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Proofs of mathematical statements

1 A proof is a valid argument that establishes the truth of a
statement.

2 In mathematics, computer science and other disciplines,
informal proofs are commonly used. Those proofs are
generally short, easier to understand and to explain to people.
They rely on the following typical “simplifications”:

a more than one rule of inference are often used in one step,
b steps may be skipped,
c the rules of inference used are not explicitly stated.

3 These simplifications easily lead to errors.

4 Moreover, automating proofs on computers require to fully
understand proof mechanisms.

5 Indeed, automated proofs have many practical applications:

a verification that computer programs are correct,
b establishing that operating systems are secure,
c enabling software to make inferences in artificial intelligence,
d showing that system specifications are consistent, etc.
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Definitions

1 A theorem is a statement that can be shown to be true using:

a definitions,
b other theorems,
c axioms (statements which are given as true),
d rules of inference.

2 A lemma is a ‘helping theorem’ or a result which is needed to
prove a theorem.

3 A corollary is a result which follows directly from a theorem.

4 Less important theorems are sometimes called propositions.

5 A conjecture is a statement that is being proposed to be true.
Once a proof of a conjecture is found, it becomes a theorem.
It may turn out to be false.
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Forms of theorems

1 Many theorems assert that a property holds for all elements in
a domain, such as the integers, the real numbers, or some of
the discrete structures that we will study in this class.

2 Often the universal quantifier (needed for a precise statement
of a theorem) is omitted by standard mathematical
convention.

a For example, the statement:

“If x > y holds, where x and y are positive real numbers, then
x2 > y2 holds as well”

b really means:

“For all positive real numbers x and y, if x > y holds, then
x2 > y2 holds as well.”
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Proving theorems

1 Many theorems have the form:

∀x (P(x)→ Q(x))

2 To prove them, we show that where c is an arbitrary element
of the domain:

P(c)→ Q(c)

3 By universal generalization (UG) (an inference rule, opposite
of universal instantiation UI) the truth of the original formula
follows.

4 So, we must prove something of the form:

p → q
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Proving conditional statements: p → q

1 Trivial Proof: If we know q is true, then p → q is true as well.

“If it is raining then 1=1.”

2 Vacuous Proof: If we know p is false then p → q is true as
well.

“If I live on Saturn then 2 + 2 = 5.”

3 Even though these examples seem silly, both trivial and
vacuous proofs are often used in mathematical induction, as
we will see in Chapter 5.
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Even and odd integers

Definition
The integer n is even if there exists an integer k such that n=2k,
and n is odd if there exists an integer k, such that n=2k+1.

1 Note that every integer is either even or odd and no integer is
both even and odd.

2 We will need this basic fact about the integers in some of the
example proofs to follow.
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Proving conditional statements: p → q: direct proof

Assume that p is true. Use rules of inference, axioms, and logical
equivalences to show that q must also be true.

1 Give a direct proof of “If n is an odd integer, then n2 is odd.”
2 Solution:

a Assume that n is odd. Then n = 2k + 1 for an integer k.
b Squaring both sides of the equation, we get:

n2 = (2k + 1)2

= 4k2
+ 4k + 1

= 2(2k2
+ 2k) + 1

= 2r + 1

c where r = 2k2+ 2k is an integer. ∎

d We have proved that if n is an odd integer, then so is n2.

The symbol ∎ marks the end of the proof and is referred to as a

‘tombstone.’ Sometimes QED (abbreviation for the Latin sentence

“quod erat demonstrandum”, meaning “what was to be demonstrated”)

or ◁ is used instead.
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= 4k2
+ 4k + 1

= 2(2k2
+ 2k) + 1

= 2r + 1

c where r = 2k2+ 2k is an integer. ∎

d We have proved that if n is an odd integer, then so is n2.

The symbol ∎ marks the end of the proof and is referred to as a

‘tombstone.’ Sometimes QED (abbreviation for the Latin sentence

“quod erat demonstrandum”, meaning “what was to be demonstrated”)

or ◁ is used instead.
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Proving conditional statements: p → q: indirect proof

Proof by Contraposition (a.k.a. indirect proof): Assume ¬q and
show ¬p is true also. If we give a direct proof of ¬q → ¬p then we
have a proof of p → q.

1 Prove that if n is an integer and 3n + 2 is odd, then n is odd
as well.

2 Solution:

a Assume n is even.
b By definition of even numbers, we have n = 2k for some

integer k.
c Thus, we have 3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1) = 2j for

j = 3k + 1.
d Therefore, we have proved that 3n + 2 is even.
e Since we have shown ¬q→ ¬p , then p → q must hold as well.
f If n is an integer and 3n + 2 is odd (not even), then n is odd

(not even). ∎
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Proving conditional statements: p → q: indirect proof

1 Prove that for all integer n, if n2 is odd, then n is odd.

2 Solution: use proof by contraposition.

a Assume n is even (i.e., not odd).

b Therefore, there exists an integer k such that n = 2k.

c Hence, n2 = 4k2 = 2 (2k2),

d thus n2 is even (i.e., not odd).

e We have shown that if n is an even integer, then n2 is even.
Therefore by contraposition, if n2 is odd, then n is odd. ∎
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Proof by contradiction

1 To prove p, assume ¬p and derive some proposition
contradicting the assumptions, say q. That is, so that
¬p ∧ q ≡ F.

2 Explanation:

a The proposition ¬p ∧ q ≡ F directly proves ¬p → F.
b Thus, its contrapositive T→p also holds.
c Therefore, applying modus ponens (inference rule: if A is true

and implication A → B is true then B must be true), we
deduce that p is true.

Example: Prove that at least 4 of any 22 days from the calendar
must fall on the same day (Mo, Tu, We, Th, Fr, Sa, Su) of the
week. Solution:

1 Assume that no more than 3 days (out of 22) fall on the same
day of the week.

2 There are 7 different days of the week.

3 Since each of them was selected at most 3 times, then we
picked at most 7 x 3 (21) days.

4 This contradicts an assumption that 22 days are selected. ∎
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Proof by contradiction

1 Use a proof by contradiction to show that
√

2 is irrational.

2 Solution:

a Suppose
√

2 is rational. Then there exist two integers a and b
with

√
2 = a

b
, where b ≠ 0 and a and b have no common

factors (see Chapter 4). Then, we have:

2 =
a2

b2

2b2 = a2

b Therefore a2 must be even. If a2 is even then a must be even
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Proof by contradiction

1 Example: Prove that there is no largest prime number.

2 Solution:

a Assume that there is a largest prime number. Call it pn.
b Hence, we can list all the primes 2,3,.., pn
c Now we consider the following number r :

r = p1 × p2 ×⋯ × pn + 1
d None of the prime numbers on the list divides r.
e Therefore, by a theorem in Chapter 4, either r is prime or there

is a smaller prime that divides r (but it is not on the list).
f This contradicts the assumption that pn is the largest prime.
g Therefore, there is no largest prime. ∎
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1.1 Mathematical Statements and their proofs
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1.4 Errors in proofs
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Theorems that are biconditional statements

To prove a theorem that is a biconditional statement, that is, a
statement of the form p ↔ q, we show that p → q and q →p are
both true.

1 Explanation: We use this tautology:

(p → q) ∧ (q → p) ≡ p↔ q.

2 Example: Prove the theorem: “For all integer n: n is odd if
and only if n2 is odd.”

3 Solution:

a We have already shown that both p →q and q →p are true.
b Therefore, we have: p ↔ q.

Sometimes iff is used as an abbreviation for “if an only if ,” as
in“If n is an integer, then n is odd iif n2 is odd.”
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What is wrong with this?

“Proof” that 1 = 2

Step Reason

1. a = b There exist such integera,b

2. a2 = a × b Multiply both sides of (1) by a

3. a2 − b2 = a × b − b2 subtract b2 from both sides of (2)

4. (a − b)(a + b) = b(a − b) Algebra on (3)

5. a + b = b Divide both sides by a − b

6. 2b = b Replace a by b in (5) because a = b

7. 2 = 1 Divide both sides of (6) by b

Solution: Step 5. a − b = 0 by the premise and division by 0 is
undefined.
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Looking ahead

1 If direct methods of proof do not work:

a We may need a clever use of a proof by contraposition,
b or a proof by contradiction.

2 In the next section, we will see strategies that can be used
when straightforward approaches do not work.

3 In later chapters, we will see techniques that are specific to
certain types of statements:

a in Chapter 5, we will see mathematical induction and related
techniques,

b in Chapter 6, we will see combinatorial proofs.



Looking ahead

1 If direct methods of proof do not work:

a We may need a clever use of a proof by contraposition,

b or a proof by contradiction.

2 In the next section, we will see strategies that can be used
when straightforward approaches do not work.

3 In later chapters, we will see techniques that are specific to
certain types of statements:

a in Chapter 5, we will see mathematical induction and related
techniques,

b in Chapter 6, we will see combinatorial proofs.



Looking ahead

1 If direct methods of proof do not work:

a We may need a clever use of a proof by contraposition,
b or a proof by contradiction.

2 In the next section, we will see strategies that can be used
when straightforward approaches do not work.

3 In later chapters, we will see techniques that are specific to
certain types of statements:

a in Chapter 5, we will see mathematical induction and related
techniques,

b in Chapter 6, we will see combinatorial proofs.



Looking ahead

1 If direct methods of proof do not work:

a We may need a clever use of a proof by contraposition,
b or a proof by contradiction.

2 In the next section, we will see strategies that can be used
when straightforward approaches do not work.

3 In later chapters, we will see techniques that are specific to
certain types of statements:

a in Chapter 5, we will see mathematical induction and related
techniques,

b in Chapter 6, we will see combinatorial proofs.



Looking ahead

1 If direct methods of proof do not work:

a We may need a clever use of a proof by contraposition,
b or a proof by contradiction.

2 In the next section, we will see strategies that can be used
when straightforward approaches do not work.

3 In later chapters, we will see techniques that are specific to
certain types of statements:

a in Chapter 5, we will see mathematical induction and related
techniques,

b in Chapter 6, we will see combinatorial proofs.



Looking ahead

1 If direct methods of proof do not work:

a We may need a clever use of a proof by contraposition,
b or a proof by contradiction.

2 In the next section, we will see strategies that can be used
when straightforward approaches do not work.

3 In later chapters, we will see techniques that are specific to
certain types of statements:

a in Chapter 5, we will see mathematical induction and related
techniques,

b in Chapter 6, we will see combinatorial proofs.



Looking ahead

1 If direct methods of proof do not work:

a We may need a clever use of a proof by contraposition,
b or a proof by contradiction.

2 In the next section, we will see strategies that can be used
when straightforward approaches do not work.

3 In later chapters, we will see techniques that are specific to
certain types of statements:

a in Chapter 5, we will see mathematical induction and related
techniques,

b in Chapter 6, we will see combinatorial proofs.



Plan for Part III

1. Basic Proof Methods
1.1 Mathematical Statements and their proofs
1.2 Proving Conditional Statements
1.3 Theorems that are Biconditional Statements
1.4 Errors in proofs

2. Proof Strategies
2.1 Proof by case inspection
2.2 Without Loss of Generality
2.3 Existence Proofs
2.4 Counterexamples
2.5 Uniqueness Proofs
2.6 Proof Strategies for implications
2.7 Backward Reasoning
2.8 Universally Quantified Assertions
2.9 Open Problems
2.10 Additional proof methods



Plan for Part III

1. Basic Proof Methods
1.1 Mathematical Statements and their proofs
1.2 Proving Conditional Statements
1.3 Theorems that are Biconditional Statements
1.4 Errors in proofs

2. Proof Strategies
2.1 Proof by case inspection
2.2 Without Loss of Generality
2.3 Existence Proofs
2.4 Counterexamples
2.5 Uniqueness Proofs
2.6 Proof Strategies for implications
2.7 Backward Reasoning
2.8 Universally Quantified Assertions
2.9 Open Problems
2.10 Additional proof methods



Proof by case inspection

1 To prove a conditional statement of the form:

(p1 ∨ p2 ∨⋯ ∨ pn)→ q

2 One can use the following logical equivalence:
[(p1 ∨ p2 ∨⋯ ∨ pn)→ q] ≡ [(p1 → q) ∧ (p2 → q) ∧⋯ ∧ (pn → q)]

3 Therefore, one can prove each of the implications (cases) of
pi → q separately.
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Proof by case inspection: example

1 Define a@b ≡ maxa,b. That is:

a@b =

⎧⎪⎪
⎨
⎪⎪⎩

a if a ≥ b

b if a < b

2 Show that for all real numbers a, b, c we have

(a @b) @ c = a @ (b @ c)

3 (This means the max operation @ is associative.)

4 Proof: Let a, b, and c be arbitrary real numbers. Then one
of the following 6 cases must hold:
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⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1 ∶ a ≥ b ≥ c

p2 ∶ a ≥ c ≥ b

p3 ∶ b ≥ a ≥ c

p4 ∶ b ≥ c ≥ a

p5 ∶ c ≥ a ≥ b

p6 ∶ c ≥ b ≥ a
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Proof by case inspection

Prove by cases:

(p1 ∨ p2 ∨ p3 ∨ p4 ∨ p5 ∨ p6)→ (a @b) @ c = a @ (b @ c)

1 Case 1:

a a ≥ b ≥ c
b (a@b) = a, a@c = a, b@c = b
c Hence (a@b)@c = a = a@(b@c)
d Therefore the equality holds for the first case.

2 A complete proof requires that the equality be shown to hold
for all 6 cases. But the proofs of the remaining cases are
similar. Try them. ∎



Proof by case inspection

Prove by cases:

(p1 ∨ p2 ∨ p3 ∨ p4 ∨ p5 ∨ p6)→ (a @b) @ c = a @ (b @ c)

1 Case 1:

a a ≥ b ≥ c
b (a@b) = a, a@c = a, b@c = b
c Hence (a@b)@c = a = a@(b@c)
d Therefore the equality holds for the first case.

2 A complete proof requires that the equality be shown to hold
for all 6 cases. But the proofs of the remaining cases are
similar. Try them. ∎



Proof by case inspection

Prove by cases:

(p1 ∨ p2 ∨ p3 ∨ p4 ∨ p5 ∨ p6)→ (a @b) @ c = a @ (b @ c)

1 Case 1:
a a ≥ b ≥ c

b (a@b) = a, a@c = a, b@c = b
c Hence (a@b)@c = a = a@(b@c)
d Therefore the equality holds for the first case.

2 A complete proof requires that the equality be shown to hold
for all 6 cases. But the proofs of the remaining cases are
similar. Try them. ∎



Proof by case inspection

Prove by cases:

(p1 ∨ p2 ∨ p3 ∨ p4 ∨ p5 ∨ p6)→ (a @b) @ c = a @ (b @ c)

1 Case 1:
a a ≥ b ≥ c
b (a@b) = a, a@c = a, b@c = b

c Hence (a@b)@c = a = a@(b@c)
d Therefore the equality holds for the first case.

2 A complete proof requires that the equality be shown to hold
for all 6 cases. But the proofs of the remaining cases are
similar. Try them. ∎



Proof by case inspection

Prove by cases:

(p1 ∨ p2 ∨ p3 ∨ p4 ∨ p5 ∨ p6)→ (a @b) @ c = a @ (b @ c)

1 Case 1:
a a ≥ b ≥ c
b (a@b) = a, a@c = a, b@c = b
c Hence (a@b)@c = a = a@(b@c)

d Therefore the equality holds for the first case.

2 A complete proof requires that the equality be shown to hold
for all 6 cases. But the proofs of the remaining cases are
similar. Try them. ∎



Proof by case inspection

Prove by cases:

(p1 ∨ p2 ∨ p3 ∨ p4 ∨ p5 ∨ p6)→ (a @b) @ c = a @ (b @ c)

1 Case 1:
a a ≥ b ≥ c
b (a@b) = a, a@c = a, b@c = b
c Hence (a@b)@c = a = a@(b@c)
d Therefore the equality holds for the first case.

2 A complete proof requires that the equality be shown to hold
for all 6 cases. But the proofs of the remaining cases are
similar. Try them. ∎



Proof by case inspection

Prove by cases:

(p1 ∨ p2 ∨ p3 ∨ p4 ∨ p5 ∨ p6)→ (a @b) @ c = a @ (b @ c)

1 Case 1:
a a ≥ b ≥ c
b (a@b) = a, a@c = a, b@c = b
c Hence (a@b)@c = a = a@(b@c)
d Therefore the equality holds for the first case.

2 A complete proof requires that the equality be shown to hold
for all 6 cases. But the proofs of the remaining cases are
similar. Try them. ∎



Plan for Part III

1. Basic Proof Methods
1.1 Mathematical Statements and their proofs
1.2 Proving Conditional Statements
1.3 Theorems that are Biconditional Statements
1.4 Errors in proofs

2. Proof Strategies
2.1 Proof by case inspection
2.2 Without Loss of Generality
2.3 Existence Proofs
2.4 Counterexamples
2.5 Uniqueness Proofs
2.6 Proof Strategies for implications
2.7 Backward Reasoning
2.8 Universally Quantified Assertions
2.9 Open Problems
2.10 Additional proof methods



Without loss of generality
Example: Show that, for all integers x and y, if both x ⋅y and x+y
are even, then both x and y are even as well.

Proof: Use a proof by contraposition.

1 Suppose x and y are not both even.

2 Then, at least one of them is odd.

3 Without loss of generality, assume that x is odd.

4 Then x = 2m + 1 for some integer m.

a Case 1: y is even. Then y = 2n for some integer n, so
x + y = (2m + 1) + 2n = 2(m + n) + 1 is odd.

b Case 2: y is odd. Then y = 2n + 1 for some integer n, so
x ⋅ y = (2m + 1)(2n + 1) = 2(2m ⋅ n +m + n) + 1 is odd.

5 Therefore, for any integer y, the integers x ⋅y and x+y are not
both even. ∎

6 We only covered the case where x is odd and the case where y
is odd is similar.

7 The phrase without loss of generality (WLOG) indicates this.
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is odd is similar.

7 The phrase without loss of generality (WLOG) indicates this.
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Existence proofs

1 Proof of theorems of the form: ∃x P(x).

2 Constructive existence proof:

a Find an explicit value of c, for which P(c) is true.
b Then ∃x P(x) is true by existential generalization (EG).

3 Example: Show that there is a positive integer that can be
written as the sum of cubes of positive integers in two
different ways:

4 Proof: 1729 is such a number since

1729 = 103 + 93 = 123 + 13 ∎

Godfrey Harold Hardy (1877-1947)
Srinivasa Ramanujan (1887-1920)
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Existence proofs

1 Nonconstructive existence proof: some techniques allow to
prove existence ∃xP(x) without finding a specific element c
where P(c) is true.

2 Example: Show that there exist irrational numbers x and y
such that xy is rational.

3 Proof:

a We know that
√

2 is irrational.

b Consider the number
√

2

√
2
.

c If it is rational, we are done (for x = y =
√

2).

d Assume not, i.e.
√

2

√
2

is irrational.

Then choose x =
√

2

√
2

and y =
√

2 so that

xy = (
√

2

√
2
)
√
2 =

√
2

√
2
√
2

=
√

2
2

= 2.

∎

Note, at the end of this proof we know that xy is rational either for

x=y=
√

2 or for x =
√

2

√
2
,y =

√
2 (exclusive or) but we do not

know for which specific pair.
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Counterexamples

1 Recall ¬∀xP(x) ≡ ∃x¬P(x).

2 To establish that ∀xP(x) is false (that is, ¬∀xP(x) is true)
find a c such that ¬P(c) is true (that is P(c) is false).

3 Such a c is called a counterexample to the assertion

∀xP(x)

Example: “Every positive integer is the sum of the squares of
3 integers.” The integer 7 is a counterexample. So the claim
is false.
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Uniqueness proofs

1 Some theorems assert the existence of a unique element
satisfying a particular property (predicate) P, denoted as
follows

∃!x P(x).

2 The two parts of a uniqueness proof are:

a Existence: we show that an element x satisfying P(x) exists.
b Uniqueness: we show that if two elements y and x satisfy

P(x) and P(y), then we must have x = y .

3 Example: Show that for all real numbers a and b, with a ≠0,
there is a unique real number r such that we have ar + b = 0.

4 Solution:

a Existence: The real number r = − b
a

is a solution of ar + b = 0

because a(− b
a
) + b = b + b =0.

b Uniqueness: Suppose that there is also a real number s such
that as + b = 0. Then ar + b = as + b, where r = − b

a
.

Subtracting b from both sides and dividing by a shows that r
= s. ∎
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Proof strategies for proving p → q

1 Choose a method.

a First try a direct method of proof.
b If this does not work, try an indirect method (e.g., try to prove

the contrapositive).

2 For whichever method you are trying, choose a strategy.

a First try forward reasoning.

1 Start with the axioms and known theorems and construct a
sequence of steps ri → ri+1 starting with r1 = p and ending
with rn = q (for direct proof), or

2 starting with r1 = ¬q and ending with rn = ¬p (for indirect
proof).

b Explanation: (A → B) ∧ (B → C) → (A → C) is a tautology
c If this doesn’t work, try backward reasoning.

1 When trying to prove p → q, find a sequence ri−1 → ri starting
with rn = q and ending with r1 = p (for direct proof), or

2 starting with rn = ¬p and ending with r1 = ¬q (for indirect
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Backward reasoning example
1 Suppose that two people play a game taking turns removing,

1, 2, or 3 stones at a time from a pile that begins with 15
stones.

The person who removes the last stone wins the game.
2 To show this theorem, we shall prove that the first player can

win the game, no matter what the second player does.
3 Proof: Let n be the last step of the game.

a Step n: Player 1 can win if the pile contains 1,2, or 3 stones.
b Step n-1: Player 2 will have to leave such a pile if the pile

that he/she is faced with has 4 stones.
c Step n-2: Player 1 can leave 4 stones when there are 5,6, or 7

stones left at the beginning of his/her turn.
d Step n-3: Player 2 must leave such a pile, if there are 8 stones.
e Step n-4: Player 1 has to have a pile with 9,10, or 11 stones

to ensure that there are 8 left.
f Step n-5: Player 2 needs to be faced with 12 stones to be

forced to leave 9,10, or 11.
g Step n-6: Player 1 can leave 12 stones by removing 3 stones.

4 Now reasoning forward, the first player can ensure a win by
removing 3 stones and leaving 12.
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Universally quantified assertions

1 To prove theorems of the form ∀x P(x),

a assume x is an arbitrary member of the domain and show that
P(x) must be true.

b Using UG (universal generalization) it follows that ∀xP(x).

2 Example: An integer x is even if and only if x2 is even.

3 Solution:

a The quantified assertion is:

∀x (x is even ↔ x2 is even).

b We assume x is arbitrary.
c Recall that p↔ q is equivalent to (p → q) ∧ (q → p)
d So, we have two cases to consider. These are considered in

turn.

Continued on the next slide
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∀x (x is even ↔ x2 is even).

b We assume x is arbitrary.
c Recall that p↔ q is equivalent to (p → q) ∧ (q → p)
d So, we have two cases to consider. These are considered in

turn.

Continued on the next slide



Universally quantified assertions

1 Case 1. We show that if x is even then x2 is even using a
direct proof (the only if part or necessity).

a If x is even then x = 2k for some integer k.
b Hence x2 = 4k2 = 2(2k2 ) which is even since it is an integer

divisible by 2.
c This completes the proof of case 1.

Case 2 on the next slide.
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Universally quantified assertions

1 Case 2. We show that if x2 is even then x must be even (the
if part or sufficiency). We use a proof by contraposition.

a Assume x is not even and then show that x2 is not even.
b If x is not even then it must be odd. So, x = 2k + 1 for some

k. Then x2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1
c which is odd and hence not even.
d This completes the proof of case 2.

2 Since x was arbitrary, the result follows by UG.

3 Therefore we have shown that x is even if and only if x2 is
even. ∎
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Proof and disproof: Tilings

Example 1: Can we tile the standard checker-board using
dominos?

Solution: Yes! One example provides a constructive existence
proof.

Standard Checkerboard
Two Dominoes

One Possible Solution
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Tilings

Example 2: Can we tile a checker-board obtained by
removing one of the four corner squares of a standard
checker-board?

Solution:

a Our checker-board has 64 − 1 = 63 squares.
b Since each domino has two squares, a board with a tiling must

have an even number of squares.
c The number 63 is not even.
d We have a contradiction. ∎
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Example 2: Can we tile a checker-board obtained by
removing one of the four corner squares of a standard
checker-board?
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Tilings

Example 3: Can we tile a board obtained by removing both the
upper left and the lower right squares of a standard checker-board?

Nonstandard Checker-board

Two Dominoes

Continued on next slide



Tilings

Solution:

a There are 62 squares in this board.

b To tile it we need 31 dominos.
c Key fact: Each domino covers one black and one white square.
d Therefore the tiling covers 31 black squares and 31 white

squares.
e Our board has either 30 black squares and 32 white squares or

32 black squares and 30 white squares.
f Contradiction! ∎
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1.1 Mathematical Statements and their proofs
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1.4 Errors in proofs
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The role of open problems

1 Unsolved problems have motivated much work in
mathematics. Fermat’s Last Theorem was conjectured more
than 300 years ago. It has only recently been finally solved.

Fermat’s Last Theorem: The equation xn + yn = zn has no
solutions in integers x, y, and z, with xyz≠0 whenever n is an
integer with n > 2.

A proof was found by Andrew Wiles in the 1990s.
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An open problem

1 The 3x + 1 Conjecture: Let T be the transformation that
sends an even integer x to x

2 and an odd integer x to 3x + 1.
For all positive integers x, when we repeatedly apply the
transformation T, we will eventually reach the integer 1.

For example, starting with x = 13:

T(13) = 3⋅13 + 1 = 40, T(40) = 40/2 = 20, T(20) = 20/2
= 10,

T(10) = 10/2 = 5, T(5) = 3⋅5 + 1 = 16,T(16) = 16/2 = 8,

T(8) = 8/2 = 4, T(4) = 4/2 = 2, T(2) = 2/2 = 1

The conjecture has been verified using computers up to
5 × 6 × 1013.
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Additional proof methods

1 Later we will see many other proof methods:

a Mathematical induction, which is a useful method for proving
statements of the form ∀n P(n), where the domain consists of
all positive integers.

b Structural induction, which can be used to prove such results
about recursively defined sets.

c Cantor diagonalization is used to prove results about the size
of infinite sets.

d Combinatorial proofs use counting arguments.
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