Basic Structures: Sets, Functions, Sequences, Sums, and Matrices
 Chapter 2

(C) Marc Moreno-Maza 2020

UWO - October 3, 2021

Basic Structures: Sets, Functions, Sequences, Sums, and Matrices
 Chapter 2

(C) Marc Moreno-Maza 2020

UWO - October 3, 2021

Introduction

(1) Sets are the basic building blocks for the types of objects considered in discrete mathematics and in mathematics, in general.

Introduction

(1) Sets are the basic building blocks for the types of objects considered in discrete mathematics and in mathematics, in general.
(2) Set theory is an important branch of mathematics:

Introduction

(1) Sets are the basic building blocks for the types of objects considered in discrete mathematics and in mathematics, in general.
(2) Set theory is an important branch of mathematics:
(a) Many different systems of axioms have been used to develop set theory.

Introduction

(1) Sets are the basic building blocks for the types of objects considered in discrete mathematics and in mathematics, in general.
(2) Set theory is an important branch of mathematics:
(a) Many different systems of axioms have been used to develop set theory.
(b) Here, we are not concerned with a formal set of axioms for set theory.

Introduction

(1) Sets are the basic building blocks for the types of objects considered in discrete mathematics and in mathematics, in general.
(2) Set theory is an important branch of mathematics:
(a) Many different systems of axioms have been used to develop set theory.
(b) Here, we are not concerned with a formal set of axioms for set theory.
C Instead, we will use what is called naïve set theory.

Plan for Part I

1. Sets

1.1 Defining sets
1.2 Venn Diagram
1.3 Set Equality
1.4 Subsets
1.5 Venn Diagrams and Truth Sets
1.6 Set Cardinality
1.7 Power Sets
1.8 Cartesian Products
2. Set Operations
2.1 Boolean Algebra
2.2 Union
2.3 Intersection
2.4 Complement
2.5 Difference
2.6 The Cardinality of the Union of Two Sets
2.7 Set Identities
2.8 Generalized Unions and Intersections

Plan for Part I

1. Sets
1.1 Defining sets
1.2 Venn Diagram
1.3 Set Equality
1.4 Subsets
1.5 Venn Diagrams and Truth Sets
1.6 Set Cardinality
1.7 Power Sets
1.8 Cartesian Products
2. Set Operations
2.1 Boolean Algebra
2.2 Union
2.3 Intersection
2.4 Complement
2.5 Difference
2.6 The Cardinality of the Union of Two Sets
2.7 Set Identities
2.8 Generalized Unions and Intersections

Sets

(1) A set is an unordered collection of "objects", e.g. intuitively described by some common property or properties (in naïve set theory):

Sets

(1) A set is an unordered collection of "objects", e.g. intuitively described by some common property or properties (in naïve set theory):
(a) the students in this class,

Sets

(1) A set is an unordered collection of "objects", e.g. intuitively described by some common property or properties (in naïve set theory):
(a) the students in this class,
(b) the chairs in this room.

Sets

(1) A set is an unordered collection of "objects", e.g. intuitively described by some common property or properties (in naïve set theory):
(a) the students in this class,
(b) the chairs in this room.
(2) The objects in a set are called the elements, or members of the set. A set is said to contain its elements.

Sets

(1) A set is an unordered collection of "objects", e.g. intuitively described by some common property or properties (in naïve set theory):
(a) the students in this class,
(b) the chairs in this room.
(2) The objects in a set are called the elements, or members of the set. A set is said to contain its elements.
(3) The notation $a \in A$ denotes that a is an element of set A.

Sets

(1) A set is an unordered collection of "objects", e.g. intuitively described by some common property or properties (in naïve set theory):
(a) the students in this class,
(b) the chairs in this room.
(2) The objects in a set are called the elements, or members of the set. A set is said to contain its elements.
(3) The notation $a \in A$ denotes that a is an element of set A.
(4) If a is not a member of A, write $a \notin A$

Describing a set: the roster method

The roster method is defined as a way to show the members of a set by listing the members inside of brackets.

Describing a set: the roster method

The roster method is defined as a way to show the members of a set by listing the members inside of brackets.
(1) Example: $S=\{a, b, c, d\}$

Describing a set: the roster method

The roster method is defined as a way to show the members of a set by listing the members inside of brackets.
(1) Example: $S=\{a, b, c, d\}$
(2) The order of the elements in that list is not important.
(a) For instance, $\{a, b, c, d\}=\{b, c, a, d\}$

Describing a set: the roster method

The roster method is defined as a way to show the members of a set by listing the members inside of brackets.
(1) Example: $S=\{a, b, c, d\}$
(2) The order of the elements in that list is not important.
(a) For instance, $\{a, b, c, d\}=\{b, c, a, d\}$
(3) Each object in the universe is either a member or not.

Describing a set: the roster method

The roster method is defined as a way to show the members of a set by listing the members inside of brackets.
(1) Example: $S=\{a, b, c, d\}$
(2) The order of the elements in that list is not important.
(a) For instance, $\{a, b, c, d\}=\{b, c, a, d\}$
(3) Each object in the universe is either a member or not.
(4) Listing a member more than once does not change the set.

Describing a set: the roster method

The roster method is defined as a way to show the members of a set by listing the members inside of brackets.
(1) Example: $S=\{a, b, c, d\}$
(2) The order of the elements in that list is not important.
(a) For instance, $\{a, b, c, d\}=\{b, c, a, d\}$
(3) Each object in the universe is either a member or not.
(4) Listing a member more than once does not change the set.
(a) For instance, $\{a, b, c, d\}=\{a, b, c, b, c, d\}$

Describing a set: the roster method

The roster method is defined as a way to show the members of a set by listing the members inside of brackets.
(1) Example: $S=\{a, b, c, d\}$
(2) The order of the elements in that list is not important.
(a) For instance, $\{a, b, c, d\}=\{b, c, a, d\}$
(3) Each object in the universe is either a member or not.
(4) Listing a member more than once does not change the set.
(a) For instance, $\{a, b, c, d\}=\{a, b, c, b, c, d\}$
(5) Ellipses (...) may be used to describe a set without listing all of the members when the pattern is clear:

Describing a set: the roster method

The roster method is defined as a way to show the members of a set by listing the members inside of brackets.
(1) Example: $S=\{a, b, c, d\}$
(2) The order of the elements in that list is not important.
(a) For instance, $\{a, b, c, d\}=\{b, c, a, d\}$
(3) Each object in the universe is either a member or not.
(4) Listing a member more than once does not change the set.
(a) For instance, $\{a, b, c, d\}=\{a, b, c, b, c, d\}$
(5) Ellipses (...) may be used to describe a set without listing all of the members when the pattern is clear:
(a) For instance, $S=\{a, b, c, d, \ldots, z\}$.

The roster method: more examples

(1) The set of all vowels in the English alphabet:

The roster method: more examples

(1) The set of all vowels in the English alphabet:

$$
V=\{\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}\}
$$

The roster method: more examples

(1) The set of all vowels in the English alphabet:

$$
V=\{\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}\}
$$

(2) The set of all odd positive integers less than 10:

The roster method: more examples

(1) The set of all vowels in the English alphabet:

$$
V=\{\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}\}
$$

(2) The set of all odd positive integers less than 10:

$$
O=\{1,3,5,7,9\}
$$

The roster method: more examples

(1) The set of all vowels in the English alphabet:

$$
V=\{\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}\}
$$

(2) The set of all odd positive integers less than 10:

$$
O=\{1,3,5,7,9\}
$$

(3) The set of all positive integers less than 100:

The roster method: more examples

(1) The set of all vowels in the English alphabet:

$$
V=\{\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}\}
$$

(2) The set of all odd positive integers less than 10:

$$
O=\{1,3,5,7,9\}
$$

(3) The set of all positive integers less than 100:

$$
S=\{1,2,3, \ldots, 99\}
$$

The roster method: more examples

(1) The set of all vowels in the English alphabet:

$$
V=\{\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}\}
$$

(2) The set of all odd positive integers less than 10:

$$
O=\{1,3,5,7,9\}
$$

(3) The set of all positive integers less than 100:

$$
S=\{1,2,3, \ldots, 99\}
$$

(4) The set of all integers less than 0 :

The roster method: more examples

(1) The set of all vowels in the English alphabet:

$$
V=\{\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}\}
$$

(2) The set of all odd positive integers less than 10:

$$
O=\{1,3,5,7,9\}
$$

(3) The set of all positive integers less than 100:

$$
S=\{1,2,3, \ldots, 99\}
$$

(4) The set of all integers less than 0 :

$$
S=\{\ldots,-3,-2,-1\}
$$

Some important sets

$\mathbb{N}=$ natural numbers $\quad=\{0,1,2,3, \ldots\}$

Some important sets

$\mathbb{N}=$ natural numbers
$\mathbb{Z}=$ integers

$$
\begin{aligned}
& =\{0,1,2,3, \ldots\} \\
& =\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
\end{aligned}
$$

Some important sets

$$
\begin{array}{ll}
\mathbb{N}=\text { natural numbers } & =\{0,1,2,3, \ldots\} \\
\mathbb{Z}=\text { integers } & =\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} \\
\mathbb{Z}^{+}=\text {positive integers } & =\{1,2,3, \ldots\}
\end{array}
$$

Some important sets

```
\(\mathbb{N}=\) natural numbers
\(=\{0,1,2,3, \ldots\}\)
\(=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}\)
\(=\{1,2,3, \ldots\}\)
\(\mathbb{Q}=\) set of rational numbers
```


Some important sets

$$
\begin{array}{ll}
\mathbb{N}=\text { natural numbers } & =\{0,1,2,3, \ldots\} \\
\mathbb{Z} & =\text { integers } \\
\mathbb{Z}^{+} & =\text {positive integers } \\
\mathbb{Q} & =\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} \\
\mathbb{R} & =\text { set of rational numbers }
\end{array}
$$

Some important sets

```
\(\mathbb{N}=\) natural numbers
\(=\{0,1,2,3, \ldots\}\)
\(\mathbb{Z}=\) integers
\(\mathbb{Z}^{+}=\)positive integers
\(=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}\)
\(=\{1,2,3, \ldots\}\)
\(\mathbb{Q}=\) set of rational numbers
\(\mathbb{R}=\) set of real numbers
\(\mathbb{R}^{+}=\)set of positive real numbers
```


Some important sets

```
\(\mathbb{N}=\) natural numbers
\(=\{0,1,2,3, \ldots\}\)
\(\mathbb{Z}=\) integers
\(\mathbb{Z}^{+}=\)positive integers
\(=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}\)
\(=\{1,2,3, \ldots\}\)
\(\mathbb{Q}=\) set of rational numbers
\(\mathbb{R}=\) set of real numbers
\(\mathbb{R}^{+}=\)set of positive real numbers
\(\mathbb{C}=\) set of complex numbers.
```


The set-builder notation

(1) It is used to specify the property or properties that all members must satisfy. Examples:

The set-builder notation

(1) It is used to specify the property or properties that all members must satisfy. Examples:
(a) $S=\{x \mid x$ is a positive integer less than 100 $\}$

The set-builder notation

(1) It is used to specify the property or properties that all members must satisfy. Examples:
(a) $S=\{x \mid x$ is a positive integer less than 100 $\}$
(b) $O=\{x \mid x$ is an odd positive integer less than 10 $\}$

The set-builder notation

(1) It is used to specify the property or properties that all members must satisfy. Examples:
(a) $S=\{x \mid x$ is a positive integer less than 100 $\}$
(b) $O=\{x \mid x$ is an odd positive integer less than 10 $\}$
(C) $O=\left\{x \in \mathbb{Z}^{+} \mid x\right.$ is odd and $\left.x<10\right\}$

The set-builder notation

(1) It is used to specify the property or properties that all members must satisfy. Examples:
(a) $S=\{x \mid x$ is a positive integer less than 100 $\}$
(b) $O=\{x \mid x$ is an odd positive integer less than 10 $\}$
c $O=\left\{x \in \mathbb{Z}^{+} \mid x\right.$ is odd and $\left.x<10\right\}$
(d) the set of positive rational numbers:

$$
\mathbb{Q}^{+}=\left\{x \in \mathbb{R} \left\lvert\, x=\frac{p}{q}\right., \text { for some positive integers } p, q\right\}
$$

The set-builder notation

(1) It is used to specify the property or properties that all members must satisfy. Examples:
(a) $S=\{x \mid x$ is a positive integer less than 100 $\}$
(b) $O=\{x \mid x$ is an odd positive integer less than 10 $\}$
c $O=\left\{x \in \mathbb{Z}^{+} \mid x\right.$ is odd and $\left.x<10\right\}$
(d) the set of positive rational numbers:

$$
\mathbb{Q}^{+}=\left\{x \in \mathbb{R} \left\lvert\, x=\frac{p}{q}\right., \text { for some positive integers } p, q\right\}
$$

(2) A predicate may be used, as in $S=\{x \mid P(x)\}$

The set-builder notation

(1) It is used to specify the property or properties that all members must satisfy. Examples:
(a) $S=\{x \mid x$ is a positive integer less than 100 $\}$
(b) $O=\{x \mid x$ is an odd positive integer less than 10\}
c $O=\left\{x \in \mathbb{Z}^{+} \mid x\right.$ is odd and $\left.x<10\right\}$
(d) the set of positive rational numbers:

$$
\mathbb{Q}^{+}=\left\{x \in \mathbb{R} \left\lvert\, x=\frac{p}{q}\right., \text { for some positive integers } p, q\right\}
$$

(2) A predicate may be used, as in $S=\{x \mid P(x)\}$
(a) Example: $S=\{x \mid \operatorname{Prime}(x)\}$

The interval notation

(1) It is used to specify a range of real numbers.

The interval notation

(1) It is used to specify a range of real numbers.
(2) Consider two real numbers a, b with $a \leq b$. The following notations are commonly used:

The interval notation

(1) It is used to specify a range of real numbers.
(2) Consider two real numbers a, b with $a \leq b$. The following notations are commonly used:

- $[a, b]=\{x \mid a \leq x \leq b\}$

The interval notation

(1) It is used to specify a range of real numbers.
(2) Consider two real numbers a, b with $a \leq b$. The following notations are commonly used:

- $[a, b]=\{x \mid a \leq x \leq b\}$
- $[a, b)=\{x \mid a \leq x<b\}$

The interval notation

(1) It is used to specify a range of real numbers.
(2) Consider two real numbers a, b with $a \leq b$. The following notations are commonly used:

- $[a, b]=\{x \mid a \leq x \leq b\}$
- $[a, b)=\{x \mid a \leq x<b\}$
- $(a, b]=\{x \mid a<x \leq b\}$

The interval notation

(1) It is used to specify a range of real numbers.
(2) Consider two real numbers a, b with $a \leq b$. The following notations are commonly used:

- $[a, b]=\{x \mid a \leq x \leq b\}$
- $[a, b)=\{x \mid a \leq x<b\}$
- $(a, b]=\{x \mid a<x \leq b\}$
- $(a, b)=\{x \mid a<x<b\}$

The interval notation

(1) It is used to specify a range of real numbers.
(2) Consider two real numbers a, b with $a \leq b$. The following notations are commonly used:

- $[a, b]=\{x \mid a \leq x \leq b\}$
- $[a, b)=\{x \mid a \leq x<b\}$
- $(a, b]=\{x \mid a<x \leq b\}$
- $(a, b)=\{x \mid a<x<b\}$
- closed interval $[\mathrm{a}, \mathrm{b}]$

The interval notation

(1) It is used to specify a range of real numbers.
(2) Consider two real numbers a, b with $a \leq b$. The following notations are commonly used:

- $[a, b]=\{x \mid a \leq x \leq b\}$
- $[a, b)=\{x \mid a \leq x<b\}$
- $(a, b]=\{x \mid a<x \leq b\}$
- $(a, b)=\{x \mid a<x<b\}$
- closed interval $[\mathrm{a}, \mathrm{b}]$
- open interval (a, b)

Truth sets of quantifiers

(1) Given a predicate P and a domain D, we define the truth set of P to be the set of the elements in D for which $P(x)$ is true.

Truth sets of quantifiers

(1) Given a predicate P and a domain D, we define the truth set of P to be the set of the elements in D for which $P(x)$ is true.
(2) The truth set of $P(\mathrm{x})$ is denoted by:

$$
\{x \in D \mid P(x)\}
$$

Truth sets of quantifiers

(1) Given a predicate P and a domain D, we define the truth set of P to be the set of the elements in D for which $P(x)$ is true.
(2) The truth set of $P(x)$ is denoted by:

$$
\{x \in D \mid P(x)\}
$$

(3) Example: The truth set of $P(x)$ where the domain is the integers and $P(x)$ is " $|x|=1$ " is the set $\{-1,1\}$

Sets can be elements of sets

Examples:

Sets can be elements of sets

Examples:
(1) $\{\{1,2,3\}, a,\{b, c\}\}$

Sets can be elements of sets

Examples:
(1) $\{\{1,2,3\}, a,\{b, c\}\}$
(2) $\{\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}\}$

Russell's paradox

(1) Let S be the set of all sets which are not members of themselves.

Russell's paradox

(1) Let S be the set of all sets which are not members of themselves.
(2) A paradox results from trying to answer the question "Is S a member of itself?"

Russell's paradox

(1) Let S be the set of all sets which are not members of themselves.
(2) A paradox results from trying to answer the question "Is S a member of itself?"

Related simple example:
(a) Henry is a barber who shaves all people who do not shave themselves. A paradox results from trying to answer the question "Does Henry shave himself?"

Bertrand Russell

Russell's paradox

(1) Let S be the set of all sets which are not members of themselves.
(2) A paradox results from trying to answer the question "Is S a member of itself?"

Related simple example:
(a) Henry is a barber who shaves all people who do not shave themselves. A paradox results from trying to answer the question "Does Henry shave himself?"

Winner,
(1) To avoid this and other paradoxes, sets can be (formally) defined via appropriate axioms more carefully than just an unordered collection of "objects"
(2) where objects are intuitively described by any given property in naïve set theory

Russell's paradox

(1) Let S be the set of all sets which are not members of themselves.
(2) A paradox results from trying to answer the question "Is S a member of itself?"

Related simple example:
(a) Henry is a barber who shaves all people who do not shave themselves. A paradox results from trying to answer the question "Does Henry shave himself?"

Winner,
(1) To avoid this and other paradoxes, sets can be (formally) defined via appropriate axioms more carefully than just an unordered collection of "objects"
(2) where objects are intuitively described by any given property in naïve set theory

The universal set U and the empty set \varnothing

The universal set U and the empty set \varnothing

(1) The universal set is the set containing all the "objects" currently under consideration:

The universal set U and the empty set \varnothing

(1) The universal set is the set containing all the "objects" currently under consideration:
a often symbolized by U,

The universal set U and the empty set \varnothing

(1) The universal set is the set containing all the "objects" currently under consideration:
a often symbolized by U,
(b) sometimes implicitly stated,

The universal set U and the empty set \varnothing

(1) The universal set is the set containing all the "objects" currently under consideration:
a often symbolized by U,
(b) sometimes implicitly stated,

C sometimes explicitly stated,

The universal set U and the empty set \varnothing

(1) The universal set is the set containing all the "objects" currently under consideration:
a often symbolized by U,
(b) sometimes implicitly stated,

C sometimes explicitly stated,
(d) its contents depend on the context.

The universal set U and the empty set \varnothing

(1) The universal set is the set containing all the "objects" currently under consideration:
a often symbolized by U,
(b) sometimes implicitly stated,

C sometimes explicitly stated,
(d) its contents depend on the context.
(2) The empty set is the set with no elements.

The universal set U and the empty set \varnothing

(1) The universal set is the set containing all the "objects" currently under consideration:
a often symbolized by U,
(b) sometimes implicitly stated,

C sometimes explicitly stated,
(d) its contents depend on the context.
(2) The empty set is the set with no elements.
(a) symbolized by \varnothing, but $\}$ is also used.

The universal set U and the empty set \varnothing

(1) The universal set is the set containing all the "objects" currently under consideration:
a often symbolized by U,
(b) sometimes implicitly stated,

C sometimes explicitly stated,
(d) its contents depend on the context.
(2) The empty set is the set with no elements.
(a) symbolized by \varnothing, but $\}$ is also used.
(b) Important: the empty set is different from a set containing the empty set:

$$
\varnothing \neq\{\varnothing\}
$$

Plan for Part I

1. Sets
1.1 Defining sets
1.2 Venn Diagram
1.3 Set Equality
1.4 Subsets
1.5 Venn Diagrams and Truth Sets
1.6 Set Cardinality
1.7 Power Sets
1.8 Cartesian Products
2. Set Operations
2.1 Boolean Algebra
2.2 Union
2.3 Intersection
2.4 Complement
2.5 Difference
2.6 The Cardinality of the Union of Two Sets
2.7 Set Identities
2.8 Generalized Unions and Intersections

Venn Diagram

Sets and their elements can be represented via Venn diagrams

Venn Diagram

Sets and their elements can be represented via Venn diagrams

\square - Universal set U

Venn Diagram

Sets and their elements can be represented via Venn diagrams

\square - Universal set U

- - elements

Venn Diagram

Sets and their elements can be represented via Venn diagrams

\square - Universal set U

- - elements
- Some set V

Venn Diagram

Venn Diagram

\square - Universal set U: all letters in the Latin alphabet

Venn Diagram

\square - Universal set U: all letters in the Latin alphabet letters - elements

Venn Diagram

\square - Universal set U : all letters in the Latin alphabet letters - elements - Set V : all vowels

Venn Diagram

Venn Diagram

\square - Universal set U

Venn Diagram

\square - Universal set U
\bigcirc - Set A

Venn Diagram

\square - Universal set U

- Set A
- Set B
(1) Venn diagrams are often drawn to abstractly illustrate relations between multiple sets. Elements are implicit/omitted (shown as dots only when an explicit element is needed)

Venn Diagram

U

\square - Universal set U
\bigcirc - Set A

- Set B
(1) Venn diagrams are often drawn to abstractly illustrate relations between multiple sets. Elements are implicit/omitted (shown as dots only when an explicit element is needed)
(2) Example: shaded area illustrates a set of elements that are in both sets A and B (i.e. intersection of two sets, see later). E.g consider $A=\{a, b, c, f, z\}$ and $B=\{c, d, e, f, x, y\}$.

Plan for Part I

1. Sets
1.1 Defining sets
1.2 Venn Diagram
1.3 Set Equality
1.4 Subsets
1.5 Venn Diagrams and Truth Sets
1.6 Set Cardinality
1.7 Power Sets
1.8 Cartesian Products
2. Set Operations
2.1 Boolean Algebra
2.2 Union
2.3 Intersection
2.4 Complement
2.5 Difference
2.6 The Cardinality of the Union of Two Sets
2.7 Set Identities
2.8 Generalized Unions and Intersections

Set equality

Definition: Two sets are equal if and only if they have the same elements.

Set equality

Definition: Two sets are equal if and only if they have the same elements.
(1) If A and B are sets, then A and B are equal iff:

$$
\forall x \quad(x \in A \leftrightarrow x \in B)
$$

Set equality

Definition: Two sets are equal if and only if they have the same elements.
(1) If A and B are sets, then A and B are equal iff:

$$
\forall x \quad(x \in A \leftrightarrow x \in B)
$$

(2) We write $A=B$ if A and B are equal sets.

Set equality

Definition: Two sets are equal if and only if they have the same elements.
(1) If A and B are sets, then A and B are equal iff:

$$
\forall x \quad(x \in A \leftrightarrow x \in B)
$$

(2) We write $A=B$ if A and B are equal sets.

$$
\begin{aligned}
\{1,3,5\} & =\{3,5,1\} \\
\{1,5,5,5,3,3,1\} & =\{1,3,5\}
\end{aligned}
$$

Plan for Part I

1. Sets
1.1 Defining sets
1.2 Venn Diagram
1.3 Set Equality

1.4 Subsets

1.5 Venn Diagrams and Truth Sets
1.6 Set Cardinality
1.7 Power Sets
1.8 Cartesian Products
2. Set Operations
2.1 Boolean Algebra
2.2 Union
2.3 Intersection
2.4 Complement
2.5 Difference
2.6 The Cardinality of the Union of Two Sets
2.7 Set Identities
2.8 Generalized Unions and Intersections

Subsets

Definition: The set A is a subset of B, if and only if every element of A is also an element of B.

Subsets

Definition: The set A is a subset of B, if and only if every element of A is also an element of B.
(1) The notation $A \subseteq B$ is used to indicate that A is a subset of the set B

Subsets

Definition: The set A is a subset of B, if and only if every element of A is also an element of B.
(1) The notation $A \subseteq B$ is used to indicate that A is a subset of the set B
(2) $A \subseteq B$ holds if and only if $\forall x(x \in A \rightarrow x \in B)$ is true.

Subsets

Definition: The set A is a subset of B, if and only if every element of A is also an element of B.
(1) The notation $A \subseteq B$ is used to indicate that A is a subset of the set B
(2) $A \subseteq B$ holds if and only if $\forall x(x \in A \rightarrow x \in B)$ is true.
(3) Observe that:
(a) Because $a \in \varnothing$ is always false, for every set S we have:
$\varnothing \subseteq S$.

Subsets

Definition: The set A is a subset of B, if and only if every element of A is also an element of B.
(1) The notation $A \subseteq B$ is used to indicate that A is a subset of the set B
(2) $A \subseteq B$ holds if and only if $\forall x(x \in A \rightarrow x \in B)$ is true.
(3) Observe that:
a Because $a \in \varnothing$ is always false, for every set S we have:

$$
\varnothing \subseteq S .
$$

(b) Because $a \in S \rightarrow a \in S$, for every set S, we have:

$$
S \subseteq S .
$$

Showing that a set is or is not a subset of another set

(1) Showing that \mathbf{A} is a Subset of \mathbf{B} : To show that $A \subseteq B$, show that if x belongs to A, then x also belongs to B.

Showing that a set is or is not a subset of another set

(1) Showing that \mathbf{A} is a Subset of \mathbf{B} : To show that $A \subseteq B$, show that if x belongs to A, then \times also belongs to B.
(2) Showing that \mathbf{A} is not a Subset of \mathbf{B} : To show that A is not a subset of B, that is $A \nsubseteq B$, find an element $x \in A$ with x $\notin B$.

Showing that a set is or is not a subset of another set

(1) Showing that \mathbf{A} is a Subset of \mathbf{B} : To show that $A \subseteq B$, show that if x belongs to A, then \times also belongs to B.
(2) Showing that \mathbf{A} is not a Subset of \mathbf{B} : To show that A is not a subset of B, that is $A \nsubseteq B$, find an element $x \in A$ with x $\notin B$. (Such an x is a counterexample to the claim that $x \in A$ implies $x \in B$.)

Showing that a set is or is not a subset of another set

(1) Showing that \mathbf{A} is a Subset of \mathbf{B} : To show that $A \subseteq B$, show that if x belongs to A, then \times also belongs to B.
(2) Showing that \mathbf{A} is not a Subset of \mathbf{B} : To show that A is not a subset of B, that is $A \nsubseteq B$, find an element $x \in A$ with x $\notin B$. (Such an x is a counterexample to the claim that $x \in A$ implies $x \in B$.)
(3) Examples:

Showing that a set is or is not a subset of another set

(1) Showing that \mathbf{A} is a Subset of \mathbf{B} : To show that $A \subseteq B$, show that if x belongs to A, then \times also belongs to B.
(2) Showing that \mathbf{A} is not a Subset of \mathbf{B} : To show that A is not a subset of B, that is $A \nsubseteq B$, find an element $x \in A$ with x $\notin B$. (Such an x is a counterexample to the claim that $x \in A$ implies $x \in B$.)
(3) Examples:
(a) The set of all computer science majors at your school is a subset of all students at your school.

Showing that a set is or is not a subset of another set

(1) Showing that \mathbf{A} is a Subset of \mathbf{B} : To show that $A \subseteq B$, show that if x belongs to A, then \times also belongs to B.
(2) Showing that \mathbf{A} is not a Subset of \mathbf{B} : To show that A is not a subset of B, that is $A \nsubseteq B$, find an element $x \in A$ with x $\notin B$. (Such an x is a counterexample to the claim that $x \in A$ implies $x \in B$.)
(3) Examples:
(a) The set of all computer science majors at your school is a subset of all students at your school.
(b) The set of integers with squares less than 100 is not a subset of the set of all non-negative integers.

Another look at equality of sets

(1) Recall that two sets A and B are equal (denoted by $A=B$) iff:

$$
\forall x \quad(x \in A \leftrightarrow x \in B)
$$

Another look at equality of sets

(1) Recall that two sets A and B are equal (denoted by $A=B$) iff:

$$
\forall x \quad(x \in A \leftrightarrow x \in B)
$$

(2) That is, using logical equivalences we have that $A=B$ iff:

$$
\forall x \quad((x \in A \rightarrow x \in B) \wedge(x \in B \rightarrow x \in A))
$$

Another look at equality of sets

(1) Recall that two sets A and B are equal (denoted by $A=B$) iff:

$$
\forall x \quad(x \in A \leftrightarrow x \in B)
$$

(2) That is, using logical equivalences we have that $A=B$ iff:

$$
\forall x \quad((x \in A \rightarrow x \in B) \wedge(x \in B \rightarrow x \in A))
$$

(3) This is also equivalent to:

$$
A \subseteq B \quad \text { and } \quad B \subseteq A
$$

Proper subsets

Definition: If $A \subseteq B$, but $A \neq B$, then we say A is a proper subset of B, denoted by $A \subset B$. If $A \subset B$, then the following is true:

$$
\forall x \quad(x \in A \rightarrow x \in B) \wedge \exists x(x \in B \wedge x \notin A)
$$

Proper subsets

Definition: If $A \subseteq B$, but $A \neq B$, then we say A is a proper subset of B, denoted by $A \subset B$. If $A \subset B$, then the following is true:

$$
\forall x \quad(x \in A \rightarrow x \in B) \wedge \exists x(x \in B \wedge x \notin A)
$$

Venn Diagram for a proper subset $A \subset B$

Example: $A=\{c, f, z\}$ and $B=\{a, b, c, d, e, f, t, x, z\}$.

Plan for Part I

1. Sets

1.1 Defining sets
1.2 Venn Diagram
1.3 Set Equality
1.4 Subsets
1.5 Venn Diagrams and Truth Sets
1.6 Set Cardinality
1.7 Power Sets
1.8 Cartesian Products
2. Set Operations
2.1 Boolean Algebra
2.2 Union
2.3 Intersection
2.4 Complement
2.5 Difference
2.6 The Cardinality of the Union of Two Sets
2.7 Set Identities
2.8 Generalized Unions and Intersections

Venn diagrams and truth sets

Consider any predicate $\mathrm{P}(\mathrm{x})$ for elements x in U and its truth set $P=\{x \mid P(x)\}$.

Venn diagrams and truth sets

Consider any predicate $\mathrm{P}(\mathrm{x})$ for elements x in U and its truth set $P=\{x \mid P(x)\}$.

Venn diagrams and truth sets

Consider any predicate $\mathrm{P}(\mathrm{x})$ for elements x in U and its truth set $P=\{x \mid P(x)\}$.

Venn diagrams and truth sets

Consider any predicate $\mathrm{P}(\mathrm{x})$ for elements x in U and its truth set $P=\{x \mid P(x)\}$.

$$
\begin{aligned}
& P=\{x \mid P(x)\} \\
& \text { that is, all elements } x \text { where } \\
& P(x) \text { is true }
\end{aligned}
$$

Note that: $x \in P \equiv P(x)$

Venn diagrams and logical connectives: negations

Consider any predicate $P(x)$ for elements x in U and its truth set $P=\{x \mid P(x)\}$.

Venn diagrams and logical connectives: negations

Consider any predicate $P(x)$ for elements x in U and its truth set $P=\{x \mid P(x)\}$.

Venn diagrams and logical connectives: negations

Consider any predicate $P(x)$ for elements x in U and its truth set $P=\{x \mid P(x)\}$.

- truth set of $\{x \mid \neg P(x)\}$ all elements x where $\neg P(x)$ is true, i.e. where $P(x)$ is false

Same as complement of set P (see section 2.4)

Venn diagrams and logical connectives: negations

Consider any predicate $P(x)$ for elements x in U and its truth set $P=\{x \mid P(x)\}$.

表 - truth set of $\{x \mid \neg P(x)\}$ all elements x where $\neg P(x)$ is true, i.e. where $P(x)$ is false

Same as complement of set P (see section 2.4)
Note that: $x \notin P \equiv \neg P(x)$

Venn Diagrams and logical connectives: conjunctions

Consider two arbitrary predicates $P(x)$ and $Q(x)$ defined for elements x in U together with their corresponding truth sets $P=\{x \mid P(x)\}$ and $Q=\{x \mid Q(x)\}$.

Venn Diagrams and logical connectives: conjunctions

Consider two arbitrary predicates $P(x)$ and $Q(x)$ defined for elements x in U together with their corresponding truth sets $P=\{x \mid P(x)\}$ and $Q=\{x \mid Q(x)\}$.

Venn Diagrams and logical connectives: conjunctions

Consider two arbitrary predicates $P(x)$ and $Q(x)$ defined for elements x in U together with their corresponding truth sets $P=\{x \mid P(x)\}$ and $Q=\{x \mid Q(x)\}$.

$$
\|\|\|- \text { truth set of }
$$

$\{x \mid P(x) \wedge Q(x)\}$ that is, all
elements x where both $P(x)$
and $Q(x)$ is true

Venn Diagrams and logical connectives: conjunctions

Consider two arbitrary predicates $P(x)$ and $Q(x)$ defined for elements x in U together with their corresponding truth sets $P=\{x \mid P(x)\}$ and $Q=\{x \mid Q(x)\}$.

$$
\{\|\|\| \text { - truth set of }
$$

$\{x \mid P(x) \wedge Q(x)\}$ that is, all
elements x where both $P(x)$
\quad and $Q(x)$ is true

Same as intersection of sets P and Q (see section 2.3)

Venn Diagrams and logical connectives: disjunctions

Consider two arbitrary predicates $P(x)$ and $Q(x)$ defined for elements x in U together with their corresponding truth sets $P=\{x \mid P(x)\}$ and $Q=\{x \mid Q(x)\}$.

||l|l|l|l| - truth set
$\{x \mid P(x) \vee Q(x)\}$ that is, all elements x where $P(x)$ or

$$
Q(x) \text { is true }
$$

Same as union of sets P and Q (see section 2.2)

Venn diagrams and logical connectives: implications

Consider two arbitrary predicates $P(x)$ and $Q(x)$ defined for elements x in U together with their corresponding truth sets $P=\{x \mid P(x)\}$ and $Q=\{x \mid Q(x)\}$.

$$
\begin{aligned}
& \|\|\| \text { - truth set }\{x \mid P(x) \rightarrow \\
& Q(x)\}
\end{aligned}
$$

$$
\text { (all } x \text { where implication } P(x) \rightarrow Q(x) \text { is true) }
$$

W/In - set where implication $P(x) \rightarrow Q(x)$ is false:

$$
\begin{aligned}
\{x \mid \neg(\neg P(x) \vee Q(x))\} & =\{x \mid P(x) \wedge \neg Q(x)\} \\
& =\{x \mid x \in P \wedge x \notin Q\}
\end{aligned}
$$

Venn diagrams and logical connectives: implications

Consider two arbitrary predicates $P(x)$ and $Q(x)$ defined for elements x in U together with their corresponding truth sets $P=\{x \mid P(x)\}$ and $Q=\{x \mid Q(x)\}$.

$$
\begin{aligned}
& \|\ln \| \text { - truth set }\{x \mid P(x) \rightarrow \\
& Q(x)\}
\end{aligned}
$$

$$
\text { (all } x \text { where implication } P(x) \rightarrow Q(x) \text { is true) }
$$

W/I/ - set where implication $P(x) \rightarrow Q(x)$ is false:

$$
\begin{aligned}
\{x \mid \neg(\neg P(x) \vee Q(x))\} & =\{x \mid P(x) \wedge \neg Q(x)\} \\
& =\{x \mid x \in P \wedge x \notin Q\}
\end{aligned}
$$

(1) Remember:

$$
p \rightarrow q \equiv \neg p \vee q
$$

Venn diagrams and logical connectives: implications

Consider two arbitrary predicates $P(x)$ and $Q(x)$ defined for elements x in U together with their corresponding truth sets $P=\{x \mid P(x)\}$ and $Q=\{x \mid Q(x)\}$.

$$
\begin{aligned}
& \text { - truth set }\{x \mid P(x) \rightarrow \\
& Q(x)\}
\end{aligned}
$$

$$
\text { (all } x \text { where implication } P(x) \rightarrow Q(x) \text { is true) }
$$

W/:/ - set where implication $P(x) \rightarrow Q(x)$ is false:

$$
\begin{aligned}
\{x \mid \neg(\neg P(x) \vee Q(x))\} & =\{x \mid P(x) \wedge \neg Q(x)\} \\
& =\{x \mid x \in P \wedge x \notin Q\}
\end{aligned}
$$

(1) Remember:

$$
p \rightarrow q \equiv \neg p \vee q
$$

(2) Thus, we have:

$$
\{x \mid P(x) \rightarrow Q(x)\}=\{x \mid \neg P(x) \vee Q(x)\}=\{x \mid x \notin P \vee x \in Q\}
$$

Venn diagram and implication: special case

Venn diagram and implication: special case

(1) Assume that implication $P(x) \rightarrow Q(x)$ is true for all x.

Venn diagram and implication: special case

(1) Assume that implication $P(x) \rightarrow Q(x)$ is true for all x.
(2) That is, assume $\{x \mid P(x) \rightarrow Q(x)\} \equiv U$ is true.

Venn diagram and implication: special case

(1) Assume that implication $P(x) \rightarrow Q(x)$ is true for all x.
(2) That is, assume $\{x \mid P(x) \rightarrow Q(x)\} \equiv U$ is true.
(3) Note that, from the definition of subsets:

$$
\forall x(P(x) \rightarrow Q(x)) \equiv \forall x(x \in P \rightarrow x \in Q) \equiv P \subseteq Q
$$

Venn diagram and implication: special case

(1) Assume that implication $P(x) \rightarrow Q(x)$ is true for all x.
(2) That is, assume $\{x \mid P(x) \rightarrow Q(x)\} \equiv U$ is true.
(3) Note that, from the definition of subsets:

$$
\forall x(P(x) \rightarrow Q(x)) \equiv \forall x(x \in P \rightarrow x \in Q) \equiv P \subseteq Q
$$

Venn diagram for $P \subseteq Q$ often shows P as a proper subset of Q, thus assuming $P \neq Q$

Venn diagram and implication: special case

(1) Assume that implication $P(x) \rightarrow Q(x)$ is true for all x.
(2) That is, assume $\{x \mid P(x) \rightarrow Q(x)\} \equiv U$ is true.
(3) Note that, from the definition of subsets:

$$
\forall x(P(x) \rightarrow Q(x)) \equiv \forall x(x \in P \rightarrow x \in Q) \equiv P \subseteq Q
$$

(all x where implication $P(x) \rightarrow Q(x)$ is true)

Venn diagram for $P \subseteq Q$ often shows P as a proper subset of Q, thus assuming $P \neq Q$

Venn diagram and implication: special case

(1) Assume that implication $P(x) \rightarrow Q(x)$ is true for all x.
(2) That is, assume $\{x \mid P(x) \rightarrow Q(x)\} \equiv U$ is true.
(3) Note that, from the definition of subsets:

$$
\forall x(P(x) \rightarrow Q(x)) \equiv \forall x(x \in P \rightarrow x \in Q) \equiv P \subseteq Q
$$

${ }_{\text {Ninl\| }}^{\text {- }}$ - truth set	
(all x where implication $P(x) \rightarrow Q(x)$ is true)	
	t
where	implication
$P(x) \rightarrow$	$\rightarrow Q(x)$ is false:

Venn diagram for $P \subseteq Q$ often shows P as a empty in this case: $\{x \mid x \in P \wedge x \notin Q\}=\varnothing$ proper subset of Q, thus assuming $P \neq Q$

Venn diagram and implication: special case

(1) Assume that implication $P(x) \rightarrow Q(x)$ is true for all x.
(2) That is, assume $\{x \mid P(x) \rightarrow Q(x)\} \equiv U$ is true.
(3) Note that, from the definition of subsets:

$$
\forall x(P(x) \rightarrow Q(x)) \equiv \forall x(x \in P \rightarrow x \in Q) \equiv P \subseteq Q
$$

Venn diagram for $P \subseteq Q$ often shows P as a empty in this case: $\{x \mid x \in P \wedge x \notin Q\}=\varnothing$ proper subset of Q, thus assuming $P \neq Q$

$$
\forall x(P(x) \rightarrow Q(x)) \equiv \forall x(\neg P(x) \vee Q(x))
$$

Venn diagram and implication: special case

(1) Assume that implication $P(x) \rightarrow Q(x)$ is true for all x.
(2) That is, assume $\{x \mid P(x) \rightarrow Q(x)\} \equiv U$ is true.
(3) Note that, from the definition of subsets:

$$
\forall x(P(x) \rightarrow Q(x)) \equiv \forall x(x \in P \rightarrow x \in Q) \equiv P \subseteq Q
$$

$$
\begin{aligned}
& \text { (all } x \text { where implication } P(x) \rightarrow Q(x) \text { is true) } \\
& \text { - set } \\
& \text { where implication } \\
& P(x) \rightarrow Q(x) \text { is false: }
\end{aligned}
$$

Venn diagram for $P \subseteq Q$ often shows P as a empty in this case: $\{x \mid x \in P \wedge x \notin Q\}=\varnothing$ proper subset of Q, thus assuming $P \neq Q$

$$
\begin{aligned}
\forall x(P(x) \rightarrow Q(x)) & \equiv \forall x(\neg P(x) \vee Q(x)) \\
& \equiv \neg \exists x(P(x) \wedge \neg Q(x))
\end{aligned}
$$

Venn diagram and implication: special case

(1) Assume that implication $P(x) \rightarrow Q(x)$ is true for all x.
(2) That is, assume $\{x \mid P(x) \rightarrow Q(x)\} \equiv U$ is true.
(3) Note that, from the definition of subsets:

$$
\forall x(P(x) \rightarrow Q(x)) \equiv \forall x(x \in P \rightarrow x \in Q) \equiv P \subseteq Q
$$

$$
\begin{aligned}
& \begin{array}{l|l|l}
\text { truth } & \text { set } \\
\{x \mid & P(x) \xrightarrow{\rightarrow} Q(x)\}
\end{array} \\
& \text { (all } x \text { where implication } P(x) \rightarrow Q(x) \text { is true) } \\
& \text { - set } \\
& \text { where implication } \\
& P(x) \rightarrow Q(x) \text { is false: }
\end{aligned}
$$

Venn diagram for $P \subseteq Q$ often shows P as a empty in this case: $\{x \mid x \in P \wedge x \notin Q\}=\varnothing$ proper subset of Q, thus assuming $P \neq Q$

$$
\begin{aligned}
\forall x(P(x) \rightarrow Q(x)) & \equiv \forall x(\neg P(x) \vee Q(x)) \\
& \equiv \neg \exists x(P(x) \wedge \neg Q(x)) \\
& \equiv \neg \exists x(x \in P \wedge x \notin Q)
\end{aligned}
$$

Venn diagram and implication: special case

(1) Assume that implication $P(x) \rightarrow Q(x)$ is true for all x.
(3) Note that, from the definition of subsets:

$$
\forall x(P(x) \rightarrow Q(x)) \equiv \forall x(x \in P \rightarrow x \in Q) \equiv P \subseteq Q
$$

(all x where implication $P(x) \rightarrow Q(x)$ is true)	
	set
where	implication
$P(x) \rightarrow$	$\rightarrow Q(x)$ is false:

Venn diagram for $P \subseteq Q$ often shows P as a empty in this case: $\{x \mid x \in P \wedge x \notin Q\}=\varnothing$ proper subset of Q, thus assuming $P \neq Q$

Venn diagram and implication: special case

(1) Assume that implication $P(x) \rightarrow Q(x)$ is true for all x.
(3) Note that, from the definition of subsets:

$$
\forall x(P(x) \rightarrow Q(x)) \equiv \forall x(x \in P \rightarrow x \in Q) \equiv P \subseteq Q
$$

Venn diagram for $P \subseteq Q$ often shows P as a empty in this case: $\{x \mid x \in P \wedge x \notin Q\}=\varnothing$ proper subset of Q, thus assuming $P \neq Q$
(1) This gives intuitive interpretation for logical "implications":

Venn diagram and implication: special case

(1) Assume that implication $P(x) \rightarrow Q(x)$ is true for all x.
(2) That is, assume $\{x \mid P(x) \rightarrow Q(x)\} \equiv U$ is true.
(3) Note that, from the definition of subsets:

$$
\forall x(P(x) \rightarrow Q(x)) \equiv \forall x(x \in P \rightarrow x \in Q) \equiv P \subseteq Q
$$

linlil ${ }^{\text {a }}$ truth set$\{x \mid P(x) \rightarrow Q(x)\}$	
(all x where implication $P(x) \rightarrow Q(x)$ is true)	
	- set
where	implication
$P(x) \rightarrow$	$\rightarrow Q(x)$ is false:

Venn diagram for $P \subseteq Q$ often shows P as a empty in this case: $\{x \mid x \in P \wedge x \notin Q\}=\varnothing$ proper subset of Q, thus assuming $P \neq Q$
(1) This gives intuitive interpretation for logical "implications":
(2) Proving theorems of the form $\forall x(P(x) \rightarrow Q(x))$ is equivalent to proving the subset relationship for the truth sets $P \subseteq Q$.

Venn diagram and logical connectives: biconditional

(1) Similarly one can show that

$$
\forall x P(x) \leftrightarrow Q(x) \equiv P=Q
$$

Venn diagram and logical connectives: biconditional

(1) Similarly one can show that

$$
\forall x P(x) \leftrightarrow Q(x) \equiv P=Q
$$

(2) that is,

$$
\forall x(P(x) \rightarrow Q(x) \wedge Q(x) \rightarrow P(x)) \equiv P \subseteq Q \wedge Q \subseteq P
$$

Venn diagram and logical connectives: biconditional

(1) Similarly one can show that

$$
\forall x P(x) \leftrightarrow Q(x) \equiv P=Q
$$

(2) that is,

$$
\forall x(P(x) \rightarrow Q(x) \wedge Q(x) \rightarrow P(x)) \equiv P \subseteq Q \wedge Q \subseteq P
$$

Venn diagram and logical connectives: biconditional

(1) Similarly one can show that

$$
\forall x P(x) \leftrightarrow Q(x) \equiv P=Q
$$

(2) that is,

$$
\forall x(P(x) \rightarrow Q(x) \wedge Q(x) \rightarrow P(x)) \equiv P \subseteq Q \wedge Q \subseteq P
$$

$$
\begin{aligned}
& \text { truth set of } \\
& \{x \mid P(x) \leftrightarrow Q(x)\}
\end{aligned}
$$

$$
\text { assuming } \forall x(P(x) \leftrightarrow Q(x)) \text { is true }
$$

Venn diagram and logical connectives: biconditional

(1) Similarly one can show that

$$
\forall x P(x) \leftrightarrow Q(x) \equiv P=Q
$$

(2) that is,

$$
\forall x(P(x) \rightarrow Q(x) \wedge Q(x) \rightarrow P(x)) \equiv P \subseteq Q \wedge Q \subseteq P
$$

$$
\begin{aligned}
& \text { truth set of } \\
& \{x \mid P(x) \leftrightarrow Q(x)\}
\end{aligned}
$$

$$
\text { assuming } \forall x(P(x) \leftrightarrow Q(x)) \text { is true }
$$

(1) This gives intuitive interpretation for "biconditional":

Venn diagram and logical connectives: biconditional

(1) Similarly one can show that

$$
\forall x P(x) \leftrightarrow Q(x) \equiv P=Q
$$

(2) that is,

$$
\forall x(P(x) \rightarrow Q(x) \wedge Q(x) \rightarrow P(x)) \equiv P \subseteq Q \wedge Q \subseteq P
$$

$$
\begin{aligned}
& \text { truth set of } \\
& \{x \mid P(x) \leftrightarrow Q(x)\}
\end{aligned}
$$

$$
\text { assuming } \forall x(P(x) \leftrightarrow Q(x)) \text { is true }
$$

(1) This gives intuitive interpretation for "biconditional":
(2) Proving theorems of the form $\forall x(P(x) \leftrightarrow Q(x))$ is equivalent to proving the subset relationship for the truth sets $P=Q$.

Plan for Part I

1. Sets
1.1 Defining sets
1.2 Venn Diagram
1.3 Set Equality
1.4 Subsets
1.5 Venn Diagrams and Truth Sets
1.6 Set Cardinality
1.7 Power Sets
1.8 Cartesian Products
2. Set Operations
2.1 Boolean Algebra
2.2 Union
2.3 Intersection
2.4 Complement
2.5 Difference
2.6 The Cardinality of the Union of Two Sets
2.7 Set Identities
2.8 Generalized Unions and Intersections

Set cardinality

Definition: If there are exactly n (distinct) elements in S where n is a non-negative integer, we say that S is finite. Otherwise, the set S is said infinite.

Set cardinality

Definition: If there are exactly n (distinct) elements in S where n is a non-negative integer, we say that S is finite. Otherwise, the set S is said infinite.

Definition: The cardinality of a finite set A, denoted by $|A|$, is the number of (distinct) elements of A.

Examples:

Set cardinality

Definition: If there are exactly n (distinct) elements in S where n is a non-negative integer, we say that S is finite. Otherwise, the set S is said infinite.

Definition: The cardinality of a finite set A, denoted by $|A|$, is the number of (distinct) elements of A.

Examples:

(1) $|\varnothing|=0$

Set cardinality

Definition: If there are exactly n (distinct) elements in S where n is a non-negative integer, we say that S is finite. Otherwise, the set S is said infinite.

Definition: The cardinality of a finite set A, denoted by $|A|$, is the number of (distinct) elements of A.

Examples:

(1) $|\varnothing|=0$
(2) Let S be the letters of the English alphabet. Then $|S|=26$

Set cardinality

Definition: If there are exactly n (distinct) elements in S where n is a non-negative integer, we say that S is finite. Otherwise, the set S is said infinite.

Definition: The cardinality of a finite set A, denoted by $|A|$, is the number of (distinct) elements of A.

Examples:

(1) $|\varnothing|=0$
(2) Let S be the letters of the English alphabet. Then $|S|=26$
(3) $|\{1,2,3\}|=3$

Set cardinality

Definition: If there are exactly n (distinct) elements in S where n is a non-negative integer, we say that S is finite. Otherwise, the set S is said infinite.

Definition: The cardinality of a finite set A, denoted by $|A|$, is the number of (distinct) elements of A.

Examples:

(1) $|\varnothing|=0$
(2) Let S be the letters of the English alphabet. Then $|S|=26$
(3) $|\{1,2,3\}|=3$
(4) $|\{\varnothing\}|=1$

Set cardinality

Definition: If there are exactly n (distinct) elements in S where n is a non-negative integer, we say that S is finite. Otherwise, the set S is said infinite.

Definition: The cardinality of a finite set A, denoted by $|A|$, is the number of (distinct) elements of A.

Examples:

(1) $|\varnothing|=0$
(2) Let S be the letters of the English alphabet. Then $|S|=26$
(3) $|\{1,2,3\}|=3$
(4) $|\{\varnothing\}|=1$
(5) The set of integers is infinite.

Plan for Part I

1. Sets
1.1 Defining sets
1.2 Venn Diagram
1.3 Set Equality
1.4 Subsets
1.5 Venn Diagrams and Truth Sets
1.6 Set Cardinality

1.7 Power Sets

1.8 Cartesian Products
2. Set Operations
2.1 Boolean Algebra
2.2 Union
2.3 Intersection
2.4 Complement
2.5 Difference
2.6 The Cardinality of the Union of Two Sets
2.7 Set Identities
2.8 Generalized Unions and Intersections

Power sets

Definition: The set of all subsets of a set A, denoted $\mathcal{P}(A)$, is called the power set of A.

Power sets

Definition: The set of all subsets of a set A, denoted $\mathcal{P}(A)$, is called the power set of A.

Example: If $A=\{\mathrm{a}, \mathrm{b}\}$ then:

$$
\mathcal{P}(A)=\{\varnothing,\{a\},\{b\},\{a, b\}\}
$$

Power sets

Definition: The set of all subsets of a set A, denoted $\mathcal{P}(A)$, is called the power set of A.

Example: If $A=\{a, b\}$ then:

$$
\mathcal{P}(A)=\{\varnothing,\{a\},\{b\},\{a, b\}\}
$$

(1) If a set has n elements, then the cardinality of the power set is 2^{n}.

Power sets

Definition: The set of all subsets of a set A, denoted $\mathcal{P}(A)$, is called the power set of A.

Example: If $A=\{a, b\}$ then:

$$
\mathcal{P}(A)=\{\varnothing,\{a\},\{b\},\{a, b\}\}
$$

(1) If a set has n elements, then the cardinality of the power set is 2^{n}.
(2) In Chapters 5 and 6 , we will discuss different ways to show this.

Plan for Part I

1. Sets
1.1 Defining sets
1.2 Venn Diagram
1.3 Set Equality
1.4 Subsets
1.5 Venn Diagrams and Truth Sets
1.6 Set Cardinality
1.7 Power Sets
1.8 Cartesian Products
2. Set Operations
2.1 Boolean Algebra
2.2 Union
2.3 Intersection
2.4 Complement
2.5 Difference
2.6 The Cardinality of the Union of Two Sets
2.7 Set Identities
2.8 Generalized Unions and Intersections

Tuples

(1) The ordered n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is the ordered collection that has a_{1} as its first element and a_{2} as its second element and so on until a_{n} as its last element.

Tuples

(1) The ordered n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is the ordered collection that has a_{1} as its first element and a_{2} as its second element and so on until a_{n} as its last element.
(2) Two n-tuples are equal if and only if their corresponding elements are equal.

Tuples

(1) The ordered n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is the ordered collection that has a_{1} as its first element and a_{2} as its second element and so on until a_{n} as its last element.
(2) Two n-tuples are equal if and only if their corresponding elements are equal.
(3) 2-tuples are called ordered pairs, e.g. (a_{1}, a_{2})

Tuples

(1) The ordered n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is the ordered collection that has a_{1} as its first element and a_{2} as its second element and so on until a_{n} as its last element.
(2) Two n-tuples are equal if and only if their corresponding elements are equal.
(3) 2-tuples are called ordered pairs, e.g. (a_{1}, a_{2})
(4) The ordered pairs (a, b) and (c, d) are equal if and only if $a=c$ and $b=d$.

Cartesian Product

Definition: The Cartesian Product of two sets A and B, denoted by $A \times B$ is the set of ordered pairs (a, b) where $a \in A$ and $b \in B$.

Cartesian Product

Definition: The Cartesian Product of two sets A and B, denoted by $A \times B$ is the set of ordered pairs (a, b) where $a \in A$ and $b \in B$.

Example:

$$
\begin{gathered}
A=\{a, b\}, B=\{1,2,3\} \\
A \times B=\{(a, 1),(a, 2),(a, 3),(b, 1),(b, 2),(b, 3)\}
\end{gathered}
$$

Cartesian Product

Definition: The Cartesian Product of two sets A and B, denoted by $A \times B$ is the set of ordered pairs (a, b) where $a \in A$ and $b \in B$.

Example:

$$
\begin{gathered}
A=\{a, b\}, B=\{1,2,3\} \\
A \times B=\{(a, 1),(a, 2),(a, 3),(b, 1),(b, 2),(b, 3)\}
\end{gathered}
$$

Definition: A subset R of the Cartesian product $A \times B$ is called a relation from the set A to the set B.

Cartesian Product

Definition: The Cartesian Product of two sets A and B, denoted by $A \times B$ is the set of ordered pairs (a, b) where $a \in A$ and $b \in B$.

Example:

$$
\begin{gathered}
A=\{a, b\}, B=\{1,2,3\} \\
A \times B=\{(a, 1),(a, 2),(a, 3),(b, 1),(b, 2),(b, 3)\}
\end{gathered}
$$

Definition: A subset R of the Cartesian product $A \times B$ is called a relation from the set A to the set B. Relations will be covered in depth in Chapter 9.

Cartesian product

Definition: The Cartesian products of the sets $A_{1}, A_{2}, \ldots, A_{n}$ denoted by $A_{1} \times A_{2} \times \cdots \times A_{n}$ is the set of ordered n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ where a_{i} belongs to A_{i} for $i=1,2, \ldots, n$.

$$
A_{1} \times A_{2} \times \cdots \times A_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in A_{i} \text { for } i=1,2, \ldots, n\right\}
$$

Cartesian product

Definition: The Cartesian products of the sets $A_{1}, A_{2}, \ldots, A_{n}$ denoted by $A_{1} \times A_{2} \times \cdots \times A_{n}$ is the set of ordered n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ where a_{i} belongs to A_{i} for $i=1,2, \ldots, n$.

$$
A_{1} \times A_{2} \times \cdots \times A_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in A_{i} \text { for } i=1,2, \ldots, n\right\}
$$

Question: What is $A \times B \times C$ where $A=\{0,1\}, B=\{1,2\}$ and C $=\{0,1,2\}$?

Cartesian product

Definition: The Cartesian products of the sets $A_{1}, A_{2}, \ldots, A_{n}$ denoted by $A_{1} \times A_{2} \times \cdots \times A_{n}$ is the set of ordered n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ where a_{i} belongs to A_{i} for $i=1,2, \ldots, n$.

$$
A_{1} \times A_{2} \times \cdots \times A_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in A_{i} \text { for } i=1,2, \ldots, n\right\}
$$

Question: What is $A \times B \times C$ where $A=\{0,1\}, B=\{1,2\}$ and C $=\{0,1,2\}$?

Solution: $A \times B \times C=\{(0,1,0),(0,1,1),(0,1,2),(0,2,0),(0,2,1)$, $(0,2,2),(1,1,0),(1,1,1),(1,1,2),(1,2,0),(1,2,1),(1,2,2)\}$

Plan for Part I

1. Sets

1.1 Defining sets
1.2 Venn Diagram
1.3 Set Equality
1.4 Subsets
1.5 Venn Diagrams and Truth Sets
1.6 Set Cardinality
1.7 Power Sets
1.8 Cartesian Products
2. Set Operations
2.1 Boolean Algebra
2.2 Union
2.3 Intersection
2.4 Complement
2.5 Difference
2.6 The Cardinality of the Union of Two Sets
2.7 Set Identities
2.8 Generalized Unions and Intersections

Plan for Part I

1. Sets
1.1 Defining sets
1.2 Venn Diagram
1.3 Set Equality
1.4 Subsets
1.5 Venn Diagrams and Truth Sets
1.6 Set Cardinality
1.7 Power Sets
1.8 Cartesian Products
2. Set Operations
2.1 Boolean Algebra
2.2 Union
2.3 Intersection
2.4 Complement
2.5 Difference
2.6 The Cardinality of the Union of Two Sets
2.7 Set Identities
2.8 Generalized Unions and Intersections

Boolean Algebra

(1) Propositional calculus and set theory are both instances of an algebraic system called a Boolean Algebra. This is discussed in CS2209.

Boolean Algebra

(1) Propositional calculus and set theory are both instances of an algebraic system called a Boolean Algebra. This is discussed in CS2209.
(2) The operators in set theory are analogous to corresponding operators in propositional calculus.

Boolean Algebra

(1) Propositional calculus and set theory are both instances of an algebraic system called a Boolean Algebra. This is discussed in CS2209.
(2) The operators in set theory are analogous to corresponding operators in propositional calculus.
(3) As always there must be a universal set U.

Boolean Algebra

(1) Propositional calculus and set theory are both instances of an algebraic system called a Boolean Algebra. This is discussed in CS2209.
(2) The operators in set theory are analogous to corresponding operators in propositional calculus.
(3) As always there must be a universal set U.
(4) All sets A, B, \ldots shown in the next slides are assumed to be subsets of U.

Plan for Part I

1. Sets
1.1 Defining sets
1.2 Venn Diagram
1.3 Set Equality
1.4 Subsets
1.5 Venn Diagrams and Truth Sets
1.6 Set Cardinality
1.7 Power Sets
1.8 Cartesian Products
2. Set Operations
2.1 Boolean Algebra
2.2 Union
2.3 Intersection
2.4 Complement
2.5 Difference
2.6 The Cardinality of the Union of Two Sets
2.7 Set Identities
2.8 Generalized Unions and Intersections

Union

(1) Definition: Let A and B be sets. The union of the sets A and B, denoted by $A \cup B$, is the set:

$$
\{x \mid x \in A \vee x \in B\}
$$

Union

(1) Definition: Let A and B be sets. The union of the sets A and B, denoted by $A \cup B$, is the set:

$$
\{x \mid x \in A \vee x \in B\}
$$

Venn Diagram for $A \cup B$

Union

(1) Definition: Let A and B be sets. The union of the sets A and B, denoted by $A \cup B$, is the set:

$$
\{x \mid x \in A \vee x \in B\}
$$

(2) Example: What is $\{1,2,3\} \cup\{3,4,5\}$?

Venn Diagram for $A \cup B$

Union

(1) Definition: Let A and B be sets. The union of the sets A and B, denoted by $A \cup B$, is the set:

$$
\{x \mid x \in A \vee x \in B\}
$$

(2) Example: What is $\{1,2,3\} \cup\{3,4,5\}$?

Venn Diagram for $A \cup B$

Solution: $\{1,2,3,4,5\}$

Union

(1) Definition: Let A and B be sets. The union of the sets A and B, denoted by $A \cup B$, is the set:

$$
\{x \mid x \in A \vee x \in B\}
$$

(2) Example: What is $\{1,2,3\} \cup\{3,4,5\}$?

Venn Diagram for $A \cup B$

Solution: $\{1,2,3,4,5\}$

Union is analogous to disjunction, see earlier slides.

Plan for Part I

1. Sets
1.1 Defining sets
1.2 Venn Diagram
1.3 Set Equality
1.4 Subsets
1.5 Venn Diagrams and Truth Sets
1.6 Set Cardinality
1.7 Power Sets
1.8 Cartesian Products
2. Set Operations
2.1 Boolean Algebra
2.2 Union
2.3 Intersection
2.4 Complement
2.5 Difference
2.6 The Cardinality of the Union of Two Sets
2.7 Set Identities
2.8 Generalized Unions and Intersections

Intersection

(1) Definition: The intersection of sets A and B, denoted by $A \cap$ B, is:

$$
\{x \mid x \in A \wedge x \in B\}
$$

Intersection

(1) Definition: The intersection of sets A and B, denoted by $A \cap$ B, is:

$$
\{x \mid x \in A \wedge x \in B\}
$$

(2) If the intersection is empty, then A and B are said to be disjoint.

Intersection

(1) Definition: The intersection of sets A and B, denoted by $A \cap$ B, is:

$$
\{x \mid x \in A \wedge x \in B\}
$$

(2) If the intersection is empty, then A and B are said to be disjoint.

Venn Diagram for $A \cap B$

Intersection

(1) Definition: The intersection of sets A and B, denoted by $A \cap$ B, is:

$$
\{x \mid x \in A \wedge x \in B\}
$$

(2) If the intersection is empty, then A and B are said to be disjoint.
(1) Example: What is $\{1,2,3\} \cap\{3,4,5\}$?

Venn Diagram for $A \cap B$

Intersection

(1) Definition: The intersection of sets A and B, denoted by $A \cap$ B, is:

$$
\{x \mid x \in A \wedge x \in B\}
$$

(2) If the intersection is empty, then A and B are said to be disjoint.
(1) Example: What is $\{1,2,3\} \cap\{3,4,5\}$?

Solution: $\{3\}$

Venn Diagram for $A \cap B$

Intersection

(1) Definition: The intersection of sets A and B, denoted by $A \cap$ B, is:

$$
\{x \mid x \in A \wedge x \in B\}
$$

(2) If the intersection is empty, then A and B are said to be disjoint.
(1) Example: What is $\{1,2,3\} \cap\{3,4,5\}$?

Solution: $\{3\}$
(1) Example: What is $\{1,2,3\} \cap\{4,5,6\}$?

Venn Diagram for $A \cap B$

Intersection

(1) Definition: The intersection of sets A and B, denoted by $A \cap$ B, is:

$$
\{x \mid x \in A \wedge x \in B\}
$$

(2) If the intersection is empty, then A and B are said to be disjoint.
(1) Example: What is $\{1,2,3\} \cap\{3,4,5\}$?

Solution: $\{3\}$
(1) Example: What is $\{1,2,3\} \cap\{4,5,6\}$?

Venn Diagram for $A \cap B$

Solution: \varnothing
Intersection is analogous to conjunction, see earlier slides.

Plan for Part I

1. Sets
1.1 Defining sets
1.2 Venn Diagram
1.3 Set Equality
1.4 Subsets
1.5 Venn Diagrams and Truth Sets
1.6 Set Cardinality
1.7 Power Sets
1.8 Cartesian Products
2. Set Operations
2.1 Boolean Algebra
2.2 Union
2.3 Intersection
2.4 Complement
2.5 Difference
2.6 The Cardinality of the Union of Two Sets
2.7 Set Identities
2.8 Generalized Unions and Intersections

Complement

Definition: If A is a set, then the complement of the A (with respect to U), denoted by \bar{A} is the set:

$$
\bar{A}=\{x \in U \mid x \notin A\}
$$

(The complement of A is sometimes denoted by A^{c}.)

Complement

Definition: If A is a set, then the complement of the A (with respect to U), denoted by \bar{A} is the set:

$$
\bar{A}=\{x \in U \mid x \notin A\}
$$

(The complement of A is sometimes denoted by A^{c}.)

Complement

Definition: If A is a set, then the complement of the A (with respect to U), denoted by \bar{A} is the set:

$$
\bar{A}=\{x \in U \mid x \notin A\}
$$

(The complement of A is sometimes denoted by A^{c}.)

Example: If U is the positive integers less than 100, what is the complement of $\{x \mid x>70\} ?$

Complement

Definition: If A is a set, then the complement of the A (with respect to U), denoted by \bar{A} is the set:

$$
\bar{A}=\{x \in U \mid x \notin A\}
$$

(The complement of A is sometimes denoted by A^{c}.)

Example: If U is the positive integers less than 100, what is the complement of $\{x \mid x>70\} ?$

Solution: $\{x \mid x \leq 70\}$

Venn Diagram for complement

Complement

Definition: If A is a set, then the complement of the A (with respect to U), denoted by \bar{A} is the set:

$$
\bar{A}=\{x \in U \mid x \notin A\}
$$

(The complement of A is sometimes denoted by A^{c}.)

Example: If U is the positive integers less than 100, what is the complement of $\{x \mid x>70\} ?$

Solution: $\{x \mid x \leq 70\}$

Venn Diagram for complement

Complement is analogous to negation, see earlier.

Plan for Part I

1. Sets
1.1 Defining sets
1.2 Venn Diagram
1.3 Set Equality
1.4 Subsets
1.5 Venn Diagrams and Truth Sets
1.6 Set Cardinality
1.7 Power Sets
1.8 Cartesian Products
2. Set Operations
2.1 Boolean Algebra
2.2 Union
2.3 Intersection
2.4 Complement
2.5 Difference
2.6 The Cardinality of the Union of Two Sets
2.7 Set Identities
2.8 Generalized Unions and Intersections

Difference

Definition: Let A and B be sets. The difference of A and B, denoted by $A-B$, is the set containing the elements of A that are not in B. The difference of A and B is also called the complement of B with respect to A.

$$
A-B=\{x \mid x \in A \wedge x \notin B\}=A \cap \bar{B}
$$

Difference

Definition: Let A and B be sets. The difference of A and B, denoted by $A-B$, is the set containing the elements of A that are not in B. The difference of A and B is also called the complement of B with respect to A.

$$
A-B=\{x \mid x \in A \wedge x \notin B\}=A \cap \bar{B}
$$

Difference

Definition: Let A and B be sets. The difference of A and B, denoted by $A-B$, is the set containing the elements of A that are not in B. The difference of A and B is also called the complement of B with respect to A.

$$
A-B=\{x \mid x \in A \wedge x \notin B\}=A \cap \bar{B}
$$

Venn Diagram for $A-B$

Note: $\bar{A}=U-A$

Plan for Part I

1.1 Defining sets
1.2 Venn Diagram
1.3 Set Equality
1.4 Subsets
1.5 Venn Diagrams and Truth Sets
1.6 Set Cardinality
1.7 Power Sets
1.8 Cartesian Products
2. Set Operations
2.1 Boolean Algebra
2.2 Union
2.3 Intersection
2.4 Complement
2.5 Difference
2.6 The Cardinality of the Union of Two Sets
2.7 Set Identities
2.8 Generalized Unions and Intersections

The cardinality of the union of two sets

(1) Inclusion-Exclusion:

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

Venn Diagram for $A, B, A \cap B, A \cup B$

The cardinality of the union of two sets

(1) Inclusion-Exclusion:

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

Venn Diagram for $A, B, A \cap B, A \cup B$
(1) Example:

The cardinality of the union of two sets

(1) Inclusion-Exclusion:

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

Venn Diagram for $A, B, A \cap B, A \cup B$
(1) Example:
(a) Let A be the math majors in your class and B be the CS majors in your class.

The cardinality of the union of two sets

(1) Inclusion-Exclusion:

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

Venn Diagram for $A, B, A \cap B, A \cup B$
(1) Example:
(a) Let A be the math majors in your class and B be the CS majors in your class.
(b) To count the number of students in your class who are either math majors or CS majors, add the number of math majors and the number of CS majors, and subtract the number of joint CS/math majors.

The cardinality of the union of two sets

(1) Inclusion-Exclusion:

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

Venn Diagram for $A, B, A \cap B, A \cup B$
(1) Example:
(a) Let A be the math majors in your class and B be the CS majors in your class.
(b) To count the number of students in your class who are either math majors or CS majors, add the number of math majors and the number of CS majors, and subtract the number of joint CS/math majors.
C We will return to this principle in Chapter 6 and Chapter 8, where we will derive a formula for the cardinality of the union of n sets, where n is a positive integer.

Review questions

Example: Given $U=\{0,1,2,3,4,5,6,7,8,9,10\}$,
$A=\{1,2,3,4,5\}, B=\{4,5,6,7,8\}$ solve the following:
(1) $A \cup B$

Review questions

Example: Given $U=\{0,1,2,3,4,5,6,7,8,9,10\}$,
$A=\{1,2,3,4,5\}, B=\{4,5,6,7,8\}$ solve the following:
(1) $A \cup B$

Solution:

\{1,2,3,4,5,6,7,8\}

Review questions

Example: Given $U=\{0,1,2,3,4,5,6,7,8,9,10\}$,
$A=\{1,2,3,4,5\}, B=\{4,5,6,7,8\}$ solve the following:
(1) $A \cup B$

Solution:

$\{1,2,3,4,5,6,7,8\}$
(2) $A \cap B$

Review questions

Example: Given $U=\{0,1,2,3,4,5,6,7,8,9,10\}$,
$A=\{1,2,3,4,5\}, B=\{4,5,6,7,8\}$ solve the following:
(1) $A \cup B$

Solution:
$\{1,2,3,4,5,6,7,8\}$
(2) $A \cap B$

Solution: $\{4,5\}$

Review questions

Example: Given $U=\{0,1,2,3,4,5,6,7,8,9,10\}$,
$A=\{1,2,3,4,5\}, B=\{4,5,6,7,8\}$ solve the following:
(1) $A \cup B$

Solution:
$\{1,2,3,4,5,6,7,8\}$
(2) $A \cap B$

Solution: $\{4,5\}$
(3) \bar{A}

Review questions

Example: Given $U=\{0,1,2,3,4,5,6,7,8,9,10\}$,
$A=\{1,2,3,4,5\}, B=\{4,5,6,7,8\}$ solve the following:
(1) $A \cup B$

Solution:
$\{1,2,3,4,5,6,7,8\}$
(2) $A \cap B$

Solution: $\{4,5\}$
(3) \bar{A}

Solution:
$\{0,6,7,8,9,10\}$

Review questions

Example: Given $U=\{0,1,2,3,4,5,6,7,8,9,10\}$,
$A=\{1,2,3,4,5\}, B=\{4,5,6,7,8\}$ solve the following:
(1) $A \cup B$

Solution:
$\{1,2,3,4,5,6,7,8\}$
(2) $A \cap B$

Solution: $\{4,5\}$
(3) \bar{A}

Solution:
$\{0,6,7,8,9,10\}$

Review questions

Example: Given $U=\{0,1,2,3,4,5,6,7,8,9,10\}$,
$A=\{1,2,3,4,5\}, B=\{4,5,6,7,8\}$ solve the following:
(1) $A \cup B$

Solution:
$\{1,2,3,4,5,6,7,8\}$
(2) $A \cap B$

Solution: $\{4,5\}$
(3) \bar{A}

Solution:
$\{0,6,7,8,9,10\}$

Review questions

Example: Given $U=\{0,1,2,3,4,5,6,7,8,9,10\}$,
$A=\{1,2,3,4,5\}, B=\{4,5,6,7,8\}$ solve the following:
(1) $A \cup B$

Solution:
$\{1,2,3,4,5,6,7,8\}$
(2) $A \cap B$

Solution: $\{4,5\}$
(3) \bar{A}

Solution:
$\{0,6,7,8,9,10\}$
(4) \bar{B}

Solution:

$\{0,1,2,3,9,10\}$
(5) $A-B$

Review questions

Example: Given $U=\{0,1,2,3,4,5,6,7,8,9,10\}$,
$A=\{1,2,3,4,5\}, B=\{4,5,6,7,8\}$ solve the following:
(1) $A \cup B$

Solution:
$\{1,2,3,4,5,6,7,8\}$
(2) $A \cap B$

Solution: $\{4,5\}$
(3) \bar{A}
(4) \bar{B}

Solution:

$\{0,1,2,3,9,10\}$
(5) $A-B$

Solution: $\{1,2,3\}$

Solution:
$\{0,6,7,8,9,10\}$

Review questions

Example: Given $U=\{0,1,2,3,4,5,6,7,8,9,10\}$,
$A=\{1,2,3,4,5\}, B=\{4,5,6,7,8\}$ solve the following:
(1) $A \cup B$

Solution:
$\{1,2,3,4,5,6,7,8\}$
(2) $A \cap B$

Solution: $\{4,5\}$
(3) \bar{A}

Solution:
$\{0,6,7,8,9,10\}$
(4) \bar{B}

Solution:

$\{0,1,2,3,9,10\}$
(5) $A-B$

Solution: $\{1,2,3\}$
(6) $B-A$

Review questions

Example: Given $U=\{0,1,2,3,4,5,6,7,8,9,10\}$,
$A=\{1,2,3,4,5\}, B=\{4,5,6,7,8\}$ solve the following:
(1) $A \cup B$

Solution:
$\{1,2,3,4,5,6,7,8\}$
(2) $A \cap B$

Solution: $\{4,5\}$
(3) \bar{A}

Solution:
$\{0,6,7,8,9,10\}$
(4) \bar{B}

Solution:

$\{0,1,2,3,9,10\}$
(5) $A-B$

Solution: $\{1,2,3\}$
(6) $B-A$

Solution: $\{6,7,8\}$

Plan for Part I

1. Sets
1.1 Defining sets
1.2 Venn Diagram
1.3 Set Equality
1.4 Subsets
1.5 Venn Diagrams and Truth Sets
1.6 Set Cardinality
1.7 Power Sets
1.8 Cartesian Products
2. Set Operations
2.1 Boolean Algebra
2.2 Union
2.3 Intersection
2.4 Complement
2.5 Difference
2.6 The Cardinality of the Union of Two Sets
2.7 Set Identities
2.8 Generalized Unions and Intersections

Set identities

(1) Identity laws

$$
A \cup \varnothing=A
$$

$$
A \cap U=A
$$

Set identities

(1) Identity laws

$$
A \cup \varnothing=A
$$

$$
A \cap U=A
$$

(2) Domination laws

$$
A \cup U=U \quad A \cap \varnothing=\varnothing
$$

Set identities

(1) Identity laws

$$
A \cup \varnothing=A \quad A \cap U=A
$$

(2) Domination laws

$$
A \cup U=U \quad A \cap \varnothing=\varnothing
$$

(3) Idempotent laws

$$
A \cup A=A \quad A \cap A=A
$$

Set identities

(1) Identity laws

$$
A \cup \varnothing=A \quad A \cap U=A
$$

(2) Domination laws

$$
A \cup U=U \quad A \cap \varnothing=\varnothing
$$

(3) Idempotent laws

$$
A \cup A=A \quad A \cap A=A
$$

(4) Complementation law

$$
\overline{(\bar{A})}=A
$$

Set identities

(1) Commutative laws

$$
A \cup B=B \cup A \quad A \cap B=B \cap A
$$

Set identities

(1) Commutative laws

$$
A \cup B=B \cup A \quad A \cap B=B \cap A
$$

(2) Associative laws

$$
A \cup(B \cup C)=(A \cup B) \cup C \quad A \cap(B \cap C)=(A \cap B) \cap C
$$

Set identities

(1) Commutative laws

$$
A \cup B=B \cup A \quad A \cap B=B \cap A
$$

(2) Associative laws

$$
A \cup(B \cup C)=(A \cup B) \cup C \quad A \cap(B \cap C)=(A \cap B) \cap C
$$

(3) Distributive laws
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \quad A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$

Continued on next slide \hookrightarrow

Set identities

(1) De Morgan's laws

$$
\overline{A \cup B}=\bar{A} \cap \bar{B} \quad \overline{A \cap B}=\bar{A} \cup \bar{B}
$$

Set identities

(1) De Morgan's laws

$$
\overline{A \cup B}=\bar{A} \cap \bar{B} \quad \overline{A \cap B}=\bar{A} \cup \bar{B}
$$

(2) Absorption laws

$$
A \cup(A \cap B)=A \quad A \cap(A \cup B)=A
$$

Set identities

(1) De Morgan's laws

$$
\overline{A \cup B}=\bar{A} \cap \bar{B} \quad \overline{A \cap B}=\bar{A} \cup \bar{B}
$$

(2) Absorption laws

$$
A \cup(A \cap B)=A \quad A \cap(A \cup B)=A
$$

(3) Complement laws

$$
A \cup \bar{A}=U \quad A \cap \bar{A}=\varnothing
$$

Proving set identities

(1) Different ways to prove set identities:

Proving set identities

(1) Different ways to prove set identities:
a Prove that each set (i.e. each side of the identity) is a subset of the other.

Proving set identities

(1) Different ways to prove set identities:
a Prove that each set (i.e. each side of the identity) is a subset of the other.
(b) Use set builder notation and propositional logic.

Proving set identities

(1) Different ways to prove set identities:
a Prove that each set (i.e. each side of the identity) is a subset of the other.
(b) Use set builder notation and propositional logic.

C Membership tables

> (to be explained)

Proof of second De Morgan law

Example: Prove that $\overline{A \cap B}=\bar{A} \cup \bar{B}$

Proof of second De Morgan law

Example: Prove that $\overline{A \cap B}=\bar{A} \cup \bar{B}$
Solution: We prove this identity by showing that:
(1) $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B}$

Proof of second De Morgan law

Example: Prove that $\overline{A \cap B}=\bar{A} \cup \bar{B}$
Solution: We prove this identity by showing that:
(1) $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B}$
(2) $\bar{A} \cup \bar{B} \subseteq \overline{A \cap B}$

Continued on next slide \hookrightarrow

Proof of second De Morgan law

These steps show that: $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B}$

Proof of second De Morgan law

These steps show that: $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B}$

$$
x \in \overline{A \cap B}
$$

by assumption

Proof of second De Morgan law

These steps show that: $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B}$

$$
\begin{aligned}
& x \in \overline{A \cap B} \\
& x \notin A \cap B
\end{aligned}
$$

by assumption
definition of complement

Proof of second De Morgan law

These steps show that: $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B}$

$$
\begin{aligned}
& x \in \overline{A \cap B} \\
& x \notin A \cap B \\
& \neg((x \in A) \wedge(x \in B))
\end{aligned}
$$

by assumption
definition of complement
definition of intersection

Proof of second De Morgan law

These steps show that: $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B}$

$$
\begin{aligned}
& x \in \overline{A \cap B} \\
& x \notin A \cap B \\
& \neg((x \in A) \wedge(x \in B)) \\
& \neg(x \in A) \vee \neg(x \in B)
\end{aligned}
$$

by assumption
definition of complement
definition of intersection
De Morgan's $1^{\text {st }}$ Law

Proof of second De Morgan law

These steps show that: $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B}$

$$
\begin{aligned}
& x \in \overline{A \cap B} \\
& x \notin A \cap B \\
& \neg((x \in A) \wedge(x \in B)) \\
& \neg(x \in A) \vee \neg(x \in B) \\
& (x \notin A) \vee(x \notin B)
\end{aligned}
$$

by assumption
definition of complement
definition of intersection
De Morgan's $1^{\text {st }}$ Law
definition of negation

Proof of second De Morgan law

These steps show that: $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B}$

$$
\begin{aligned}
& x \in \overline{A \cap B} \\
& x \notin A \cap B \\
& \neg((x \in A) \wedge(x \in B)) \\
& \neg(x \in A) \vee \neg(x \in B) \\
& (x \notin A) \vee(x \notin B) \\
& (x \in \bar{A}) \vee(x \in \bar{B})
\end{aligned}
$$

by assumption
definition of complement
definition of intersection
De Morgan's $1^{\text {st }}$ Law
definition of negation
definition of complement

Proof of second De Morgan law

These steps show that: $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B}$

$$
\begin{aligned}
& x \in \overline{A \cap B} \\
& x \notin A \cap B \\
& \neg((x \in A) \wedge(x \in B)) \\
& \neg(x \in A) \vee \neg(x \in B) \\
& (x \notin A) \vee(x \notin B) \\
& (x \in \bar{A}) \vee(x \in \bar{B}) \\
& x \in \bar{A} \cup \bar{B}
\end{aligned}
$$

by assumption
definition of complement definition of intersection De Morgan's $1^{\text {st }}$ Law definition of negation definition of complement definition of union

Proof of second De Morgan law

These steps show that: $\bar{A} \cup \bar{B} \subseteq \overline{A \cap B}$

Proof of second De Morgan law

These steps show that: $\bar{A} \cup \bar{B} \subseteq \overline{A \cap B}$

$$
x \in \bar{A} \cup \bar{B}
$$

by assumption

Proof of second De Morgan law

These steps show that: $\bar{A} \cup \bar{B} \subseteq \overline{A \cap B}$

$$
\begin{aligned}
& x \in \bar{A} \cup \bar{B} \\
& (x \in \bar{A}) \vee(x \in \bar{B})
\end{aligned}
$$

by assumption
definition of union

Proof of second De Morgan law

These steps show that: $\bar{A} \cup \bar{B} \subseteq \overline{A \cap B}$

$$
\begin{aligned}
& x \in \bar{A} \cup \bar{B} \\
& (x \in \bar{A}) \vee(x \in \bar{B}) \\
& (x \notin A) \vee(x \notin B)
\end{aligned}
$$

by assumption
definition of union
definition of complement

Proof of second De Morgan law

These steps show that: $\bar{A} \cup \bar{B} \subseteq \overline{A \cap B}$

$$
\begin{aligned}
& x \in \bar{A} \cup \bar{B} \\
& (x \in \bar{A}) \vee(x \in \bar{B}) \\
& (x \notin A) \vee(x \notin B) \\
& \neg(x \in A) \vee \neg(x \in B)
\end{aligned}
$$

by assumption
definition of union
definition of complement
definition of negation

Proof of second De Morgan law

These steps show that: $\bar{A} \cup \bar{B} \subseteq \overline{A \cap B}$

$$
\begin{aligned}
& x \in \bar{A} \cup \bar{B} \\
& (x \in \bar{A}) \vee(x \in \bar{B}) \\
& (x \notin A) \vee(x \notin B) \\
& \neg(x \in A) \vee \neg(x \in B) \\
& \neg((x \in A) \wedge(x \in B))
\end{aligned}
$$

by assumption
definition of union
definition of complement
definition of negation
De Morgan's $1^{\text {st }}$ Law

Proof of second De Morgan law

These steps show that: $\bar{A} \cup \bar{B} \subseteq \overline{A \cap B}$

$$
\begin{aligned}
& x \in \bar{A} \cup \bar{B} \\
& (x \in \bar{A}) \vee(x \in \bar{B}) \\
& (x \notin A) \vee(x \notin B) \\
& \neg(x \in A) \vee \neg(x \in B) \\
& \neg((x \in A) \wedge(x \in B)) \\
& \neg x \in(A \cap B)
\end{aligned}
$$

by assumption
definition of union
definition of complement
definition of negation
De Morgan's $1^{\text {st }}$ Law
definition of intersection

Proof of second De Morgan law

These steps show that: $\bar{A} \cup \bar{B} \subseteq \overline{A \cap B}$

$$
\begin{aligned}
& x \in \bar{A} \cup \bar{B} \\
& (x \in \bar{A}) \vee(x \in \bar{B}) \\
& (x \notin A) \vee(x \notin B) \\
& \neg(x \in A) \vee \neg(x \in B) \\
& \neg((x \in A) \wedge(x \in B)) \\
& \neg x \in(A \cap B) \\
& x \in \overline{A \cap B}
\end{aligned}
$$

by assumption
definition of union
definition of complement
definition of negation
De Morgan's $1^{\text {st }}$ Law
definition of intersection
definition of complement

Set-builder notation: second De Morgan law

$$
\overline{A \cap B}=\{x \mid x \notin A \cap B\}
$$

by definition of complement

Set-builder notation: second De Morgan law

$$
\begin{aligned}
\overline{A \cap B} & =\{x \mid x \notin A \cap B\} \\
& =\{x \mid \neg x \in(A \cap B)\}
\end{aligned}
$$

by definition of complement
by definition of 'not in'

Set-builder notation: second De Morgan law

$$
\begin{aligned}
\overline{A \cap B} & =\{x \mid x \notin A \cap B\} \\
& =\{x \mid \neg x \in(A \cap B)\}
\end{aligned}
$$

$$
=\{x \mid \neg((x \in A) \wedge(x \in B))\} \quad \text { by definition of intersection }
$$

Set-builder notation: second De Morgan law

$$
\begin{aligned}
\overline{A \cap B} & =\{x \mid x \notin A \cap B\} \\
& =\{x \mid \neg x \in(A \cap B)\} \\
& =\{x \mid \neg((x \in A) \wedge(x \in B))\} \\
& =\{x \mid \neg(x \in A) \vee \neg(x \in B)\}
\end{aligned}
$$

by definition of complement
by definition of 'not in'
by definition of intersection
by De Morgan's $1^{\text {st }}$ Law

Set-builder notation: second De Morgan law

$$
\begin{aligned}
\overline{A \cap B} & =\{x \mid x \notin A \cap B\} \\
& =\{x \mid \neg x \in(A \cap B)\} \\
& =\{x \mid \neg((x \in A) \wedge(x \in B))\} \\
& =\{x \mid \neg(x \in A) \vee \neg(x \in B)\} \\
& =\{x \mid(x \notin A) \vee(x \notin B)\}
\end{aligned}
$$

by definition of complement
by definition of 'not in'
by definition of intersection
by De Morgan's $1^{\text {st }}$ Law
by definition of 'not'

Set-builder notation: second De Morgan law

$$
\begin{aligned}
\overline{A \cap B} & =\{x \mid x \notin A \cap B\} \\
& =\{x \mid \neg x \in(A \cap B)\} \\
& =\{x \mid \neg((x \in A) \wedge(x \in B))\} \\
& =\{x \mid \neg(x \in A) \vee \neg(x \in B)\} \\
& =\{x \mid(x \notin A) \vee(x \notin B)\} \\
& =\{x \mid(x \in \bar{A}) \vee(x \in \bar{B})\}
\end{aligned}
$$

by definition of complement
by definition of 'not in'
by definition of intersection
by De Morgan's $1^{\text {st }}$ Law
by definition of 'not'
by definition of complement

Set-builder notation: second De Morgan law

$$
\begin{aligned}
\overline{A \cap B} & =\{x \mid x \notin A \cap B\} \\
& =\{x \mid \neg x \in(A \cap B)\} \\
& =\{x \mid \neg((x \in A) \wedge(x \in B) \\
& =\{x \mid \neg(x \in A) \vee \neg(x \in B \\
& =\{x \mid(x \notin A) \vee(x \notin B)\} \\
& =\{x \mid(x \in \bar{A}) \vee(x \in \bar{B})\} \\
& =\{x \mid x \in \bar{A} \cup \bar{B}\}
\end{aligned}
$$

by definition of 'not in'
by definition of complement
by definition of union

$$
=\{x \mid \neg((x \in A) \wedge(x \in B))\} \quad \text { by definition of intersection }
$$

$$
=\{x \mid \neg(x \in A) \vee \neg(x \in B)\} \quad \text { by De Morgan's } 1^{\text {st }} \text { Law }
$$

$$
=\{x \mid(x \notin A) \vee(x \notin B)\} \quad \text { by definition of 'not' }
$$

Set-builder notation: second De Morgan law

$$
\begin{aligned}
\overline{A \cap B} & =\{x \mid x \notin A \cap B\} \\
& =\{x \mid \neg x \in(A \cap B)\} \\
& =\{x \mid \neg((x \in A) \wedge(x \in B) \\
& =\{x \mid \neg(x \in A) \vee \neg(x \in B \\
& =\{x \mid(x \notin A) \vee(x \notin B)\} \\
& =\{x \mid(x \in \bar{A}) \vee(x \in \bar{B})\} \\
& =\{x \mid x \in \bar{A} \cup \bar{B}\} \\
& =\bar{A} \cup \bar{B}
\end{aligned}
$$

by definition of 'not in'
by definition of 'not'
by definition of complement
by definition of union
by definition of notation

$$
=\{x \mid \neg((x \in A) \wedge(x \in B))\} \quad \text { by definition of intersection }
$$

$$
=\{x \mid \neg(x \in A) \vee \neg(x \in B)\} \quad \text { by De Morgan's } 1^{\text {st }} \text { Law }
$$

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1					
1	1	0					
1	0	1					
1	0	0					
0	1	1					
0	1	0					
0	0	1					
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1				
1	1	0					
1	0	1					
1	0	0					
0	1	1					
0	1	0					
0	0	1					
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1			
1	1	0					
1	0	1					
1	0	0					
0	1	1					
0	1	0					
0	0	1					
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1		
1	1	0					
1	0	1					
1	0	0					
0	1	1					
0	1	0					
0	0	1					
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	
1	1	0					
1	0	1					
1	0	0					
0	1	1					
0	1	0					
0	0	1					
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0					
1	0	1					
1	0	0					
0	1	1					
0	1	0					
0	0	1					
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0				
1	0	1					
1	0	0					
0	1	1					
0	1	0					
0	0	1					
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1			
1	0	1					
1	0	0					
0	1	1					
0	1	0					
0	0	1					
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1		
1	0	1					
1	0	0					
0	1	1					
0	1	0					
0	0	1					
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	
1	0	1					
1	0	0					
0	1	1					
0	1	0					
0	0	1					
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1					
1	0	0					
0	1	1					
0	1	0					
0	0	1					
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0				
1	0	0					
0	1	1					
0	1	0					
0	0	1					
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1			
1	0	0					
0	1	1					
0	1	0					
0	0	1					
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1		
1	0	0					
0	1	1					
0	1	0					
0	0	1					
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	
1	0	0					
0	1	1					
0	1	0					
0	0	1					
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0					
0	1	1					
0	1	0					
0	0	1					
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0				
0	1	1					
0	1	0					
0	0	1					
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1			
0	1	1					
0	1	0					
0	0	1					
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	1		
0	1	1					
0	1	0					
0	0	1					
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	1	1	
0	1	1					
0	1	0					
0	0	1					
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	1	1	1
0	1	1					
0	1	0					
0	0	1					
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	1	1	1
0	1	1	1				
0	1	0					
0	0	1					
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	1	1	1
0	1	1	1	1			
0	1	0					
0	0	1					
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	1	1	1
0	1	1	1	1	1		
0	1	0					
0	0	1					
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	1	1	1
0	1	1	1	1	1	1	
0	1	0					
0	0	1					
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	1	1	1
0	1	1	1	1	1	1	1
0	1	0					
0	0	1					
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	1	1	1
0	1	1	1	1	1	1	1
0	1	0	0				
0	0	1					
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	1	1	1
0	1	1	1	1	1	1	1
0	1	0	0	0			
0	0	1					
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	1	1	1
0	1	1	1	1	1	1	1
0	1	0	0	0	1		
0	0	1					
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	1	1	1
0	1	1	1	1	1	1	1
0	1	0	0	0	1	0	
0	0	1					
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	1	1	1
0	1	1	1	1	1	1	1
0	1	0	0	0	1	0	0
0	0	1					
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	1	1	1
0	1	1	1	1	1	1	1
0	1	0	0	0	1	0	0
0	0	1	0				
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	1	1	1
0	1	1	1	1	1	1	1
0	1	0	0	0	1	0	0
0	0	1	0	0			
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	1	1	1
0	1	1	1	1	1	1	1
0	1	0	0	0	1	0	0
0	0	1	0	0	0		
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	1	1	1
0	1	1	1	1	1	1	1
0	1	0	0	0	1	0	0
0	0	1	0	0	0	1	
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	1	1	1
0	1	1	1	1	1	1	1
0	1	0	0	0	1	0	0
0	0	1	0	0	0	1	0
0	0	0					

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	1	1	1
0	1	1	1	1	1	1	1
0	1	0	0	0	1	0	0
0	0	1	0	0	0	1	0
0	0	0	0				

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	1	1	1
0	1	1	1	1	1	1	1
0	1	0	0	0	1	0	0
0	0	1	0	0	0	1	0
0	0	0	0	0			

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	1	1	1
0	1	1	1	1	1	1	1
0	1	0	0	0	1	0	0
0	0	1	0	0	0	1	0
0	0	0	0	0	0		

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	1	1	1
0	1	1	1	1	1	1	1
0	1	0	0	0	1	0	0
0	0	1	0	0	0	1	0
0	0	0	0	0	0	0	

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	1	1	1
0	1	1	1	1	1	1	1
0	1	0	0	0	1	0	0
0	0	1	0	0	0	1	0
0	0	0	0	0	0	0	0

Membership table

Example: Construct a membership table to show that the distributive law holds:

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Solution:

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	1	1	1
0	1	1	1	1	1	1	1
0	1	0	0	0	1	0	0
0	0	1	0	0	0	1	0
0	0	0	0	0	0	0	0

Plan for Part I

1. Sets
1.1 Defining sets
1.2 Venn Diagram
1.3 Set Equality
1.4 Subsets
1.5 Venn Diagrams and Truth Sets
1.6 Set Cardinality
1.7 Power Sets
1.8 Cartesian Products
2. Set Operations
2.1 Boolean Algebra
2.2 Union
2.3 Intersection
2.4 Complement
2.5 Difference
2.6 The Cardinality of the Union of Two Sets
2.7 Set Identities
2.8 Generalized Unions and Intersections

Generalized unions and intersections

(1) Let $A_{1}, A_{2}, \ldots, A_{n}$ be an indexed collection of sets.

Generalized unions and intersections

(1) Let $A_{1}, A_{2}, \ldots, A_{n}$ be an indexed collection of sets. We define:

$$
\begin{aligned}
& \bigcup_{i=1}^{n} A_{i}=A_{1} \cup A_{2} \cup \cdots \cup A_{n} \\
& \bigcap_{i=1}^{n} A_{i}=A_{1} \cap A_{2} \cap \cdots \cap A_{n}
\end{aligned}
$$

These are well defined, since union and intersection are associative.

Generalized unions and intersections

(1) Let $A_{1}, A_{2}, \ldots, A_{n}$ be an indexed collection of sets.

We define:

$$
\begin{aligned}
& \bigcup_{i=1}^{n} A_{i}=A_{1} \cup A_{2} \cup \cdots \cup A_{n} \\
& \bigcap_{i=1}^{n} A_{i}=A_{1} \cap A_{2} \cap \cdots \cap A_{n}
\end{aligned}
$$

These are well defined, since union and intersection are associative.
(2) Example: for $(i=1,2, \ldots)$ let $A_{i}=\{i, i+1, i+2, \ldots\}$. Then,

Generalized unions and intersections

(1) Let $A_{1}, A_{2}, \ldots, A_{n}$ be an indexed collection of sets.

We define:

$$
\begin{aligned}
& \bigcup_{i=1}^{n} A_{i}=A_{1} \cup A_{2} \cup \cdots \cup A_{n} \\
& \bigcap_{i=1}^{n} A_{i}=A_{1} \cap A_{2} \cap \cdots \cap A_{n}
\end{aligned}
$$

These are well defined, since union and intersection are associative.
(2) Example: for $(i=1,2, \ldots)$ let $A_{i}=\{i, i+1, i+2, \ldots\}$. Then,

$$
\begin{gathered}
\bigcup_{i=1}^{n} A_{i}=\bigcup_{i=1}^{n}\{i, i+1, i+2, \ldots\}=\{1,2,3, \ldots\} \\
\bigcap_{i=1}^{n} A_{i}=\bigcap_{i=1}^{n}\{i, i+1, i+2, \ldots\}=\{n, n+1, n+2, \ldots\}=A_{n}
\end{gathered}
$$

