Relations

 Chapter 9
Chapter Summary

- Relations and Their Properties
- Representing Relations
- Equivalence Relations
- Partial Orderings

Relations and Their Properties

Section 9.1

Section Summary

- Relations and Functions
- Properties of Relations
- Reflexive Relations
- Symmetric and Antisymmetric Relations
- Transitive Relations
- Combining Relations

Binary Relations

Definition: A binary relation R from a set A to a set B is a subset $R \subseteq A \times B$.

Example:

- Let $A=\{0,1,2\}$ and $B=\{a, b\}$
- $\{(0, a),(0, b),(1, a),(2, b)\}$ is a relation from A to B.
- We can represent relations from a set A to a set B graphically or using a table:

Relations are more general than functions. A function is a relation where exactly one element of B is related to each element of A.

Binary Relation on a Set

Definition: A binary relation R on a set A is a subset of $A \times A$ or a relation from A to A.

Example:

- Suppose that $A=\{a, b, c\}$. Then $R=\{(a, a),(a, b),(a, c)\}$ is a relation on A.
- Let $A=\{1,2,3,4\}$. The ordered pairs in the relation $\mathrm{R}=\{(a, b) \mid a$ divides $b\}$ are $(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3)$, and $(4,4)$.

Binary Relation on a Set (cont.)

Question: How many relations are there on a set A ?

Solution: Because a relation on A is the same thing as a subset of $A \times A$, we count the subsets of $A \times A$. Since $A \times A$ has n^{2} elements when A has n elements, and a set with m elements has 2^{m} subsets, there are $2^{|A|^{2}}$ subsets of $A \times A$. Therefore, there are $2^{|A|^{2}}$ relations on a set A.

Binary Relations on a Set (cont.)

Example: Consider these relations on the set of integers:

$$
\begin{array}{ll}
R_{1}=\{(a, b) \mid a \leq b\}, & R_{4}=\{(a, b) \mid a=b\}, \\
R_{2}=\{(a, b) \mid a>b\}, & R_{5}=\{(a, b) \mid a=b+1\}, \\
R_{3}=\{(a, b) \mid a=b \text { or } a=-b\}, & R_{6}=\{(a, b) \mid a+b \leq 3\} .
\end{array}
$$

Note that these relations are on an infinite set and each of these relations is an infinite set.

Which of these relations contain each of the pairs

$$
(1,1),(1,2),(2,1),(1,-1), \text { and }(2,2) ?
$$

Solution: Checking the conditions that define each relation, we see that the pair (1,1) is in R_{1}, R_{3}, R_{4}, and $R_{6}:(1,2)$ is in R_{1} and $R_{6}:(2,1)$ is in R_{2}, R_{5}, and $R_{6}:(1,-1)$ is in R_{2}, R_{3}, and $R_{6}:(2,2)$ is in R_{1}, R_{3}, and R_{4}.

Reflexive Relations

Definition: R is reflexive iff $(a, a) \in R$ for every element $a \in \mathrm{~A}$. Written symbolically, R is reflexive if and only if

$$
\forall x[\mathrm{x} \in A \rightarrow(x, x) \in R]
$$

Example: The following relations on the integers are reflexive:

$$
\begin{aligned}
& R_{1}=\{(a, b) \mid a \leq b\}, \\
& R_{3}=\{(a, b) \mid a=b \text { or } a=-b\}, \\
& R_{4}=\{(a, b) \mid a=b\} .
\end{aligned}
$$

```
If A=\emptyset then the empty relation is
reflexive vacuously. That is, the empty
relation on an empty set is reflexive!
```

The following relations are not reflexive:
$R_{2}=\{(a, b) \mid a>b\}$ (note that $3>3$),
$R_{5}=\{(a, b) \mid a=b+1\}$ (note that $3 \neq 3+1$),
$R_{6}=\{(a, b) \mid a+b \leq 3\}$ (note that $4+4 \nsubseteq 3$).

Symmetric Relations

Definition: R is symmetric iff $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$. Written symbolically, R is symmetric if and only if

$$
\forall x \forall y \quad[(x, y) \in R \quad \rightarrow(y, x) \in R]
$$

Example: The following relations on the integers are symmetric:
$R_{3}=\{(a, b)| | a|=|b|\}$,
$R_{4}=\{(a, b) \mid a=b\}$,
$R_{6}=\{(a, b) \mid a+b \leq 3\}$.
The following are not symmetric:
$R_{1}=\{(a, b) \mid a \leq b\} \quad$ (note that $3 \leq 4$, but $4 \nsubseteq 3$),
$R_{2}=\{(a, b) \mid a>b\} \quad$ (note that $4>3$, but $3>4$),
$R_{5}=\{(a, b) \mid a=b+1\}$ (note that $4=3+1$, but $3 \neq 4+1$).

Antisymmetric Relations

Definition: Relation R on a set A such that for all $a, b \in A$ if $(a, b) \in R$ and $(b, a) \in R$, then $a=b$ is called antisymmetric. Written symbolically, R is antisymmetric if and only if

$$
\forall x \forall y \quad[(x, y) \in R \wedge(y, x) \in R \quad \rightarrow \quad x=y]
$$

Note: if x and y are distinct $(x \neq y)$ then R can not have both (x, y) and (y, x).

- Example: The following relations on the integers are antisymmetric:

$$
\begin{aligned}
& R_{1}=\{(a, b) \mid a \leq b\}, \\
& R_{2}=\{(a, b) \mid a>b\}, \\
& R_{4}=\{(a, b) \mid a=b\}, \\
& R_{5}=\{(a, b) \mid a=b+1\} .
\end{aligned}
$$

$$
\text { For any integer, if a } a \leq b \text { and } a \leq b
$$

$$
\text { then } a=b
$$

The following relations are not antisymmetric:

$$
\begin{array}{ll}
R_{3}=\{(a, b)| | a|=|b|\} & \text { (note that both } \left.(1,-1) \text { and }(-1,1) \text { belong to } R_{3}\right), \\
R_{6}=\{(a, b) \mid a+b \leq 3\} & \text { (note that both } \left.(1,2) \text { and }(2,1) \text { belong to } R_{6}\right) .
\end{array}
$$

Transitive Relations

Definition: A relation R on a set A is called transitive if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in A$. Written symbolically, R is transitive if and only if

$$
\forall x \forall y \forall z \quad[(x, y) \in R \wedge(y, z) \in R \quad \rightarrow \quad(x, z) \in R]
$$

- Example: The following relations on the integers are transitive:

$$
\begin{aligned}
& R_{1}=\{(a, b) \mid a \leq b\}, \\
& R_{2}=\{(a, b) \mid a>b\}, \\
& R_{3}=\{(a, b)| | a|=|b|\}, \\
& R_{4}=\{(a, b) \mid a=b\} .
\end{aligned}
$$

For every integer, $a \leq b$ and $b \leq c$, then $b \leq c$.

The following are not transitive:
$R_{5}=\{(a, b) \mid a=b+1\}$ (note that both $(3,2)$ and $(4,3)$ belong to R_{5}, but not $(3,3)$),
$R_{6}=\{(a, b) \mid a+b \leq 3\}$ (note that both $(2,1)$ and $(1,2)$ belong to R_{6}, but not $(2,2)$).

Combining Relations

- Given two relations R_{1} and R_{2}, we can combine them using basic set operations to form new relations such as $R_{1} \cup R_{2}, \quad R_{1} \cap R_{2}, \quad R_{1}-R_{2}, \quad$ and $R_{2}-R_{1}$.
- Example: Let $A=\{1,2,3\}$ and $B=\{1,2,3,4\}$. The relations $R_{1}=\{(1,1),(2,2),(3,3)\} \quad$ and

$$
R_{2}=\{(1,1),(1,2),(1,3),(1,4)\} \text { can be }
$$

combined using basic set operations to form new relations:

$$
\begin{aligned}
& R_{1} \cup R_{2}=\{(1,1),(1,2),(1,3),(1,4),(2,2),(3,3)\} \\
& R_{1} \cap R_{2}=\{(1,1)\} \quad R_{1}-R_{2}=\{(2,2),(3,3)\} \\
& R_{2}-R_{1}=\{(1,2),(1,3),(1,4)\}
\end{aligned}
$$

Combining Relations via

Composition

Definition: Suppose

- R_{1} is a relation from a set A to a set B.
- R_{2} is a relation from B to a set C.

Then the composition (or composite) of R_{2} with R_{1}, is a relation from A to C, denoted $R_{2} \circ R_{1}$, where

- if (x, y) is a member of R_{1} and (y, z) is a member of R_{2} then (x, z) is a member of $R_{2} \circ R_{1}$.
- also, if $(x, z) \in R_{2} \circ R_{1}$ then there exists some $y \in B$ such that $(x, y) \in R_{1}$ and $(y, z) \in R_{2}$

Representing the Composition of a

 Relation

Representing the Composition of a Relation

Representing the Composition of a

 Relation$$
R_{2} \circ R_{1}=\{(b, z),(b, x)\}
$$

Representing the Composition of a

 Relation

$$
R_{2} \circ R_{1}=\{(b, z),(b, x)\}
$$

Composition of a relation with itself

Definition: Let R be a binary relation on a set A. Then the composition (or composite) of R with R, denoted $R \circ R$, is a relation on A where

- if (x, y) is a member of R and (y, z) is a member of R then (x, z) is a member of $R \circ R$

Example: Let R be a relation on the set of all people such that (a, b) is in R if person a is parent of person b. Then (a, c) is in $R \circ R$ iff there is a person b such that (a, b) is in R and (b, c) is in R. In other words, (a, c) is in $R \circ R$ iff a is a grandparent of c.

Powers of a Relation

Definition: Let R be a binary relation on A. Then the powers R^{n} of the relation R can be defined inductively by:

- Basis Step: $R^{1}=R$
- Inductive Step: $R^{n+1}=R^{n} \circ R$

The powers of a transitive relation are subsets of the relation. This is established by the following theorem:

Theorem 1: The relation R on a set A is transitive iff $R^{n} \subseteq R$ for all positive integers n.
(see the text for a proof via mathematical induction)

Representing Relations

 Section 9.3
Section Summary

- Representing Relations using Matrices
- Representing Relations using Digraphs

Representing Relations Using

Matrices

- A relation between finite sets can be represented using a zero-one matrix.
- Suppose R is a relation from $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ to $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$.
- The elements of the two sets can be listed in any particular arbitrary order. When $A=B$, we use the same ordering.
- The relation R is represented by the matrix $M_{R}=\left[m_{i j}\right]$, where

$$
m_{i j}=\left\{\begin{array}{l}
1 \text { if }\left(a_{i}, b_{j}\right) \in R, \\
0 \text { if }\left(a_{i}, b_{j}\right) \notin R .
\end{array}\right.
$$

- The matrix representing R has a 1 as its (i,j) entry when a_{i} is related to b_{j} and a 0 if a_{i} is not related to b_{j}.

Examples of Representing

Relations Using Matrices

Example 1: Suppose that $A=\{1,2,3\}$ and $B=\{1,2\}$. Let R be the relation from A to B such that

$$
\mathrm{R}=\{(a, b) \mid a \in A, b \in B, a>b\}
$$

What is the matrix representing R (assuming the ordering of elements is the same as the increasing numerical order)?

Solution: Because $R=\{(2,1),(3,1),(3,2)\}$, the matrix is

$$
M_{R}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
1 & 1
\end{array}\right]
$$

Examples of Representing

Relations Using Matrices (cont.)

Example 2: Let $A=\left\{a_{1}, a_{2}, a_{3}\right\}$ and $B=\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right\}$. Which ordered pairs are in the relation R represented by the matrix

$$
M_{R}=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1
\end{array}\right] ?
$$

Solution: Because R consists of those ordered pairs (a_{i}, b_{j}) with $m_{i j}=1$, it follows that:

$$
R=\left\{\left(a_{1}, b_{2}\right),\left(a_{2}, b_{1}\right),\left(a_{2}, b_{3}\right),\left(a_{2}, b_{4}\right),\left(a_{3}, b_{1}\right),\left\{\left(a_{3}, b_{3}\right),\left(a_{3}, b_{5}\right)\right\}\right.
$$

Matrices of Relations on Sets

- If R is a reflexive relation, all the elements on the main diagonal of M_{R} are equal to 1 .

$$
\left[\begin{array}{lllll}
{ }^{1} & & & \\
& 1 & & & \\
& 1 & \ddots & \\
& & \ddots & \\
& & & 1 & 1
\end{array}\right]
$$

- R is a symmetric relation, if and only if $m_{i j}=1$ whenever $m_{j i}=1$.

(a) Symmetric

Matrices of Relations on Sets

- If R is a reflexive relation, all the elements on the main diagonal of M_{R} are equal to 1 .

$$
\left[\begin{array}{llllll}
1 & & & & & \\
& 1 & & & & \\
& & 1 & & & \\
& & & \ddots & & \\
& & & & & \\
& & & & & 1
\end{array}\right]
$$

- R is a symmetric relation, if and only if $m_{i j}=1$ whenever $m_{j i}=1$. R is an antisymmetric relation, if and only if $m_{i j}=0$ or $m_{j i}=0$ when $i \neq j$.

(a) Symmetric

(b) Antisymmetric

Example of a Relation on a Set

Example 3: Suppose that the relation R on a set is represented by the matrix

$$
M_{R}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

Is R reflexive, symmetric, and/or antisymmetric?
Solution: Because all the diagonal elements are equal to $1, R$ is reflexive. Because M_{R} is symmetric, R is symmetric and not antisymmetric because both $m_{1,2}$ and $m_{2,1}$ are 1 .

Matrices for combinations of relations

- The matrix of the union of two relations is the join (Boolean OR) between the matrices of the component relations:

$$
M_{R_{1} \cup R_{2}}=M_{R_{1}} \vee M_{R_{2}}
$$

- The matrix of the intersection of two relations is the meet (Boolean AND) between the matrices of the component relations:

$$
M_{R_{1} \cap R_{2}}=M_{R_{1}} \wedge M_{R_{2}}
$$

- The matrix of the composite relation $R_{1} \circ R_{2}$ is the Boolean product of the matrices of the component relations:

$$
M_{R_{1} \circ R_{2}}=M_{R_{1}} \odot M_{R_{2}}
$$

Representing Relations Using

Directed Graphs (a.k.a. digraphs)

Definition: A directed graph, or digraph, consists of a set V of vertices or nodes together with a set E of ordered pairs of elements of V called (directed) edges or arcs. The vertex a is called the initial vertex of the edge (a, b), and the vertex b is called the terminal vertex of this edge.

- An edge of the form (a, a) is called a loop.

Example 7: A drawing of the directed graph with vertices a, b, c, and d, and edges $(a, b),(a, d),(b, b),(b, d),(c, a),(c, b)$, and (d, b) is shown here.

Examples of Digraphs Representing

Relations

Example 8: What are the ordered pairs in the relation represented by this directed graph?

Solution: The ordered pairs in the relation are $(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,3)$, $(4,1)$, and $(4,3)$

Determining which Properties a Relation has from its Digraph

- Reflexivity: A loop must be present at all vertices.
- Symmetry: If (x, y) is an edge, then so is (y, x).
- Antisymmetry: If (x, y) with $x \neq y$ is an edge, then (y, x) is not an edge.
- Transitivity: If (x, y) and (y, z) are edges, then so is (x, z).

Determining which Properties a Relation has from its Digraph - Example 1

- Reflexive? No, not every vertex has a loop
- Symmetric? Yes (trivially), there is no edge from one vertex to another
- Antisymmetric? Yes (trivially), there is no edge from one vertex to another
-Transitive? Yes, (trivially) since there is no edge from one vertex to another

Determining which Properties a Relation has from its Digraph - Example 2

- Reflexive? No, there are no loops
- Symmetric? No, there is an edge from a to b, but not from b to a
- Antisymmetric?
- Transitive?

No, there are edges from a to b and from b to d, but there is no edge from a to d

Determining which Properties a Relation has from its Digraph - Example 3

Reflexive? No, there are no loops
Symmetric? No, for example, there is no edge from c to a
Antisymmetric? Yes, whenever there is an edge from one vertex to another, there is not one going back
Transitive? Yes

Betermining which Properties a Relation has from its Digraph - Example 4

- Reflexive? No, there are no loops
- Symmetric? No, for example, there is no edge from d to a
- Antisymmetric? Yes, whenever there is an edge from one vertex to another, there is not one going back
- Transitive? Yes (trivially), there are no two edges where the first edge ends at the vertex where the second edge begins

Example of the Powers of a Relation

The pair (x, y) is in R^{n} if there is a path of length n from x to y in R (following the direction of the arrows).

Equivalence Relations

Section 9.5

Section Summary

- Equivalence Relations
- Equivalence Classes
- Equivalence Classes and Partitions

Equivalence Relations

Definition 1: A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.

Definition 2: Two elements a, and b that are related by an equivalence relation are called equivalent. The notation $a \sim b$ is often used to denote that a and b are equivalent elements with respect to a particular equivalence relation.

Example: Assume C is the set of all colors and a relation R on C such that $R=\{(a, b) \mid a \in C, b \in C, a$ and b have the same color $\}$. R is an equivalence relation on C.

strings

Example: Suppose that R is the relation on the set of strings of English letters such that $a R b$ if and only if $l(a)=l(b)$, where $l(x)$ is the length of the string x. Is R an equivalence relation?

Solution: Show that all of the properties of an equivalence relation hold.

- Reflexivity: Because $l(a)=l(a)$, it follows that $a R a$ for all strings a.
- Symmetry: Assume $a R b$. Since $l(a)=l(b), l(b)=l(a)$ also holds and $b R a$.
- Transitivity: Suppose that a Rb and $b R c$.

Since $l(a)=l(b)$, and $l(b)=l(c), l(a)=l(a)$ also holds and $a R c$.

Yes

Congruence Modulo m

Example: Let m be an integer with $m>1$. Show that the relation

$$
R=\{(a, b) \mid a \equiv b(\bmod m)\}
$$

is an equivalence relation on the set of integers.

Solution: Recall that $a \equiv b(\bmod m)$ if and only if m divides $a-b$.

- Reflexivity: $a \equiv a(\bmod m)$ since $a-a=0$ is divisible by m since $0=0 \cdot m$.
- Symmetry: Suppose that $a \equiv b(\bmod m)$.

Then $a-b$ is divisible by m, and so $a-b=k m$, where k is an integer.
It follows that $b-a=(-k) m$, so $b \equiv a(\bmod m)$.

- Transitivity: Suppose that $a \equiv b(\bmod m)$ and $b \equiv c(\bmod m)$.

Then m divides both $a-b$ and $b-c$.
Hence, there are integers k and l with $a-b=k m$ and $b-c=l m$.
We obtain by adding the equations:

$$
a-c=(a-b)+(b-c)=k m+l m=(k+l) m .
$$

Therefore, $a \equiv c(\bmod m)$.

Divides

Example: Show that the "divides" relation on the set of positive integers is not an equivalence relation.
Solution: The properties of reflexivity, and transitivity do hold, but the relation is not transitive. Hence, "divides" is not an equivalence relation.

- Reflexivity: $a \mid a$ for all a.
- Not Symmetric: For example, $2 \mid 4$, but $4 \nmid 2$. Hence, the relation is not symmetric.
- Transitivity: Suppose that a divides b and b divides c. Then there are positive integers k and l such that $b=a k$ and $c=b l$. Hence, $c=$ $a(k l)$, so a divides c. Therefore, the relation is transitive.

Equivalence Classes

Definition 3: Let R be an equivalence relation on a set A. The set of all elements that are related to an element a of A is called the equivalence class of a. The equivalence class of a with respect to R is denoted by $[a]_{R}$

$$
[a]_{R}:=\{s \in A \mid(a, s) \in R\} \equiv\{s \in A \mid s \sim a\}
$$

When only one relation is under consideration, we can write [a], without the subscript R, for this equivalence class.

- If $b \in[a]_{R}$, then b is called a representative of this equivalence class. Any element of a class can be used as a representative of the class.
- The equivalence classes of the relation "congruence modulo m " are called the congruence classes modulo m. The congruence class of an integer a modulo m is denoted by $[a]_{m}$, so $[a]_{m}=\{\ldots, a-2 m, a-m, a+2 m, a+2 m, \ldots\}$. For example,

$$
\begin{array}{ll}
{[0]_{4}=\{\ldots,-8,-4,0,4,8, \ldots\}} & {[1]_{4}=\{\ldots,-7,-3,1,5,9, \ldots\}} \\
{[2]_{4}=\{\ldots,-6,-2,2,6,10, \ldots\}} & {[3]_{4}=\{\ldots,-5,-1,3,7,11, \ldots\}}
\end{array}
$$

Equivalence Classes and Partitions

Theorem 1: let R be an equivalence relation on a set A. These statements for elements a and b of A are equivalent:
(i) $a R b$
(ii) $[a]=[b]$
(iii) $[a] \cap[b] \neq \emptyset$

Proof: We show that (i) implies (ii). Assume that $a R b$. Now suppose that $\mathrm{c} \in[a]$. Then $a R c$. Because $a R b$ and R is symmetric, $b R a$. Because R is transitive and $b R a$ and $a R c$, it follows that $b R c$. Hence, $c \in[b]$. Therefore, $[a] \subseteq[b]$. A similar argument (omitted here) shows that $[b] \subseteq[a]$. Since $[a] \subseteq[b]$ and $[b] \subseteq[a]$, we have shown that $[a]=[b]$.
(see text for proof that (ii) implies (iii) and (iii) implies (i))

Partition of a Set

Definition: A partition of a set S is a collection of disjoint nonempty subsets of S that have S as their union. In other words, the collection of subsets A_{i}, where $i \in I$ (where I is an index set), forms a partition of S if and only if

- $A_{i} \neq \varnothing$ for $i \in I$,
- $A_{i} \cap A_{j}=\varnothing$ when $i \neq j$,
- and $\bigcup_{i \in I} A_{i}=S$.

A Partition of a Set

An Equivalence Relation

Partitions a Set

- Let R be an equivalence relation on a set A. The union of all the equivalence classes of R is all of A, since an element a of A is in its own equivalence class $[a]_{R}$. In other words,

$$
\bigcup_{a \in A}[a]_{R}=A .
$$

- From Theorem 1, it follows that these equivalence classes are either equal or disjoint, so $[a]_{R} \cap[b]_{R}=\varnothing$ when $[a]_{R} \neq[b]_{R}$.
- Therefore, the equivalence classes form a partition of A, because they split A into disjoint subsets.

An Equivalence Relation

Partitions a Set (continued)

Theorem 2: Let R be an equivalence relation on a set S. Then the equivalence classes of R form a partition of S. Conversely, given a partition $\left\{A_{i} \mid i \in I\right\}$ of the set S, there is an equivalence relation R that has the sets $A_{i}, i \in I$, as its equivalence classes.

Proof: We have already shown the first part of the theorem.
For the second part, assume that $\left\{A_{i} \mid i \in I\right\}$ is a partition of S. Let R be the relation on S consisting of the pairs (x, y) where x and y belong to the same subset A_{i} in the partition. We must show that R satisfies the properties of an equivalence relation.

- Reflexivity: For every $a \in S,(a, a) \in R$, because a is in the same subset as itself.
- Symmetry: If $(a, b) \in R$, then b and a are in the same subset of the partition, so $(b, a) \in R$.
- Transitivity: If $(a, b) \in R$ and $(b, c) \in R$, then a and b are in the same subset of the partition, as are b and c. Since the subsets are disjoint and b belongs to both, the two subsets of the partition must be identical. Therefore, $(a, c) \in R$ since a and c belong to the same subset of the partition.

Equivalence Relation

digraph representation

An Equivalence Relation

digraph representation

\bigcirc

An Equivalence Relation

digraph representation

Digraph for equivalence relation R on finite set A is a union of disjoint sub-graphs (representing disjoint equivalent classes).
Nodes in each distinct subgraph (equivalence class) are fully interconnected.

Partial Orderings
 Section 9.6

Section Summary

- Partial Orderings and Partially-ordered Sets
- Lexicographic Orderings

Partial Orderings

Definition 1: A relation R on a set S is called a partial ordering, or partial order, if it is reflexive, antisymmetric, and transitive.

A set together with a partial ordering R is called a partially ordered set, or poset, and is denoted by (S, R). Members of S are called elements of the poset.

Partial Orderings (continued)

Example 1: Show that the "greater than or equal" relation (\geq) is a partial ordering on the set of integers.

- Reflexivity: $a \geq a$ for every integer a.
- Antisymmetry: If $a \geq b$ and $b \geq a$, then $a=b$.
- Transitivity: If $a \geq b$ and $b \geq c$, then $a \geq c$.

These properties all follow from the order axioms for the integers. (See Appendix 1).

Partial Orderings (continued)

Example 2: Show that the divisibility relation (I) is a partial ordering on the set of positive integers.

- Reflexivity: $a \mid a$ for all integers a.
- Antisymmetry: If a and b are positive integers with $a \mid b$ and $b \mid a$, then $a=b$.
- Transitivity: Suppose that a divides b and b divides c. Then there are positive integers k and l such that $b=a k$ and $c=b l$. Hence, $c=a(k l)$, so a divides c. Therefore, the relation is transitive.
- $\left(Z^{+}, \mathrm{I}\right)$ is a poset.

Partial Orderings (continued)

Example 3: Show that the inclusion relation (\subseteq) is a partial ordering on the power set of a set S.

- Reflexivity: $A \subseteq A$ whenever A is a subset of S.
- Antisymmetry: If A and B are positive integers with $A \subseteq B$ and $B \subseteq A$, then $A=B$.
- Transitivity: If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

The properties all follow from the definition of set inclusion.

Comparability

Definition 2: The elements a and b of a poset (S, \preccurlyeq) are comparable if either $a \preccurlyeq b$ or $b \preccurlyeq a$. When a and b are elements of S so that neither $a \preccurlyeq b$ nor $b \preccurlyeq a$, then a and b are called incomparable.

The symbol \preccurlyeq is used to denote the relation in any poset.
Definition 3: If (S, \preccurlyeq) is a poset and every two elements of S are comparable, S is called a totally ordered or linearly ordered set, and \preccurlyeq is called a total order or a linear order. (A totally ordered set is also called a chain.)

Definition 4: (S, \leqslant) is a well-ordered set if it is a poset such that \leqslant is a total ordering and every nonempty subset of S has a least element.

Example: (Z, \leq) is a totally ordered set
(Z, \mid) is a partially ordered but not totally ordered set
(N, \leq) is a well-ordered set

Lexicographic Order

Definition: Given two partially ordered sets $\left(A_{1}, \preccurlyeq_{1}\right)$ and $\left(A_{2}, \preccurlyeq_{2}\right)$, the lexicographic ordering on $A_{1} \times A_{2}$ is defined by specifying that $\left(a_{1}, a_{2}\right)$ is less than $\left(b_{1}, b_{2}\right)$, that is, $\left(a_{1}, a_{2}\right)<\left(b_{1}, b_{2}\right)$, either if $a_{1} \prec_{1} b_{1}$ or if $a_{1}=b_{1}$ and $a_{2} \prec_{2} b_{2}$.

- This definition can be easily extended to a lexicographic ordering on strings.

Example: Consider strings of lowercase English letters. A lexicographic ordering can be defined using the ordering of the letters in the alphabet. This is the same ordering as that used in dictionaries.

- discreet $<$ discrete, because these strings differ in the seventh position and $e \prec t$.
- discreet $<$ discreetness, because the first eight letters agree, but the second string is longer.

Partial Ordering Relation

digraph representation

poset $R=(X, \mid)$ for divisibility \mid on set $X=\{2,3,4,6,8,12\}$

Ordering Relation

Hesse diagram

$$
\begin{gathered}
\text { poset } R=(X, I) \text { for } \\
\text { divisibility } \mid \text { on set } \\
X=\{2,3,4,6,8,12\}
\end{gathered}
$$

1) Leave out all edges that are implied by reflexivity (loop)
2) Leave out all edges that are implied by transitivity

Partial Ordering Relation

Hesse diagram

Can also drop "direction" assuming that (partial) order is upward

Ordering Relation

Hesse diagram

Totally ordered sets are also called "chains"

