Basic Structures: Sets, Functions, Sequences,
Sums, and Matrices
Chapter 2

(© Marc Moreno-Maza 2020

UWO - October 3, 2021



Basic Structures: Sets, Functions, Sequences,
Sums, and Matrices
Chapter 2

(© Marc Moreno-Maza 2020

UWO - October 3, 2021



Introduction

@ Sets are the basic building blocks for the types of objects
considered in discrete mathematics and in mathematics, in
general.

@ Set theory is an important branch of mathematics:

©® Many different systems of axioms have been used to develop
set theory.

® Here, we are not concerned with a formal set of axioms for set
theory.

® Instead, we will use what is called naive set theory.
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Sets

@ A set is an unordered collection of “objects”, e.g. intuitively
described by some common property or properties (in naive
set theory):

® the students in this class,
® the chairs in this room.

® The objects in a set are called the elements, or members of
the set. A set is said to contain its elements.

©® The notation a € A denotes that a is an element of set A.

O If ais not a member of A, write a ¢ A



Describing a set: the roster method

The roster method is defined as a way to show the members of a
set by listing the members inside of brackets.
® Example: S ={a,b,c,d}
® The order of the elements in that list is not important.
® For instance, {a,b,c,d} = {b,c,a,d}
© Each object in the universe is either a member or not.
O Listing a member more than once does not change the set.
® For instance, {a,b,c,d} = {a,b,c,b,c,d}

O Ellipses (...) may be used to describe a set without listing all
of the members when the pattern is clear:

® For instance, S = {a,b,c,d,...,z}.



The roster method: more examples

@ The set of all vowels in the English alphabet:

V = {ae,iou}
® The set of all odd positive integers less than 10:
O ={1,3,5,7,9}

© The set of all positive integers less than 100:
5S={123,...,99}

O The set of all integers less than O:
S={..,-3-2-1}



Some important sets

N = natural numbers = {0,1,2,3,...}

7, = integers = {...,-3,-2,-1,0,1,2,3,...
7" = positive integers = {1,2,3,...}

Q = set of rational numbers

R = set of real numbers

R* = set of positive real numbers

C = set of complex numbers.



The set-builder notation

@ It is used to specify the property or properties that all
members must satisfy. Examples:

® S ={x|xis a positive integer less than 100}

® O ={x]|xis an odd positive integer less than 10}
® O={xeZ"|xisodd and x < 10}

® the set of positive rational numbers:

Q*={xeR|x= g, for some positive integers p, g}
® A predicate may be used, asin S = {x| P(x)}
® Example: S = {x | Prime(x)}



The interval notation

@ It is used to specify a range of real numbers.

® Consider two real numbers a, b with a < b. The following
notations are commonly used:
» [a,b] = {x ]| a<x<b}
» [a,b) = {x ] a< x< b}
(a,b] = {x ] a<x<b}
(a,b) = {x]a<x< b}
closed interval [a,b]
open interval (a,b)

v v v v



Truth sets of quantifiers

@ Given a predicate P and a domain D, we define the truth set
of P to be the set of the elements in D for which P(x) is true.

® The truth set of P(x) is denoted by:
{xeD|P(x)}

©® Example: The truth set of P(x) where the domain is the
integers and P(x) is “|x| = 1" is the set {-1,1}



Sets can be elements of sets

Examples:
o {{1.2.3},a, {b,c}}
® {N,Z,QR}



Russell's paradox

@ Let S be the set of all sets which are not members of
themselves.

® A paradox results from trying to answer the question “Is S a
member of itself?”

Related simple example: Bertrand Russell
® Henry is a barber who shaves all (1872 - 1970)
people who do not shave themselves. A Nobel Prize
paradox results from trying to answer the Winner,
question “Does Henry shave himself?” Cambridge, UK

® To avoid this and other paradoxes, sets can be (formally)
defined via appropriate axioms more carefully than just an
unordered collection of “objects”

@ where objects are intuitively described by any given property in
naive set theory



The universal set U and the empty set &

@ The universal set is the set containing all the “objects”
currently under consideration:
® often symbolized by U,
@ sometimes implicitly stated,
@® sometimes explicitly stated,
@ its contents depend on the context.
® The empty set is the set with no elements.
® symbolized by @, but {} is also used.
@ Important: the empty set is different from a set containing
the empty set:

o+{2}
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Venn Diagram

U

John Venn (1834 -

1923) Cambridge, UK

[0 — Universal set U
e — elements
(O — Some set V



Venn Diagram

bcdfghjkl

1%

mnpqrstvwxyz

John Venn (1834 -

1923) Cambridge, UK

0 — Universal set
U: all letters in the
Latin alphabet

letters — elements
O - Set V: all vow-

els



John Venn (1834 -

Venn Diagram

1923) Cambridge, UK

0 — Universal set U
O —Set A
() —Set B

@ Venn diagrams are often drawn to abstractly illustrate
relations between multiple sets. Elements are implicit/omitted
(shown as dots only when an explicit element is needed)

® Example: shaded area illustrates a set of elements that are in
both sets A and B (i.e. intersection of two sets, see later).
E.g consider A={a,b,c,f,z} and B={c,d,e,f,x,y}.
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Set equality

Definition: Two sets are equal if and only if they have the same
elements.

@ If A and B are sets, then A and B are equal iff:

Vx (xeA < xeB)

® We write A= B if A and B are equal sets.

{1,3,5} = {3,5,1}
{1,5,5,5,3,3,1} = {1,3,5}
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Subsets

Definition: The set A is a subset of B, if and only if every element
of A is also an element of B.

@ The notation A € B is used to indicate that A is a subset of
the set B

® A c B holds if and only if Yx (xe€A — xe B) is true.

©® Observe that:
© Because a € @ is always false, for every set S we have:
FcS.
@ Because a € S —a € S, for every set S, we have:
S5cs.



Showing that a set is or is not a subset of another set

@ Showing that A is a Subset of B: To show that A ¢ B,
show that if x belongs to A, then x also belongs to B.

® Showing that A is not a Subset of B: To show that A is
not a subset of B, that is A ¢ B, find an element x € A with x
¢ B. (Such an x is a counterexample to the claim that x € A
implies x € B.)

© Examples:

® The set of all computer science majors at your school is a
subset of all students at your school.

O The set of integers with squares less than 100 is not a subset
of the set of all non-negative integers.



Another look at equality of sets

@ Recall that two sets A and B are equal (denoted by A = B)
iff:
Vx (xeA < xeB)

® That is, using logical equivalences we have that A = B iff:

Vx ((xeA - xeB) A (xeB - xeA))

©® This is also equivalent to:

AcB and BcA



Proper subsets

Definition: If A ¢ B, but A £B, then we say A is a proper subset
of B, denoted by A c B. If A c B, then the following is true:

Vx (xeA - xeB) A Ix (xeBax¢A)

Venn Diagram for a proper subset Ac B

B

Example:A = {c,f,z} and
B={a b,c,d, e f, tx,z}. @
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Venn diagrams and truth sets

Consider any predicate P(x) for elements x in U and its truth
set P={x|P(x)}.

g W - truth set of
P={x|P()}

that is, all elements x where
P(x) is true

Note that: xecP = P(x)



Venn diagrams and logical connectives: negations

Consider any predicate P(x) for elements x in U and its truth
set P={x|P(x)}.

— truth set of {x|-P(x)}

all elements x where —=P(x) is
true, i.e. where P(x) is false

Same as complement of set P (see section 2.4)

Note that: x ¢ P = -P(x)



Venn Diagrams and logical connectives: conjunctions

Consider two arbitrary predicates P(x) and Q(x) defined for
elements x in U together with their corresponding truth sets

P={x|P(x)}and Q={x|Q(x)}.

| — truth set of
{x | P(x) A Q(x)} that is, all
elements x where both P(x)
and Q(x) is true

Same as intersection of sets P and @ (see section 2.3)



Venn Diagrams and logical connectives: disjunctions

Consider two arbitrary predicates P(x) and Q(x) defined for
elements x in U together with their corresponding truth sets

P={x|P(x)} and Q= {x| Q(x)}.

U
- truth set
{x| P(x) Vv Q(x)} that is, all
elements x where P(x) or
Q(x) is true

Same as union of sets P and @ (see section 2.2)



Venn diagrams and logical connectives: implications

Consider two arbitrary predicates P(x) and Q(x) defined for
elements x in U together with their corresponding truth sets
P={x|P(x)}and Q ={x| Q(x)}.

W= truth set {x | P(x) —

Q(x)}

o i I
(all x where implication P(x) — Q(x) is true)

P ~ — set where implication
P(x) = Q(x) is false:

{X1=(=PG) v RN} = {x| P() A =Q(x)}

={x|xePAx¢Q}

® Remember:
p—>q=-pVvgq
® Thus, we have:
{x|P(x) > Q(x)} ={x[-P(x)vQ(x)}={x|x¢ PvxeQ}



Venn diagram and implication: special case

@ Assume that implication P(x) - Q(x) is true for all x.
® That is, assume {x | P(x) > Q(x)} = U is true.
©® Note that, from the definition of subsets:
Vx(P(x) = Q(x)) = Vx(xeP-xeQ) = PcQ

U Ul = truth set
x| P(x) ~ Q)
(all x where implication P(x) — Q(x) is true)

- set
where implication
H P(x) = Q(x) is false:

empty in this case: {x |[x e PAx¢ Q} =0

Venn diagram for P ¢ Q often shows P as a
proper subset of @, thus assuming P + Q

Vx(P(x) > Q(x)) = Vx(=P(x) v Q(x))

-3Ix(P(x) A =Q(x))
-Ix(x e PAx ¢ Q)



Venn diagram and implication: special case

@ Assume that implication P(x) - Q(x) is true for all x.
® That is, assume {x | P(x) > Q(x)} = U is true.
©® Note that, from the definition of subsets:
Vx(P(x) = Q(x)) = Vx(xeP-xeQ) = PcQ

U \ i = truth set
x| P(x) - Q(x)}
(all x where implication P(x) — Q(x) is true)

- set
where implication
I P(x) - Q(x) is false:

empty in this case: {x |xe PAXx¢Q} =0

Venn diagram for P ¢ Q often shows P as a
proper subset of Q, thus assuming P + Q
@ This gives intuitive interpretation for logical “implications”:

@® Proving theorems of the form Vx(P(x) = Q(x)) is equivalent
to proving the subset relationship for the truth sets P € Q.



Venn diagram and logical connectives: biconditional

@ Similarly one can show that

VxP(x) < Q(x)=P=Q

® that is,
VX(P(X) > Q(X)AQ(x) > P(x))=PcQArQcP.

@ This gives intuitive interpretation for “biconditional”:

- truth  set of

x| P(x) = Q(x)}

assuming Vx(P(x) <> Q(x)) is true

@® Proving theorems of the form Vx(P(x) < Q(x)) is equivalent
to proving the subset relationship for the truth sets P = Q.
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Set cardinality

Definition: If there are exactly n (distinct) elements in S where n
is a non-negative integer, we say that S is finite. Otherwise, the
set S is said infinite.

Definition: The cardinality of a finite set A, denoted by |A|, is the
number of (distinct) elements of A.

Examples:
®|g|=0
@ Let S be the letters of the English alphabet. Then |S| = 26
® {123} =3
o [{z}|=1
® The set of integers is infinite.
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Power sets

Definition: The set of all subsets of a set A, denoted P(A), is
called the power set of A.

Example: If A= {a,b} then:

P(A) = {®7 {3}7 {b}7 {37 b}}

@ If a set has n elements, then the cardinality of the power set is
AL

@ In Chapters 5 and 6, we will discuss different ways to show
this.
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Tuples

@ The ordered n-tuple (a1, az,...,a,) is the ordered collection
that has a; as its first element and a» as its second element
and so on until a, as its last element.

® Two n-tuples are equal if and only if their corresponding
elements are equal.

© 2-tuples are called ordered pairs, e.g. (a1,a2)

@ The ordered pairs (a,b) and (¢, d) are equal if and only if
a=cand b=d.



René

Cartesian Product Descartes

(1596-1650)

Definition: The Cartesian Product of two sets A and B, denoted
by A x B is the set of ordered pairs (a, b) where a € A and b € B.

Example:

A={a,b},B={1,2,3}
AxB={(a1),(a,2),(a,3),(b,1),(b,2),(b,3)}

Definition: A subset R of the Cartesian product A x B is called a
relation from the set A to the set B. Relations will be covered in
depth in Chapter 9.



Cartesian product

Definition: The Cartesian products of the sets Aj, Ay, ..., A,
denoted by A; x Ay x --- x A, is the set of ordered n-tuples
(a1,a2,...,a,) where a; belongs to A; for i=1,2,...,n.

A1XAQX---XA,,={(31,32,...,3,,)|a;EA,' fori=1,2,...,n}

Question: What is A x B x C where A= {0,1}, B ={1,2} and C
= {0,1,2}7

Solution: A x B x C = {(0,1,0), (0,1,1), (0,1,2),(0,2,0), (0,2,1),
(0,2,2),(1,1,0), (1,1,1), (1,1,2), (1,2,0), (1,2,1), (1,2,2)}
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Boolean Algebra

@ Propositional calculus and set theory are both instances of an
algebraic system called a Boolean Algebra. This is discussed
in C52209.

® The operators in set theory are analogous to corresponding
operators in propositional calculus.

© As always there must be a universal set U.

O All sets A, B, ... shown in the next slides are assumed to be
subsets of U.
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2.2 Union



Union

® Definition: Let A and B be sets. The union of the sets A and
B, denoted by A U B, is the set:

{x|xeAvxeB}

® Example: What is {1,2,3} u {3, 4, 5}?

Solution: {1,2,3,4,5}

Union is analogous to disjunction, see earlier slides.
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2.3 Intersection



Intersection
@ Definition: The intersection of sets A and B, denoted by A n
B, is:
{x|xeAnxeB}

@ If the intersection is empty, then A and B are said to be
disjoint.

@ Example: What is
{1,2,3} n {3,4,5} ? Venn Diagram for An B

Solution: {3} U

<

® Example: What is
{1,2,3} n {4,5,6} 7

Solution: @

Intersection is analogous to conjunction, see earlier slides.
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Complement

Definition: If A is a set, then the complement of the A (with
respect to U), denoted by A is the set:

A={xeU|x¢A}

(The complement of A is sometimes denoted by A°.)

Venn Diagram for complement

Example: If U is the posi-
tive integers less than 100,
what is the complement of
{x|x>70}7?

Solution: {x | x < 70}

Complement is analogous to negation, see earlier.
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Difference

Definition: Let A and B be sets. The difference of A and B,
denoted by A — B, is the set containing the elements of A that are
not in B. The difference of A and B is also called the complement

of B with respect to A.

A-B={x|xeAArx¢B}=AnB

Venn Diagram for A- B

Note: A=U-A
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The cardinality of the union of two sets

® Inclusion-Exclusion:

<

AuB|=|Al +|B|-|An B

Venn Diagram for A,B,AnB,AuB

® Example:

® Let A be the math majors in your class and B be the CS
majors in your class.

® To count the number of students in your class who are either
math majors or CS majors, add the number of math majors
and the number of CS majors, and subtract the number of
joint CS/math majors.

® We will return to this principle in Chapter 6 and Chapter 8,
where we will derive a formula for the cardinality of the union
of n sets, where n is a positive integer.



Review questions

Example: Given U =1{0,1,2,3,4,5,6,7,8,9,10},
A={1,2,3,4,5}, B={4,5,6,7,8} solve the following:

AuB B
0 AU o5
Solution: Solution.
{1,2,3,4,5,6,7,8} olution:
®ANB {0,1,2,3,9,10}
N
i ®A-B
Solution: {4,5} .
oA Solution: {1,2,3}
i ®B-A
Solution:

{0,6,7,8,9,10} Solution: {6,7,8}



Plan for Part |

2. Set Operations

2.7 Set ldentities



Set identities
@ ldentity laws
Aug=A AnU=A

® Domination laws

AulU=U ANg =g

© |dempotent laws

AuA=A AnA=A

® Complementation law

(A) = A

Continued on next slide —



Set identities
® Commutative laws

AuB=BUA AnB=BnA

® Associative laws

Au(BuC)=(AuB)uC An(BnC)=(AnB)nC

©® Distributive laws

An(BuC)=(AnB)u(AnC) Au(BnC)=(AuB)n(Au()

Continued on next slide =



Set identities

@ De Morgan’s laws

AuB=AnB AnB=AuB

® Absorption laws

Au(AnB)=A An(AuB)=A

©® Complement laws

AUA=U AnA=3



Proving set identities

@ Different ways to prove set identities:
® Prove that each set (i.e. each side of the identity) is a subset
of the other.
O Use set builder notation and propositional logic.
® Membership tables

(to be explained)



Proof of second De Morgan law

Example: Prove that AnB=AuUB

Solution: We prove this identity by showing that:

N
|
vy

U

)>| Zl>
Uol W
N
>
VS )

o
(2] N

Continued on next slide —



Proof of second De Morgan law

These steps show that: AnBc AuB

xeAnB by assumption

x¢AnB definition of complement
-((xeA)a(xeB)) definition of intersection
-(xeA)v=(xeB) De Morgan's 1% Law
(x¢A)v(xé¢B) definition of negation
(xeA)v (xeB) definition of complement
xeAuB definition of union

Continued on next slide —



Proof of second De Morgan law

These steps show that: AUB< An B

xeAUB

(xe A)v (xeB)
(x¢A)v(x¢B)
-(xe A)v-(xeB)
-((xe A)a(xeB))
-x€(AnB)
xeAnB

by assumption

definition of union
definition of complement
definition of negation

De Morgan's 1° Law
definition of intersection

definition of complement



Set-builder notation: second De Morgan law

AnB

={x|x¢AnB}
={x|-xe(AnB)}

= {x[-((xeA)r(xeB))}
={x|-(xeA)v-(xeB)}
={x[(x¢A)v(x¢B)}
={x|(xeA)v(xeB)}

= {x|xeAuB}

=AuB

by definition of complement
by definition of ‘not in’

by definition of intersection
by De Morgan's 1% Law

by definition of ‘not’

by definition of complement
by definition of union

by definition of notation



Membership table

Example: Construct a membership table to show that the
distributive law holds:

Au(BnC)=(AuB)n(Au(C)

Solution:

OO R O O Rk
O R O OIMFR Ok
elleliieli el ol N

O O R R
OO ||~

OO H K=

OO

olo|olo|r|r|~|l~
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Generalized unions and intersections

@ Let Ay, Ay ,..., A, be an indexed collection of sets.
We define: .
UA,’ =A1UA2U~-UA,,
i=1

n
mAi:AlﬂAzﬂ--'ﬂAn
i=1

These are well defined, since union and intersection are
associative.

® Example: for (i=1,2,...) let A;={i,i+1,i+2,...}. Then,

O-

{i,i+1,i+2,...}={1,2,3,...}

&C=

3:

A =ii+1,i+2,...}={n,n+1,n+2,...} = A,

i=1 i

1
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