Counting Chapter 6

With Question/Answer Animations

Chapter Summary

- The Basics of Counting
- The Pigeonhole Principle
- Permutations and Combinations
- Binomial Coefficients and Identities
- Generalized Permutations and Combinations

The Basics of Counting Section 6.1

Section Summary

- The Product Rule
- The Sum Rule
- The Subtraction Rule (Inclusion-Exclusion)

Basic Counting Principles: The Product Rule

The Product Rule: A procedure can be broken down into a sequence of two (or more) tasks. There are n_1 ways to do the first task and n_2 ways to do the second task. Then there are $n_1 \cdot n_2$ ways to do the procedure.

Example: How many bit strings of length seven are there? **Solution**: Since each of the seven bits is either a 0 or a 1, the answer is $2^7 = 128$.

The Product Rule

Example: How many different license plates can be made if each plate contains a sequence of three uppercase English letters followed by three digits? **Solution**: By the product rule, there are $26 \cdot 26 \cdot 26 \cdot 10 \cdot 10 = 17,576,000$ different possible license plates.

\square
10 choices
for each
digit

Counting Functions

Counting Functions: How many functions are there from a set with *m* elements to a set with *n* elements?

Solution: Since a function represents a choice of one of the *n* elements of the codomain for each of the *m* elements in the domain, the product rule tells us that there are $n \cdot n \cdots n = n^m$ such functions.

Counting One-to-One Functions: How many one-to-one functions are there from a set with *m* elements to one with *n* elements?

Solution: Suppose the elements in the domain are $a_1, a_2, ..., a_m$. There are *n* ways to choose the value of a_1 and n-1 ways to choose a_2 , etc. The product rule tells us that there are $n(n-1)(n-2)\cdots(n-m+1)$ such functions.

Telephone Numbering Plan

Example: The North American numbering plan (NANP) specifies that a telephone number consists of 10 digits, consisting of a three-digit area code, a three-digit office code, and a four-digit station code. There are some restrictions on the digits.

- Let *X* denote a digit from 0 through 9.
- Let *N* denote a digit from 2 through 9.
- Let *Y* denote a digit that is 0 or 1.
- In the old plan (in use in the 1960s) the format was NYX-NNX-XXXX.
- In the new plan, the format is *NXX-NXX-XXXX*.

How many different telephone numbers are possible under the old plan and the new plan?

Solution: Use the Product Rule.

- There are $8 \cdot 2 \cdot 10 = 160$ area codes with the format *NYX*.
- There are $8 \cdot 10 \cdot 10 = 800$ area codes with the format *NXX*.
- There are $8 \cdot 8 \cdot 10 = 640$ office codes with the format *NNX*.
- There are 10.10.10.10 = 10,000 station codes with the format *XXXX*.

Number of old plan telephone numbers: 160 ·640 ·10,000 = 1,024,000,000. Number of new plan telephone numbers: 800 ·800 ·10,000 = 6,400,000,000.

Counting Subsets of a Finite Set

Counting Subsets of a Finite Set: Use the product rule to show that the number of different subsets of a finite set *S* is $2^{|S|}$. (*In Section* 5.1, *mathematical induction was used to prove this same result*.)

Solution: When the elements of S are listed in an arbitrary order, there is a one-to-one correspondence between subsets of S and bit strings of length |S|. When the *i*-th element is in the subset, the bit string has a 1 in the *i*-th position and a 0 otherwise.

By the product rule, there are $2^{|S|}$ such bit strings, and therefore $2^{|S|}$ subsets.

Product Rule in Terms of Sets

• If $A_1, A_2, ..., A_m$ are finite sets, then the number of elements in the Cartesian product of these sets is the product of the number of elements of each set.

Indeed:

- The task of choosing an element in the Cartesian product
 A₁ × A₂ × ··· × A_m is done by choosing an element in
 A₁, an element in A₂, ..., and an element in A_m.
- By the product rule, it follows that:

 $|A_1 \times A_2 \times \cdots \times A_m| = |A_1| \cdot |A_2| \cdot \cdots \cdot |A_m|$

DNA and Genomes

A gene (DNA) can be abstractly represented as a string with elements from the alphabet

 $\Sigma = \{A, T, C, G\}$

e.g. AGTCTCCATGAAGCACGTTTAC...

DNA and Genomes

- A *gene* is a segment of a DNA molecule that encodes a particular protein. The entirety of genetic information of an organism is called its *genome*.
- The DNA of bacteria has between 10⁵ and 10⁷ nucleotides (one of the four bases). Mammals have between 10⁸ and 10¹⁰ nucleotides. So, by the product rule there are at least 4^{10⁵} different sequences of bases in the DNA of bacteria and 4^{10⁸} different sequences of bases in the DNA of mammals.
- The human genome includes approximately 23,000 genes, each with 1,000 or more nucleotides.
- Biologists, mathematicians, and computer scientists all work on determining the DNA sequence (genome) of different organisms.

Basic Counting Principles: The Sum Rule

The Sum Rule: If a task can be done <u>either</u> in one of n_1 ways <u>or</u> in one of n_2 ways, where none of the set of n_1 ways is the same as any of the n_2 ways, then there are $n_1 + n_2$ ways to do the task.

Example: The mathematics department must choose either a student or a faculty member as a representative for a university committee. How many choices are there for this representative if there are 37 members of the mathematics faculty and 83 mathematics majors and no one is both a faculty member and a student.

Solution: By the sum rule it follows that there are 37 + 83 = 120 possible ways to pick a representative.

The Sum Rule in terms of sets.

- The sum rule can be phrased in terms of sets.
 |A ∪ B| = |A| + |B| as long as A and B are disjoint sets.
- Or more generally,

 $\begin{aligned} |A_1 \cup A_2 \cup \cdots \cup A_m| &= |A_1| + |A_2| + \cdots + |A_m| \\ \text{when } A_i \cap A_j &= \emptyset \text{ for all } i, j. \end{aligned}$

• The case where the sets have elements in common will be discussed when we consider the subtraction rule

Combining the Sum and Product Rule

Example: Suppose statement labels in a programming language can be either a single letter <u>or</u> a letter followed by a digit. Find the number of possible labels.

Solution: Use the sum and product rules. $26 + 26 \cdot 10 = 286$

Counting Passwords

Combining the sum and product rule allows us to solve more complex problems. Example: Each user on a computer system has a password, which is six to eight characters long, where each character is an uppercase letter or a digit. Each password must contain at least one digit. How many possible passwords are there?

Solution: Let *P* be the total number of passwords, and let P_6 , P_7 , and P_8 be the passwords of length 6, 7, and 8.

- By the sum rule $P = P_6 + P_7 + P_8$.
- To find each of *P*₆, *P*₇, and *P*₈, we find the number of passwords of the specified length composed of letters and digits and subtract the number composed only of letters. We find that:

 $\begin{array}{rll} P_6 = 36^6 - 26^6 = & 2,176,782,336 - & 308,915,776 = & 1,867,866,560. \\ P_7 = 36^7 - 26^7 = & 78,364,164,096 - & 8,031,810,176 = & 70,332,353,920. \\ P_8 = 36^8 - 26^8 = & 2,821,109,907,456 - & 208,827,064,576 = & 2,612,282,842,880. \end{array}$

Consequently, $P = P_6 + P_7 + P_8 = 2,684,483,063,360$.

Internet Addresses

• Version 4 of the Internet Protocol (IPv4) uses 32 bits.

Bit Number	0	1	2	3	4		8	16	24	31	
Class A	0	netid							hostid		
Class B	1	0	netid						hostid		
Class C	1	1	0				netid	·	h	ostid	
Class D	1	1	1	0		Multicast Address					
Class E	1	1	1	1	0	Address					

- **Class A Addresses**: used for the largest networks, a 0, followed by a 7-bit netid and a 24-bit hostid.
- **Class B Addresses**: used for the medium-sized networks, a 10, followed by a 14-bit netid and a 16-bit hostid.
- Class C Addresses: used for the smallest networks, a 110, followed by a 21-bit netid and a 8-bit hostid.
 - Neither Class D nor Class E addresses are assigned as the address of a computer on the internet. Only Classes A, B, and C are available.
 - 1111111 is not available as the netid of a Class A network.
 - Hostids consisting of all 0s and all 1s are not available in any network.

Counting Internet Addresses

Example: How many different IPv4 addresses are available for computers on the internet?

Solution: Use both the sum and the product rule. Let x be the number of available addresses, and let x_A , x_B , and x_C denote the number of addresses for the respective classes.

- To find, x_A : $2^7 1 = 127$ netids. $2^{24} 2 = 16,777,214$ hostids. $x_A = 127 \cdot 16,777,214 = 2,130,706,178$.
- To find, $x_{\rm B}$: $2^{14} = 16,384$ netids. $2^{16} 2 = 16,534$ hostids. $x_{\rm B} = 16,384 \cdot 16,534 = 1,073,709,056$.
- To find, x_C : $2^{21} = 2,097,152$ netids. $2^8 2 = 254$ hostids.

 $x_{\rm C} = 2,097,152 \cdot 254 = 532,676,608.$

• Hence, the total number of available IPv4 addresses is

 $\begin{array}{l} x = x_{\rm A} + x_{\rm B} + x_{\rm C} \\ = 2,130,706,178 + 1,073,709,056 + 532,676,608 \\ = 3,737,091,842. \\ \end{array} \quad \mbox{Not Enough Today !!} \\ \mbox{The newer IPv6 protocol solves the problem} \\ \mbox{of too few addresses.} \end{array}$

Basic Counting Principles: Subtraction Rule

- **Subtraction Rule**: If a task can be done either in one of n_1 ways or in one of n_2 ways, then the total number of ways to do the task is $n_1 + n_2$ minus the number of ways to do the task that are common to the two different ways.
- Also known as, the *principle of inclusion-exclusion*:

 $|A \cup B| = |A| + |B| - |A \cap B|$

Counting Bit Strings

Example: How many bit strings of length eight either start with a 1 bit or end with the two bits 00?

Solution: Use the subtraction rule.

• Number of bit strings of length eight that start with a 1 bit: 2⁷ = 128

 $2^7 = 128$ ways

Counting Bit Strings

Example: How many bit strings of length eight either start with a 1 bit or end with the two bits 00?

Solution: Use the subtraction rule.

- Number of bit strings of length eight that start with a 1 bit: 2⁷ = 128
- Number of bit strings of length eight that end with bits 00: 2⁶ = 64

Counting Bit Strings

Example: How many bit strings of length eight either start with a 1 bit or end with the two bits 00?

Solution: Use the subtraction rule.

- Number of bit strings of length eight that start with a 1 bit: 2⁷ = 128
- Number of bit strings of length eight that end with bits 00: 2⁶ = 64

• Number of bit strings of length eight that start with a 1 bit and end with bits $00: 2^5 = 32$ ways that start with a 1 bit and end with bits $00: 2^5 = 32$ Hence, the number is 128 + 64 - 32 = 160.

The Pigeonhole Principle Section 6.2

Section Summary

- The Pigeonhole Principle
- The Generalized Pigeonhole Principle

The Pigeonhole Principle

• If a flock of 20 pigeons roosts in a set of 19 pigeonholes, one of the pigeonholes must have more than 1 pigeon.

Pigeonhole Principle: If k + 1 objects (for k > 0) are placed into k boxes, then at least one box contains two or more objects. **Proof**: We use a proof by contraposition. Suppose none of the k boxes has more than one object. Then the total number of objects would be at most k. This contradicts the statement that we have k + 1 objects.

The Pigeonhole Principle

Corollary 1: A function f from a set with k + 1 elements to a set with k elements is not one-to-one. **Proof**: Use the pigeonhole principle.

- Create a box for each element *y* in the *codomain* of *f*.
- Put in these boxes all of the elements *x* from the domain such that f(x) = y.
- Because there are *k* + 1 elements and only *k* boxes, at least one box has two or more elements.

Hence, *f* can't be one-to-one.

Pigeonhole Principle

Example: Among any group of 367 people, there must be at least two with the same birthday, because there are only 366 possible birthdays.

Example: Show that for every integer *n* there is a multiple of *n* that has only 0s and 1s in its decimal expansion. **Solution**: Let *n* be a positive integer. Consider the n + 1 integers 1, 11, 111, ..., 11...1 (where the last has n + 1 bits). There are *n* possible remainders when an integer is <u>divided by *n*</u>. By the pigeonhole principle, when each of the n + 1 integers is divided by *n*, at least two must have the same remainder. Subtract the smaller from the larger and the result is a multiple of *n* that has only 0s and 1s in its decimal expansion.

The Generalized Pigeonhole Principle

The Generalized Pigeonhole Principle: If N objects are placed into k boxes, then there is at least one box containing at least [N/k] objects.

Proof: We use a proof by contraposition. Suppose that none of the boxes contains more than [N/k] - 1 objects. Then the total number of objects is at most

 $k\left(\left\lceil \frac{N}{k}\right\rceil - 1\right) < k\left(\left(\frac{N}{k} + 1\right) - 1\right) = N,$

where the inequality [N/k] < [N/k] + 1 has been used. This is a contradiction because there are a total of N objects.

Example: Among 200 students in CS₂₂₁₄ there are at least [200/12] = 17 who were born in the same month.

The Generalized Pigeonhole Principle

Example: How many cards (N) must be selected from a standard deck of 52 cards to guarantee that at least three cards of the same suit are chosen?

Solution: We assume four boxes; one for each suit. Using the generalized pigeonhole principle, at least one box contains at least [N/4] cards. At least three cards of one suit are selected if $[N/4] \ge 3$. The smallest integer *N* such that $[N/4] \ge 3$ is

 $N = 2 \cdot 4 + 1 = 9.$

Permutations and Combinations

Section 6.3

Section Summary

Permutations

Combinations

Permutations

Definition: A *permutation* of a set of distinct objects is an <u>ordered</u> arrangement of these objects. An ordered arrangement of r elements of a set is called an *r-permutation*. **Example**: Let $S = \{1,2,3\}$.

- The ordered arrangement 3,1,2 is a permutation of *S*.
- The ordered arrangement 3,2 is a 2-permutation of *S*.

• The number of *r*-permutations of a set with *n* elements is denoted by P(n,r).

• The 2-permutations of $S = \{1, 2, 3\}$ are

1,2; 1,3; 2,1; 2,3; 3,1; 3,2. Hence, P(3,2) = 6.

A Formula for the Number of Permutations

Theorem 1: If *n* is a positive integer and *r* is an integer with $1 \le r \le n$, then there are

 $P(n, r) = n(n - 1)(n - 2) \cdots (n - r + 1)$ *r*-permutations of a set with n distinct elements.

Proof: Use the product rule. The first element can be chosen in n ways. The second in n - 1 ways, and so on until there are (n - (r - 1)) ways to choose the last element.

Note that P(n,0) = 1 as there is only one way to order zero elements.

Corollary 1: If *n* and *r* are integers with $1 \le r \le n$, then

$$P(n,r) = \frac{n!}{(n-r)!}$$

Solving Counting Problems by Counting Permutations

Example: How many ways are there to select a firstprize winner, a second prize winner, and a third-prize winner from 100 different people who have entered a contest?

Solution:

 $P(100,3) = 100 \cdot 99 \cdot 98 = 970,200$

Solving Counting Problems by Counting Permutations (continued)

Example: Suppose that a saleswoman has to visit eight different cities. She must begin her trip in a specified city, but she can visit the other seven cities in any order she wishes. How many possible orders can the saleswoman use when visiting these cities?

Solution: The first city is chosen, and the rest are ordered arbitrarily. Hence the orders are:

 $7! = 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 5040$

If she wants to find the tour with the shortest path that visits all the cities, she must consider 5040 paths!

Solving Counting Problems by Counting Permutations (continued)

Example: How many permutations of the letters *ABCDEFGH* contain the string *ABC* ?

Solution: We solve this problem by counting the permutations of six objects, *ABC*, *D*, *E*, *F*, *G*, and *H*.

 $6! = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 720$

- **Definition**: An *r*-combination of elements of a set is an <u>unordered</u> selection of *r* elements from the set. Thus, an *r*-combination is simply a subset of the set with *r* elements.
- The number of *r*-combinations of a set with n distinct elements is denoted by C(n, r). The notation $\binom{n}{r}$ is also used and is called a *binomial coefficient*. (*We will see the notation again in the binomial theorem in Section* 6.4.)
 - **Example**: Let *S* be the set $\{a, b, c, d\}$. Then $\{a, c\}$ is a 2-combination from S. It is the same as $\{c, a\}$ since the order listed does not matter.
- C(4,2) = 6 because the 2-combinations of {a, b, c, d} are the six subsets {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, and {c, d}.

Theorem 2: The number of *r*-combinations of a set with *n* elements, where $n \ge r \ge 0$, equals

$$C(n,r) = \frac{n!}{(n-r)!r!}.$$

Proof: By the product rule $P(n, r) = C(n,r) \cdot P(r,r)$.

procedure: get <u>ordered</u> arrangement of r elements from a set of n. task 1: get <u>unordered</u> selection of r elements from a set of n. task 2: get <u>ordered</u> arrangement of r elements from a set of r.

Therefore,

$$C(n,r) = \frac{P(n,r)}{P(r,r)} = \frac{n!/(n-r)!}{r!/(r-r)!} = \frac{n!}{(n-r)!r!}$$

- **Example**: How many poker hands of five cards can be dealt from a standard deck of 52 cards? Also, how many ways are there to select 47 cards from a deck of 52 cards?
- **Solution**: Since the order in which the cards are dealt does not matter, the number of five card hands is:

$$C(52,5) = \frac{52!}{5!47!}$$

= $\frac{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = 26 \cdot 17 \cdot 10 \cdot 49 \cdot 12 = 2,598,960$

The different ways to select 47 cards from 52 is

$$C(52, 47) = \frac{52!}{47!5!} = C(52, 5) = 2,598,960.$$

This is a special case of a general result. \rightarrow

Corollary 2: Let *n* and *r* be nonnegative integers with $r \le n$. Then C(n, r) = C(n, n - r).

Proof: From Theorem 2, it follows that

$$C(n,r) = \frac{n!}{(n-r)!r!}$$

and

$$C(n, n-r) = \frac{n!}{(n-r)![n-(n-r)]!} = \frac{n!}{(n-r)!r!}$$

Hence, C(n, r) = C(n, n - r).

Example: How many ways are there to select five players from a 10-member tennis team to make a trip to a match at another school.

Solution: By Theorem 2, the number of combinations is

$$C(10,5) = \frac{10!}{5!5!} = 252.$$

Example: A group of 30 people have been trained as astronauts to go on the first mission to Mars. How many ways are there to select a crew of six people to go on this mission?

Solution: By Theorem 2, the number of possible crews is

$$C(30,6) = \frac{30!}{6!24!} = \frac{30 \cdot 29 \cdot 28 \cdot 27 \cdot 26 \cdot 25}{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = 593,775 .$$

Binomial Coefficients and Identities

Section 6.4

Section Summary

- The Binomial Theorem
- Pascal's Identity and Triangle

Powers of Binomial Expressions

Definition: A *binomial* expression is the sum of two terms, such as x + y. (More generally, these terms can be products of constants and variables.)

- We can use counting principles to find the coefficients in the expansion of $(x + y)^n$ where n is a positive integer.
- To illustrate this idea, we first look at the process of expanding $(x + y)^3$.
- (x + y) (x + y) (x + y) expands into a sum of terms that are the product of a term from each of the three sums.
- Terms of the form x^3 , x^2y , $x y^2$, y^3 arise. The question is what are the coefficients?
 - To obtain x^3 , an x must be chosen from each of the sums. There is only one way to do this. • So, the coefficient of x^3 is 1.
 - To obtain x^2y , an x must be chosen from two of the sums and a y from the other. There • are $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$ ways to do this and so the coefficient of x^2y is 3.
 - To obtain xy^2 , an x must be chosen from of the sums and a y from the other two. There are $\begin{pmatrix} 3 \\ 1 \end{pmatrix}$ ways to do this and so the coefficient of xy^2 is 3. To obtain y^3 , a y must be chosen from each of the sums. There is only one way to do this. So, •
 - the coefficient of y^3 is 1.
- We have used a counting argument to show that $(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$. ۲
- Next we present the binomial theorem gives the coefficients of the terms in the expansion • of $(x + y)^n$.

Binomial Theorem

Binomial Theorem: Let *x* and *y* be variables, and *n* a nonnegative integer. Then:

$$(x+y)^n = \sum_{j=0}^n \left(\begin{array}{c}n\\j\end{array}\right) x^{n-j} y^j = \left(\begin{array}{c}n\\0\end{array}\right) x^n + \left(\begin{array}{c}n\\1\end{array}\right) x^{n-1} y + \dots + \left(\begin{array}{c}n\\n-1\end{array}\right) x y^{n-1} + \left(\begin{array}{c}n\\n\end{array}\right) y^n.$$

Proof: We use combinatorial reasoning . All terms in the expansion of $(x + y)^n$ are of the form $x^{n-j}y^j$ for j = 0, 1, 2, ..., n. To form the term $x^{n-j}y^j$, it is necessary to choose n-j xs from the *n* sums. Therefore, the coefficient of $x^{n-j}y^j$ is $\binom{n}{n-j}$ which equals $\binom{n}{j}$.

Using the Binomial Theorem

Example: What is the coefficient of $x^{12}y^{13}$ in the expansion of $(2x - 3y)^{25}$?

Solution: We view the expression as $(2x + (-3y))^{25}$. By the binomial theorem

$$(2x + (-3y))^{25} = \sum_{j=0}^{25} \begin{pmatrix} 25\\ j \end{pmatrix} (2x)^{25-j} (-3y)^j.$$

Consequently, the coefficient of $x^{12}y^{13}$ in the expansion is obtained when j = 13.

$$\begin{pmatrix} 25\\13 \end{pmatrix} 2^{12} (-3)^{13} = -\frac{25!}{13!12!} 2^{12} 3^{13}.$$

A Useful Identity Corollary 1: With $n \ge 0$, $\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$.

Proof (*using binomial theorem*): With x = 1 and y = 1, from the binomial theorem we see that:

$$2^{n} = (1+1)^{n} = \sum_{k=0}^{n} \binom{n}{k} 1^{k} 1^{(n-k)} = \sum_{k=0}^{n} \binom{n}{k}.$$

Pascal's Identity

Pascal's Identity: If *n* and *k* are integers with $n \ge k \ge 0$, then

$$\left(\begin{array}{c} n+1\\ k\end{array}\right) = \left(\begin{array}{c} n\\ k-1\end{array}\right) + \left(\begin{array}{c} n\\ k\end{array}\right).$$

Proof : Exercise

Pascal's Triangle

By Pascal's identity, adding two adjacent bionomial coefficients results is the binomial coefficient in the next row between these two coefficients.