different sequences of bases in the DNA of mammals.
- The human genome includes approximately 23,000 genes, each with 1,000 or more nucleotides.
- Biologists, mathematicians, and computer scientists all work on determining the DNA sequence (genome) of different organisms.

Basic Counting Principles: The Sum Rule

The Sum Rule: If a task can be done either in one of n_{1} ways or in one of n_{2} ways, where none of the set of n_{1} ways is the same as any of the n_{2} ways, then there are $n_{1}+n_{2}$ ways to do the task.

Example: The mathematics department must choose either a student or a faculty member as a representative for a university committee. How many choices are there for this representative if there are 37 members of the mathematics faculty and 83 mathematics majors and no one is both a faculty member and a student.
Solution: By the sum rule it follows that there are $37+83=120$ possible ways to pick a representative.

The Sum Rule in terms of sets.

- The sum rule can be phrased in terms of sets.
$|A \cup B|=|A|+|B|$ as long as A and B are disjoint sets.
- Or more generally,

$$
\begin{gathered}
\left|A_{1} \cup A_{2} \cup \cdots \cup A_{m}\right|=\left|A_{1}\right|+\left|A_{2}\right|+\cdots+\left|A_{m}\right| \\
\text { when } A_{i} \cap A_{j}=\emptyset \text { for all } i, j .
\end{gathered}
$$

- The case where the sets have elements in common will be discussed when we consider the subtraction rule

Combining the Sum and Product Rule

Example: Suppose statement labels in a programming language can be either a single letter or a letter followed by a digit. Find the number of possible labels.

Solution: Use the sum and product rules.

$$
26+26 \cdot 10=286
$$

Counting Passwords

- Combining the sum and product rule allows us to solve more complex problems. Example: Each user on a computer system has a password, which is six to eight characters long, where each character is an uppercase letter or a digit. Each password must contain at least one digit. How many possible passwords are there?

Solution: Let P be the total number of passwords, and let P_{6}, P_{7}, and P_{8} be the passwords of length 6, 7, and 8.

- By the sum rule $P=P_{6}+P_{7}+P_{8}$.
- To find each of P_{6}, P_{7}, and P_{8}, we find the number of passwords of the specified length composed of letters and digits and subtract the number composed only of letters. We find that:

$$
\begin{aligned}
& P_{6}=36^{6}-26^{6}=2,176,782,336-\quad 308,915,776=1,867,866,560 . \\
& P_{7}=36^{7}-26^{7}=78,364,164,096-8,031,810,176=70,332,353,920 . \\
& P_{8}=36^{8}-26^{8}=2,821,109,907,456-208,827,064,576=2,612,282,842,880 .
\end{aligned}
$$

Consequently, $P=P_{6}+P_{7}+P_{8}=2,684,483,063,360$.

Internet Addresses

- Version 4 of the Internet Protocol (IPv4) uses 32 bits.

- Class A Addresses: used for the largest networks, a 0 , followed by a 7 -bit netid and a 24 -bit hostid.
- Class B Addresses: used for the medium-sized networks, a 10 , followed by a 14-bit netid and a 16-bit hostid.
- Class C Addresses: used for the smallest networks, a 110, followed by a 21-bit netid and a 8-bit hostid.
- Neither Class D nor Class E addresses are assigned as the address of a computer on the internet. Only Classes A, B, and C are available.
- 1111111 is not available as the netid of a Class A network.
- Hostids consisting of all 0 s and all 1 s are not available in any network.

Counting Internet Addresses

Example: How many different IPv 4 addresses are available for computers on the internet?
Solution: Use both the sum and the product rule. Let x be the number of available addresses, and let $x_{\mathrm{A}}, x_{\mathrm{B}}$, and x_{C} denote the number of addresses for the respective classes.

- To find, $x_{\mathrm{A}}: 2^{7}-1=127$ netids. $\quad 2^{24}-2=16,777,214$ hostids.

$$
x_{\mathrm{A}}=127 \cdot 16,777,214=2,130,706,178
$$

- To find, $x_{\mathrm{B}}: 2^{14}=16,384$ netids. $2^{16}-2=16,534$ hostids.

$$
x_{\mathrm{B}}=16,384 \cdot 16,534=1,073,709,056
$$

- To find, $x_{\mathrm{C}}: 2^{21}=2,097,152$ netids. $2^{8}-2=254$ hostids.

$$
x_{\mathrm{C}}=2,097,152 \cdot 254=532,676,608 .
$$

- Hence, the total number of available IPv4 addresses is

$$
\begin{aligned}
& x=x_{\mathrm{A}}+x_{\mathrm{B}}+x_{\mathrm{C}} \\
&=2,130,706,178+1,073,709,056+532,676,608 \\
&=3,737,091,842 . \\
& l l
\end{aligned} \begin{aligned}
& \text { Not Enough Today !! } \\
& \text { The newer IPv6 protocol solves the problem } \\
& \text { of too few addresses. }
\end{aligned}
$$

Basic Counting Principles: Subtraction Rule

Subtraction Rule: If a task can be done either in one of n_{1} ways or in one of n_{2} ways, then the total number of ways to do the task is $n_{1}+n_{2}$ minus the number of ways to do the task that are common to the two different ways.

- Also known as, the principle of inclusion-exclusion:

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

Counting Bit Strings

Example: How many bit strings of length eight either start with a 1 bit or end with the two bits 00 ?
Solution: Use the subtraction rule.

- Number of bit strings of length eight
 that start with a 1 bit: $2^{7}=128$

Counting Bit Strings

Example: How many bit strings of length eight either start with a 1 bit or end with the two bits 00 ?
Solution: Use the subtraction rule.

- Number of bit strings of length eight that start with a 1 bit: $2^{7}=128$
- Number of bit strings of length eight
 that end with bits 00: $2^{6}=64$

Counting Bit Strings

Example: How many bit strings of length eight either start with a 1 bit or end with the two bits 00 ?
Solution: Use the subtraction rule.

- Number of bit strings of length eight that start with a 1 bit: $2^{7}=128$
- Number of bit strings of length eight that end with bits 00: $2^{6}=64$
- Number of bit strings of length eight
 that start with a 1 bit and end with bits $00: 2^{5}=32$
Hence, the number is $128+64-32=160$.

The Pigeonhole Principle
 Section 6.2

Section Summary

- The Pigeonhole Principle
- The Generalized Pigeonhole Principle

The Pigeonhole Principle

- If a flock of 20 pigeons roosts in a set of 19 pigeonholes, one of the pigeonholes must have more than 1 pigeon.

Pigeonhole Principle: If $k+1$ objects (for $k>0$) are placed into k boxes, then at least one box contains two or more objects. Proof: We use a proof by contraposition. Suppose none of the k boxes has more than one object. Then the total number of objects would be at most k. This contradicts the statement that we have $k+1$ objects.

The Pigeonhole Principle

Corollary 1: A function f from a set with $k+1$ elements to a set with k elements is not one-to-one.
Proof: Use the pigeonhole principle.

- Create a box for each element y in the codomain of f.
- Put in these boxes all of the elements x from the domain such that $f(x)=y$.
- Because there are $k+1$ elements and only k boxes, at least one box has two or more elements.
Hence, f can't be one-to-one.

Pigeonhole Principle

Example: Among any group of 367 people, there must be at least two with the same birthday, because there are only 366 possible birthdays.

Example: Show that for every integer n there is a multiple of n that has only 0 s and 1 s in its decimal expansion.
Solution: Let n be a positive integer. Consider the $n+1$ integers $1,11,111, \ldots ., 11 \ldots 1$ (where the last has $n+1$ bits). There are n possible remainders when an integer is divided by n. By the pigeonhole principle, when each of the $n+1$ integers is divided by n, at least two must have the same remainder. Subtract the smaller from the larger and the result is a multiple of n that has only 0 s and 1 s in its decimal expansion.

The Generalized Pigeonhole Principle

The Generalized Pigeonhole Principle: If N objects are placed into k boxes, then there is at least one box containing at least $[N / k\rceil$ objects.
Proof: We use a proof by contraposition. Suppose that none of the boxes contains more than $\lceil N / k\rceil-1$ objects. Then the total number of objects is at most

$$
k\left(\left\lceil\frac{N}{k}\right\rceil-1\right)<k\left(\left(\frac{N}{k}+1\right)-1\right)=N,
$$

where the inequality $\lceil N / k\rceil<\lceil N / k\rceil+1$ has been used. This is a contradiction because there are a total of N objects.

Example: Among 200 students in CS2214 there are at least $\lceil 200 / 12\rceil=17$ who were born in the same month.

The Generalized Pigeonhole Principle

Example: How many cards (N) must be selected from a standard deck of 52 cards to guarantee that at least three cards of the same suit are chosen?
Solution: We assume four boxes; one for each suit. Using the generalized pigeonhole principle, at least one box contains at least $[\mathrm{N} / 4\rceil$ cards. At least three cards of one suit are selected if $[N / 4] \geq 3$. The smallest integer N such that $[N / 4\rceil \geq 3$ is

$$
N=2 \cdot 4+1=9 .
$$

Permutations and Combinations

 Section 6.3
Section Summary

- Permutations
- Combinations

Permutations

Definition: A permutation of a set of distinct objects is an ordered arrangement of these objects. An ordered arrangement of r elements of a set is called an r-permutation.
Example: Let $S=\{1,2,3\}$.

- The ordered arrangement $3,1,2$ is a permutation of S.
- The ordered arrangement 3,2 is a 2-permutation of S.
- The number of r-permutations of a set with n elements is denoted by $P(n, r)$.
- The 2-permutations of $S=\{1,2,3\}$ are

$$
1,2 ; 1,3 ; 2,1 ; 2,3 ; 3,1 ; 3,2 . \quad \text { Hence, } P(3,2)=6 .
$$

A Formula for the Number of

Permutations

Theorem 1: If n is a positive integer and r is an integer with $1 \leq r \leq n$, then there are

$$
P(n, r)=n(n-1)(n-2) \cdots(n-r+1)
$$

r-permutations of a set with n distinct elements.
Proof: Use the product rule. The first element can be chosen in n ways. The second in $n-1$ ways, and so on until there are ($n-(r-1)$) ways to choose the last element.

Note that $P(n, 0)=1$ as there is only one way to order zero elements.
Corollary 1: If n and r are integers with $1 \leq r \leq n$, then

$$
P(n, r)=\frac{n!}{(n-r)!}
$$

Solving Counting Problems by

Counting Permutations

Example: How many ways are there to select a firstprize winner, a second prize winner, and a third-prize winner from 100 different people who have entered a contest?

Solution:

$$
P(100,3)=100 \cdot 99 \cdot 98=970,200
$$

Solving Counting Problems by

Counting Permutations (continued)

Example: Suppose that a saleswoman has to visit eight different cities. She must begin her trip in a specified city, but she can visit the other seven cities in any order she wishes. How many possible orders can the saleswoman use when visiting these cities?

Solution: The first city is chosen, and the rest are ordered arbitrarily. Hence the orders are:

$$
7!=7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=5040
$$

If she wants to find the tour with the shortest path that visits all the cities, she must consider 5040 paths!

Solving Counting Problems by

Counting Permutations (continued)

Example: How many permutations of the letters ABCDEFGH contain the string $A B C$?

Solution: We solve this problem by counting the permutations of six objects, $A B C, D, E, F, G$, and H.

$$
6!=6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=720
$$

Combinations

Definition: An r-combination of elements of a set is an unordered selection of r elements from the set. Thus, an r-combination is simply a subset of the set with r elements.

- The number of r-combinations of a set with n distinct elements is denoted by $C(n, r)$. The notation $\binom{n}{r}$ is also used and is called a binomial coefficient. (We will see the notation again in the binomial theorem in Section 6.4.) Example: Let S be the set $\{a, b, c, d\}$. Then $\{a, c\}$ is a 2combination from S. It is the same as $\{c, a\}$ since the order listed does not matter.
- $C(4,2)=6$ because the 2-combinations of $\{a, b, c, d\}$ are the six subsets $\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\}$, and $\{c, d\}$.

Combinations

Theorem 2: The number of r-combinations of a set with n elements, where $n \geq r \geq 0$, equals

$$
C(n, r)=\frac{n!}{(n-r)!r!} .
$$

Proof: By the product rule $P(n, r)=C(n, r) \cdot P(r, r)$. procedure: task 1: task 2: get ordered arrangement selection arrangement of relements of relements of relements from a set of n. from a set of n. from a set of r.
Therefore,

$$
C(n, r)=\frac{P(n, r)}{P(r, r)}=\frac{n!/(n-r)!}{r!/(r-r)!}=\frac{n!}{(n-r)!r!} .
$$

Combinations

Example: How many poker hands of five cards can be dealt from a standard deck of 52 cards? Also, how many ways are there to select 47 cards from a deck of 52 cards?
Solution: Since the order in which the cards are dealt does not matter, the number of five card hands is:

$$
\begin{aligned}
C(52,5) & =\frac{52!}{5!47!} \\
& =\frac{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=26 \cdot 17 \cdot 10 \cdot 49 \cdot 12=2,598,960
\end{aligned}
$$

The different ways to select 47 cards from 52 is

$$
C(52,47)=\frac{52!}{47!5!}=C(52,5)=2,598,960
$$

Combinations

Corollary 2 : Let n and r be nonnegative integers with $r \leq n$. Then $C(n, r)=C(n, n-r)$.
Proof: From Theorem 2, it follows that

$$
C(n, r)=\frac{n!}{(n-r)!r!}
$$

and

$$
C(n, n-r)=\frac{n!}{(n-r)![n-(n-r)]!}=\frac{n!}{(n-r)!r!}
$$

Hence, $C(n, r)=C(n, n-r)$.

Combinations

Example: How many ways are there to select five players from a 10 -member tennis team to make a trip to a match at another school.
Solution: By Theorem 2, the number of combinations is

$$
C(10,5)=\frac{10!}{5!5!}=252 .
$$

Example: A group of 30 people have been trained as astronauts to go on the first mission to Mars. How many ways are there to select a crew of six people to go on this mission?
Solution: By Theorem 2, the number of possible crews is

$$
C(30,6)=\frac{30!}{6!24!}=\frac{30 \cdot 29 \cdot 28 \cdot 27 \cdot 26 \cdot 25}{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=593,775
$$

Binomial Coefficients and Identities

Section 6.4

Section Summary

- The Binomial Theorem
- Pascal's Identity and Triangle

Powers of Binomial Expressions

Definition: A binomial expression is the sum of two terms, such as $x+y$. (More generally, these terms can be products of constants and variables.)

- We can use counting principles to find the coefficients in the expansion of $(x+y)^{n}$ where n is a positive integer.
- To illustrate this idea, we first look at the process of expanding $(x+y)^{3}$.
- $(x+y)(x+y)(x+y)$ expands into a sum of terms that are the product of a term from each of the three sums.
- Terms of the form $x^{3}, x^{2} y, x y^{2}, y^{3}$ arise. The question is what are the coefficients?
- To obtain x^{3}, an x must be chosen from each of the sums. There is only one way to do this. So, the coefficient of x^{3} is 1 .
- To obtain $x^{2} y$, an x must be chosen from two of the sums and a y from the other. There are $\binom{3}{2}$ ways to do this and so the coefficient of $x^{2} y$ is 3 .
- To obtain $x y^{2}$, an x must be chosen from of the sums and a y from the other two. There are $\binom{3}{1}$, ways to do this and so the coefficient of $x y^{2}$ is 3 .
- To obtain y^{3}, a y must be chosen from each of the sums. There is only one way to do this. So, the coefficient of y^{3} is 1 .
- We have used a counting argument to show that $(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}$.
- Next we present the binomial theorem gives the coefficients of the terms in the expansion of $(x+y)^{n}$.

Binomial Theorem

Binomial Theorem: Let x and y be variables, and n a nonnegative integer. Then:

$$
(x+y)^{n}=\sum_{j=0}^{n}\binom{n}{j} x^{n-j} y^{j}=\binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+\cdots+\binom{n}{n-1} x y^{n-1}+\binom{n}{n} y^{n} .
$$

Proof: We use combinatorial reasoning. All terms in the expansion of $(x+y)^{n}$ are of the form $x^{n-j} y^{j}$ for $j=0,1,2, \ldots, n$. To form the term $x^{n-j} y^{j}$, it is necessary to choose $n-j$ xs from the n sums. Therefore, the coefficient of $x^{n-j} y^{j}$ is $\binom{n}{n-j}$ which equals $\binom{n}{j}$.

Using the Binomial Theorem

Example: What is the coefficient of $x^{12} y^{13}$ in the expansion of $(2 x-3 y)^{25}$?
Solution: We view the expression as $(2 x+(-3 y))^{25}$. By the binomial theorem

$$
(2 x+(-3 y))^{25}=\sum_{j=0}^{25}\binom{25}{j}(2 x)^{25-j}(-3 y)^{j} .
$$

Consequently, the coefficient of $x^{12} y^{13}$ in the expansion is obtained when $j=13$.

$$
\binom{25}{13} 2^{12}(-3)^{13}=-\frac{25!}{13!12!} 2^{12} 3^{13}
$$

A Useful Identity

Corollary 1: With $n \geq 0, \quad \sum_{k=0}^{n}\binom{n}{k}=2^{n}$.
Proof (using binomial theorem): With $x=1$ and $y=1$, from the binomial theorem we see that:

$$
2^{n}=(1+1)^{n}=\sum_{k=0}^{n}\binom{n}{k} 1^{k} 1^{(n-k)}=\sum_{k=0}^{n}\binom{n}{k} .
$$

Pascal's Identity

Pascal's Identity: If n and k are integers with $n \geq k \geq 0$, then

$$
\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k} .
$$

Proof: Exercise

Pascal's Triangle

The nth row in
the triangle
consists of the
binomial
coefficients $\binom{n}{k}$,
$k=0,1, \ldots,, n$.
$\binom{0}{0}$
$\binom{1}{0}\binom{1}{1}$
$\binom{2}{0}\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)\binom{2}{2}$
$\binom{3}{0}\binom{3}{1}\binom{3}{2}\binom{3}{3}$
${ }^{B y}$ Pacalals idenity:
$\binom{4}{0}\binom{4}{1}\binom{4}{2}\binom{4}{3}\binom{4}{4}$
$\binom{6}{4}+\binom{6}{5}=\binom{7}{5}$
$\binom{5}{5}\binom{5}{1}\binom{5}{2}\binom{5}{3}\binom{5}{4}\binom{5}{5}$

$\binom{6}{0}\binom{6}{1}\binom{6}{2}\binom{6}{3}\binom{0}{4}\binom{6}{5}\binom{6}{6}$
$\binom{7}{0}\binom{7}{1}\binom{1}{2}\binom{7}{3}\binom{7}{4}\binom{1}{5}\binom{7}{6}\binom{7}{7}$
$\binom{8}{0}\binom{8}{1}\binom{8}{2}\binom{8}{3}\binom{8}{4}\binom{8}{5}\binom{8}{6}\binom{8}{7}\binom{8}{8}$
(a)
(b)

By Pascal's identity, adding two adjacent bionomial coefficients results is the binomial coefficient in the next row between these two coefficients.

