
Discrete Probability
Chapter 7

© Marc Moreno-Maza 2020

UWO – November 24, 2021



Plan for Chapter 7

1. Introduction to Discrete Probability
1.1 Finite Probability
1.2 The Probability of Complements and Unions of Events

2. Probability Theory
2.1 Assigning Probabilities
2.2 Probabilities of Complements and Unions of Events
2.3 Conditional Probability
2.4 Independence
2.5 Bernoulli Trials and the Binomial Distribution

3. Bayes’ Theorem
3.1 Bayes’ Theorem
3.2 Generalized Bayes’ Theorem
3.3 Bayesian Spam Filters



Plan for Chapter 7

1. Introduction to Discrete Probability
1.1 Finite Probability
1.2 The Probability of Complements and Unions of Events

2. Probability Theory
2.1 Assigning Probabilities
2.2 Probabilities of Complements and Unions of Events
2.3 Conditional Probability
2.4 Independence
2.5 Bernoulli Trials and the Binomial Distribution

3. Bayes’ Theorem
3.1 Bayes’ Theorem
3.2 Generalized Bayes’ Theorem
3.3 Bayesian Spam Filters



Probability of an event
Pierre-Simon
Laplace (1749 -
1827)

We first study Pierre-Simon Laplace’s classical theory of
probability, which he introduced in the 18-th century, when he
analyzed games of chance.

1 Let us define these key terms:
a An experiment

is a procedure that yields one outcome
from a given set of possible outcomes.

b The sample space of the
experiment is the set of possible outcomes.

c An event is a subset of the sample space.

Definition
If S is a finite sample space of equally likely outcomes, and E is an

event, that is, a subset of S , then the probability of E is p(E) =
∣E ∣
∣S ∣

2 For every event E , we have
0 ≤ p(E) ≤ 1. This follows directly from the

definition because 0 ≤ p(E) =
∣E ∣
∣S ∣ ≤

∣S ∣
∣S ∣ ≤ 1,

since we have: 0 ≤ ∣E ∣ ≤ ∣S ∣.



Applying Laplace’s definition

Example

An urn contains four blue balls and five red balls. What is the
probability that a ball chosen from the urn is blue?
Solution:

1 The probability that the ball is chosen is 4
9 since there are nine

possible outcomes, and four of these produce a blue ball.

Example

What is the probability that when two dice are rolled, the sum of
the numbers on the two dice is 7?
Solution:

1 By the product rule there are 62 = 36 possible outcomes.

2 Six of these sum to 7.

3 Hence, the probability of obtaining a 7 is 36 ⋅ 6
36 =

1
6 .



Applying Laplace’s definition

Example
In a lottery, a player wins a large prize when they pick four digits that
match, in correct order, four digits selected by a random mechanical
process. What is the probability that a player wins the prize?
Solution:

1 By the product rule there are 104 = 10,000 ways to pick four digits.

2 Since there is only 1 way to pick the correct digits, the probability of
winning the large prize is 1

10,000
= 0.0001.

Example
A smaller prize is won if only three digits are matched. What is the
probability that a player wins the small prize?
Solution:

1 If exactly three digits are matched, one of the four digits must be
incorrect and the other three digits must be correct.

2 For the digit that is incorrect, there are 9 possible choices (all
except the correct one).

3 Hence, by the sum rule , there a total of 36 possible ways to choose
four digits that match exactly three of the winning four digits.

4 The probability of winning the small prize is 36
10,000

= 9
2500

= 0.0036.



Applying Laplace’s definition

Example

There are many lotteries that award prizes to people who correctly
choose a set of six numbers out of the first n positive integers,
where n is usually between 30 and 60. What is the probability that
a person picks the correct six numbers out of 40?
Solution:

1 The number of ways to choose six numbers out of 40 is
C(40,6) = 40!

(34!6!) = 3,838,380

2 Hence, the probability of picking a winning combination is
1

3,838,380 ≈ 0.00000026



Applying Laplace’s definition

Example

What is the probability that the numbers 11, 4, 17, 39, and 23 are
drawn in that order from a bin with 50 balls labeled with the
numbers 1,2, . . . , 50 if:

1 the ball selected is not returned to the bin.

2 the ball selected is returned to the bin before the next ball is
selected.

Solution: Use the product rule in each case.

1 Sampling without replacement:

a The probability is 1
254,251,200

since there are

P(50,5) = 50 ⋅ 49 ⋅ 48 ⋅ 47 ⋅ 46 = 254,251,200 ways to choose
the five balls.

2 Sampling with replacement:

a The probability is 1
505

= 1
312,500,000

since 505 = 312,500,000.
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The probability of complements and unions of events

Theorem
Let E be an event in the sample space S . The probability of the
event E = S − E , the complementary event of E , is given by

p(E) = 1 − p(E)

Proof.
Using the fact that ∣E ∣ = ∣S ∣ − ∣E ∣,

p(E) =
∣S ∣ − ∣E ∣

∣S ∣

= 1 −
∣E ∣

∣S ∣

= 1 − p(E)

∎



The probability of complements and unions of events

Example

A sequence of 10 bits is chosen randomly. What is the probability
that at least one of these bits is 0?
Solution:

1 Let E be the event that at least one of the 10 bits is 0.

2 Then E is the event that all of the bits are 1s.

3 The size of the sample space S is 210. Hence,

p(E) = 1 − p(E)

= 1 −
∣E ∣

∣S ∣

= 1 −
1

210

= 1 −
1

1024

=
1023

1024

4



The probability of complements and unions of events

Theorem
Let E1 and E2 be events in the sample space S . Then

p(E1 ∪ E2) = p(E1) + p(E2) − p(E1 ∩ E2)

Proof.
Given the inclusion-exclusion formula from Chapter 3, we have

∣A ∪B ∣ = ∣A∣ + ∣B ∣ − ∣A ∩B ∣,

it follows that:

p(E1 ∪ E2) =
∣E1 ∪ E2∣

∣S ∣

=
∣E1∣ + ∣E2∣ − ∣E1 ∩ E2∣

∣S ∣

=
∣E1∣

∣S ∣
+

∣E2∣

∣S ∣
−

∣E1 ∩ E2∣

∣S ∣

= p(E1) + p(E2) − p(E1 ∩ E2)

∎



The probability of complements and unions of events

Example

What is the probability that a positive integer selected at random
from the set of positive integers not exceeding 100 is divisible by
either 2 or 5?
Solution:

1 Let E2 be the event that the integer is divisible by 2 and E5

be the event that it is divisible 5?

2 Then the event that the integer is divisible by 2 or 5 is E2 ∪E5

and E2 ∩ E5 is the event that it is divisible by 2 and 5.

3 It follows that:
p(E2 ∪ E5) = p(E2) + p(E5) − p(E2 ∩ E5)

=
50

100
+

20

100
−

10

100

=
3

5



Monty Hall puzzle

1 You are asked to select one of the three doors to open. There
is a large prize behind one of the doors and if you select that
door, you win the prize.

2 After you select a door, the game show host opens one of the
other doors (which he knows is not the winning door). The
prize is not behind the door and he gives you the opportunity
to switch your selection. Should you switch?

3 This is a notoriously confusing problem that has been the
subject of much discussion. Here’s why you should switch:

a The probability that your initial pick is correct is 1
3

. This is the
same whether or not you switch doors...

b ...but since the game show host always opens a door that does
not have the prize, if you switch the probability of winning will
be 2

3
, because you win if your initial pick was not the correct

door and the probability your initial pick was wrong is 2
3

.
c More details on wikipedia: Monty Hall puzzle

https://en.wikipedia.org/wiki/Monty_Hall_problem
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Assigning probabilities

Laplace’s definition from the previous section, assumes that all
outcomes are equally likely. Now we introduce a more general
definition of probabilities that avoids this restriction.

Definition
Let S be a sample space of an experiment with a finite number of
outcomes. We assign a probability p(s) to each outcome s, so
that:

1 0 ≤ p(s) ≤ 1 for each s ∈ S

2 ∑
s∈S

p(s) = 1

The function p from the set of all outcomes of the sample space S
to the interval [0,1] is called a probability distribution.



Assigning probabilities

Example

What probabilities should we assign to the outcomes H (heads)
and T (tails) when a fair coin is flipped?
Solution:

1 p(H) + p(T ) = 1

2 p(H) = p(T ) since it’s a fair coin.

3 Hence, P(H) = 1
2 and P(T ) = 1

2

Example

What probabilities should be assigned to these outcomes when the
coin is biased so that heads comes up twice as often as tails?

1 We have p(H) = 2p(T ).

2 Because p(H) + p(T ) = 1, it follows that

3 2p(T ) + p(T ) = 3p(T ) = 1.

4 Hence, p(T ) = 1
3 and p(H) = 2

3 .



Uniform distribution

Definition (uniform distribution)

Suppose that S is a set with n elements. The uniform distribution
assigns the probability 1

n to each element of S . (Note that we
could have used Laplace’s definition here.)

Example

Consider again the coin flipping example, but with a fair coin. Now
p(H) = p(T ) = 1

2 .



Probability of an event

Definition
The probability of the event E is the sum of the probabilities of the
outcomes in E .

p(E) = ∑
s∈E

p(s)

Note that no assumption is being made about the distribution.



Example

Example

Suppose that a dice is biased so that 3 appears twice as often as
each other number, but that the other five outcomes are equally
likely. What is the probability that an odd number appears when
we roll this dice?
Solution:

1 The assumptions imply:

a p(3) = 2p(1) and p(1) = p(2) = p(4) = p(5) = p(6), and
b p(1) + p(2) + p(3) + p(4) + p(5) + p(6) = 1.

2 Thus, we have:

p(3) = 2
7 and p(1) = p(2) = p(4) = p(5) = p(6) = 1

7 .

3 We want the probability of the event E = {1,3,5}.

4 Hence, we have:

p(E) = p(1) + p(3) + p(5).

5 That is:

p(E) = 1
7 +

2
7 +

1
7 =

4
7 .
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Probabilities of complements and unions of events

1 Complements: p(E) = 1 − p(E) still holds. Since each
outcome is either in E or in E , but not in both, we have:

∑
s∈S

p(s) = 1 = p(E) + p(E)

2 Unions: p(E1 ∪ E2) = p(E1) + p(E2) − p(E1 ∩ E2) also still
holds under the new definition.

3 This follows again from the inclusion-exclusion formula.



Combinations of events

Theorem
If E1,E2, . . . ,Em is a sequence of pairwise disjoint events in a
sample space S , then we have:

p (⋃
i=m
i=1 Ei) = ∑

i=m
i=1 p(Ei)

1 Each event Ei consists of finitely many outcomes xi,1, . . . , xi,ni where
ni is the cardinality of Ei , for 1 ≤ i ≤ m.

2 Hence, we have

⋃
i=m
i=1 Ei = E1 ∪⋯ ∪ Em

= {x1,1, . . . , x1,n1} ∪⋯ ∪ {xm,1, . . . , xm,nm}

3 Since the events Ei are pairwise disjoint, we have:

p (⋃
i=m
i=1 Ei) = p(x1,1) +⋯ + p(x1,n1) +⋯ + p(xm,1) +⋯ + p(xm,nm)

= ∑
i=m
i=1 (p(xi,1) +⋯ + p(xi,ni ))

= ∑
i=m
i=1 p(Ei).
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Conditional probability

Definition
Let E and F be events with p(F ) > 0. The conditional probability
of E given F , denoted by P(E ∣ F ), is defined as:

p(E ∣F ) =
p(E ∩ F )

p(F )

Example
A bit string of length four is generated at random so that each of the 16
strings are equally likely. What is the probability that it contains at least
two consecutive 0s, given that its first bit is a 0?
Solution:

1 Let E be the event that the bit string contains at least two
consecutive 0s, and F be the event that the first bit is a 0.

2 Since E ∩ F = {0000, 0001, 0010, 0011, 0100}, p(E ∩ F ) = 5
16

.

3 Because 8 bit strings of length 4 start with a 0, p(F) = 8
16

= 1
2

.

4 Hence, p(E ∣F ) =
p(E∩F)
p(F)

=
5
16
1
2

= 5
8



Conditional probability

Example

What is the conditional probability that a family with two children
has two boys, given that they have at least one boy. Assume that
each of the possibilities BB,BG ,GB, and GG is equally likely
where B represents a boy and G represents a girl.
Solution:

1 Let E be the event that the family has two boys and let F be
the event that the family has at least one boy.

2 Then E = {BB}, F = {BB,BG ,GB}, and E ∩ F = {BB}.

3 It follows that p(F ) = 3
4 and p(E ∩ F ) = 1

4 .

4 Hence, p(E ∣F ) =
p(E∩F)
p(F) =

1
4
3
4

= 1
3
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Independence

Intuition:
Two events are independent if the occurrence of one of the events
gives us no information about whether or not the other event will
occur; that is, the events have no influence on each other.

Definition
Formally, the events E and F are independent if and only if

p(E ∩ F ) = p(E)p(F )

Note that independence of events E and F implies:

p(E ∣ F ) =
p(E∩F)
p(F) = p(E)

p(F ∣ E) =
p(E∩F)
p(E) = p(F )



Independence

Example

Suppose E is the event that a randomly generated bit string of
length four begins with a 1 and F is the event that this bit string
contains an even number of 1s. Are E and F independent if the 16
bit strings of length four are equally likely?
Solution:

1 There are eight bit strings of length four that begin with a 1,
and eight bit strings of length four that contain an even
number of 1s.

2 Since the number of bit strings of length 4 is 16,
p(E) = p(F ) = 8

16 =
1
2 .

3 Since E ∩ F = {1111,1100,1010,1001}, p(E ∩ F ) = 4
16 =

1
4 .

4 We conclude that E and F are independent, because
p(E ∩ F ) = 1

4 = (12)(
1
2) = p(E)p(F )



Independence

Example

Assume (as in the previous example) that each of the four ways a
family can have two children (BB,GG ,BG ,GB) is equally likely.
Are the events E , that a family with two children has two boys,
and F , that a family with two children has at least one boy,
independent?
Solution:

1 Because E = {BB }, p(E) = 1
4 .

2 We saw previously that that p(F ) = 3
4 and p(E ∩ F ) = 1

4 .

3 The events E and F are not independent since
p(E)p(F ) = 3

16 ≠
1
4 = p(E ∩ F ).



Pairwise and mutual independence

Definition (Pairwise Independence)

The events E1,E2, . . . ,En are pairwise independent if and only if
p(Ei ∩ Ej) = p(Ei)p(Ej) for all pairs i and j with i ≤ j ≤ n.

Definition (Mutual Independence)

The events are mutually independent if

p(Ei1 ∩ Ei2 ∩⋯ ∩ Eim) = p(Ei1)p(Ei2)⋯p(Eim)

whenever ij , j = 1,2, . . . ,m, are integers with 1 ≤ i1 < i2 < ⋯ < im ≤ n
and m ≥ 2.

NOTE: mutually independent events are pairwise independent, but
some pairwise independent events are not mutually independent.



Plan for Chapter 7

1. Introduction to Discrete Probability
1.1 Finite Probability
1.2 The Probability of Complements and Unions of Events

2. Probability Theory
2.1 Assigning Probabilities
2.2 Probabilities of Complements and Unions of Events
2.3 Conditional Probability
2.4 Independence
2.5 Bernoulli Trials and the Binomial Distribution

3. Bayes’ Theorem
3.1 Bayes’ Theorem
3.2 Generalized Bayes’ Theorem
3.3 Bayesian Spam Filters



Bernoulli trials
James Bernoulli
(1654 - 1705)

Definition
Suppose an experiment can have only two possible outcomes, e.g .,
the flipping of a coin or the random generation of a bit.

1 Each performance of the experiment is called a Bernoulli trial.

2 Often, one outcome is called a success and the other a failure.

3 If p is the probability of success and q the probability of
failure, then p + q = 1.

Many problems involve determining the probability of k successes
when an experiment consists of n mutually independent Bernoulli
trials.



Bernoulli trials

Example

A coin is biased so that the probability of heads is 2
3 . What is the

probability that exactly four heads occur when the coin is flipped
seven times?
Solution:

1 There are 27 = 128 possible outcomes.

2 The number of ways four of the seven flips can be heads is
C(7,4).

3 The probability of each of the outcomes is (23)
4(13)

3 since the
seven flips are independent.

4 Hence, the probability that exactly four heads occur is

C(7,4)(
2

3
)
4
(

1

3
)
3
=

(35 ⋅ 16)

27
=

560

2187



Probability of k successes in n independent Bernoulli trials.

Theorem
The probability of exactly k successes in n independent Bernoulli
trials, with probability of success p and probability of failure
q = 1 − p, is

C(n, k)pkqn−k

Proof.
1 The outcome of n Bernoulli trials is an n-tuple (t1, t2, . . . , tn),

where each is ti either S (success) or F (failure).

2 The probability of each outcome of n trials consisting of k
successes and n − k failures (in any given order) is pkqn−k .

3 Because there are C(n, k) n-tuples of S ’s and F ’s that contain
exactly k S ’s, the probability of k successes is C(n, k)pkqn−k .

∎
We denote by b(k ∶ n,p) the probability of k successes in n
independent Bernoulli trials with p the probability of success.
Viewed as a function of k ,b(k ∶ n,p) is the binomial distribution.
Hence we have, b(k ∶ n,p) = C(n, k)pkqn−k .



Probability of k successes in n independent Bernoulli trials.

(Graph made in Maple!)
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Motivation for Bayes’ Theorem

Bayes’ theorem allows us to use probability theory to answer
questions such as the following:

1 Given that someone tests positive for having a particular
disease, what is the probability that they actually do have the
disease?

2 Given that someone tests negative for the disease, what is the
probability, that in fact they do have the disease?

Bayes’ theorem has applications to medicine, law, artificial
intelligence, engineering, and many diverse other areas.



Bayes’ Theorem Thomas Bayes
(1702 - 1761)

Theorem (Bayes’ Theorem)

Suppose that E and F are events from a sample space S such that
p(E) ≠ 0 and p(F ) ≠ 0. Then, we have:

p(F ∣ E) =
p(E ∣ F )p(F )

p(E ∣ F )p(F ) + p(E ∣ F )p(F )

This helps when the conditional probability p(E ∣ F ) is easier to
estimate compared to p(F ∣ E).



Bayes’ Theorem Thomas Bayes
(1702 - 1761)

Example
We have two boxes. The first box contains two green balls and
seven red balls. The second contains four green balls and three red
balls. Bob selects one of the boxes at random. Then he selects a
ball from that box at random. If he has a red ball, what is the
probability that he selected a ball from the first box p(F ∣ E)?
Solution:

1 Let E be the event that Bob has chosen a red ball and F be
the event that Bob has chosen the first box.

p(E ∣ F ) = 7
2+7 p(E ∣ F ) = 3

4+3 p(F ∣ E) =?

2 By Bayes’ theorem the probability that Bob has picked the
first box is:

p(F ∣ E) =
p(E ∣F)p(F)

p(E ∣F)p(F)+p(E ∣F)p(F)

p(F ∣ E) =
(
7
9
)(

1
2
)

(
7
9
)(

1
2
)+(

3
7
)(

1
2
)
=

7
18
38
63

= 49
76 ≈ 0.645



Derivation of Bayes’ Theorem

1 Recall the definition of the conditional probability p(E ∣ F ):

p(E ∣ F ) =
p(E ∩ F )

p(F )

2 From this definition, it follows that:

p(E ∣ F ) =
p(E ∩ F )

p(F )
and p(F ∣ E) =

p(E ∩ F )

p(E)

continued →



Derivation of Bayes’ Theorem

1 Rearranging the equations from the previous slide we get:

p(E ∣ F )p(F ) = p(E ∩ F ) and p(F ∣ E)p(E) = p(E ∩ F )

2 Substituting for p(E ∩ F ) we get:

p(E ∣ F )p(F ) = p(F ∣ E)p(E)

3 Solving for p(E ∣ F ) and p(F ∣ E) we get:

p(E ∣ F ) =
p(F ∣ E)p(E)

p(F )
and p(F ∣ E) =

p(E ∣ F )p(F )

p(E)

continued →



Derivation of Bayes’ Theorem

1 Recall p(F ∣ E) =
p(E ∣F)p(F)

p(E) from the previous slide.

2 Note also that p(E) = p(E ∣ F )p(F ) + p(E ∣ F )p(F )

3 Indeed:

a Since E = E ∩ S = E ∩ (F ∪ F ) = (E ∩ F ) ∪ (E ∩ F )

b and (E ∩ F ) ∩ (E ∩ F ) = ∅,
c we deduce: p(E) = p(E ∩ F ) + p(E ∩ F ).
d Then, by the definition of conditional probability, we have:

p(E) = p(E ∩ F ) + p(E ∩ F )

= p(E ∣ F )p(F ) + p(E ∣ F )p(F )

4 Hence, we have:

p(F ∣ E) =
p(E ∣F)p(F)

p(E)

=
p(E ∣F)p(F)

p(E ∣F)p(F)+p(E ∣F)p(F)
.

∎



Simple form of Bayes’ Theorem

A blue neon sign at the Autonomy Corporation, Cambridge,
showing the simple statement of Bayes’ Theorem.



Interpretation of the simple form of Bayes’ Theorem

1 Bayes’ Theorem links the degree of belief in a proposition
before and after accounting for evidence.

2 Proposition A, Evidence B

3 p(A) – prior probability (initial degree of belief in A)

4 p(A ∣ B) – posterior probability (degree of belief in A after
having accounted for B)

5
p(B ∣A)
p(B) – the support provided for A by B

p(A ∣ B) =
p(B ∣ A)p(A)

p(B)
=
p(B ∣ A)

p(B)
⋅ p(A)



Train problem

1 Suppose someone
told you they had a conversation
with a person on a train.

2 If you knew nothing else about
this conversation, you would
compute the probability that
this person was a woman as 50%

3 Now, suppose you were also told
that the person had long hair.

4 Bayes’ theorem can be used
to calculate the probability that
the person is a woman, given the
additional knowledge we have.



How to solve the train problem

1 W = event that the conversation partner is a woman

2 L = the conversation partner has long hair

3 Suppose we know that 75% of women have long hair and 15%
of men have long hair. These are statistics that can be
directly estimated.

p(L ∣ W ) = 0.75 p(L ∣ W ) = 0.15

4 What about p(W ∣ L)?

p(W ∣ L) =
p(L ∣ W )p(W )

p(L ∣ W )p(W ) + p(L ∣ W )p(W )

p(W ∣ L) =
0.75 ⋅ 0.5

0.75 ⋅ 0.5 + 0.15 ⋅ 0.5
= 0.83



Applying Bayes’ Theorem

Example

1 Suppose that one person in 100,000 has a particular disease.

2 There is a test for the disease that gives a positive result 99%
of the time when given to someone with the disease.

3 When given to someone without the disease, 99.5% of the
time it gives a negative result.

Questions:

1 Find the probability that a person who test positive has the
disease.

2 Find the probability that a person who test negative does not
have the disease.

3 Should someone who tests positive be worried?



Applying Bayes’ Theorem
Solution: What if the test is positive?

1 Let D be the event that the person has the disease, and E be
the event that this person tests positive.

2 We need to compute p(D ∣ E) from p(D),p(E ∣ D),p(E ∣ D).

1 p(D) = 1
100,000 = 0.00001

3 p(E ∣ D) = 0.99

5 p(E ∣ D) = 0.005

2 p(D) = 1 − 0.00001 =
0.99999

4 p(E ∣ D) = 0.01

6 p(E ∣ D) = 0.995

p(D ∣ E) =
p(E ∣ D)p(D)

p(E ∣ D)p(D) + p(E ∣ D)p(D)

=
(0.99)(0.00001)

(0.99)(0.00001) + (0.005)(0.99999)

≈ 0.002

So, don’t worry too much, if your test
for this disease comes back positive.

Can you use this formula to ex-
plain why the resulting proba-
bility is surprisingly small?



Applying Bayes’ Theorem

Solution: What if the result is negative?

p(D ∣ E) =
p(E ∣ D)p(D)

p(E ∣ D)p(D) + p(E ∣ D)p(D)

=
(0.995)(0.99999)

(0.995)(0.99999) + (0.01)(0.00001)

≈ 0.9999999

So, the probability you have the disease if you test negative is
p(D ∣ E) ≈ 1 − 0.9999999 = 0.0000001.

So, it is extremely unlikely you have the disease if you test negative.
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Generalized Bayes’ Theorem

Definition (Generalized Bayes ’ Theorem)

Suppose that E is an event from a sample space S and that F1,F2,

. . . , Fn are mutually exclusive events such that
n

⋃
i
Fi = S . Assume

that p(E) ≠ 0 for i = 1,2, . . . ,n. Then,

p(Fj ∣ E) =
p(E ∣ Fj)p(Fj)
n

∑
i=1

p(E ∣ Fi)p(Fi)

Tutorial 10 asks for the proof.
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Bayesian spam filters

1 How do we develop a tool for determining whether an email is
likely to be spam?

2 If we have an initial set B(ad) of spam messages and set
G(ood) of non-spam messages. We can use this information
along with Bayes’ law to predict the probability that a new
email message is spam.

3 We look at a particular word w , and count the number of
times that it occurs in B and in G ; nB(w) and nG(w).

a Estimated probability that spam email contains w :

p(w) =
nB(w)
∣B ∣

b Estimated probability that non-spam email contains w :

q(w) =
nG (w)
∣G ∣

continued →



Bayesian spam filters

Let S be the event that the message is spam, and E be the event
that the message contains the word w . Using Bayes’ Rule,

Assuming that it is
equally likely that an ar-
bitrary message is spam
and is not spam; i.e.,
p(S) = 1

2
.

Using our empirical es-
timates of

p(w) = p(E ∣ S)

q(w) = p(E ∣ S)

p(S ∣ E) =
p(E ∣ S)p(S)

p(E ∣ S)p(S) + p(E ∣ S)p(S)

p(S ∣ E) =
p(E ∣ S)

p(E ∣ S) + p(E ∣ S)

r(w) =
p(w)

p(w) + q(w)

r(w) estimates the probability that the message is
spam. We can classify the message as spam if r(w) is
above a threshold.

Note: If we have data on the frequency of spam messages, we can obtain a better
estimate for p(S). (See Tutorial 10.)



Bayesian spam filters

Example

We find that the word “Rolex” occurs in 250 out of 2000 spam
messages and occurs in 5 out of 1000 non-spam messages.
Estimate the probability that an incoming message is spam.
Suppose our threshold for rejecting the email is 0.9.
Solution:

1 p(Rolex) = 250
2000 = 0.0125 and q(Rolex) = 5

1000 = 0.005.

2 r(Rolex) = p(Rolex)
p(Rolex)+q(Rolex)

3 r(Rolex) = 0.125
0.125+0.005

4 r(Rolex) ≈ 0.962

We classify the message as spam and reject the email!



Bayesian spam filters using multiple words

1 Accuracy can be improved by considering more than one word
as evidence.

2 Consider the case where E1 and E2 denote the events that the
message contains the words w1 and w2 respectively.

3 We make the simplifying assumption that the events E1 and
E2 are independent given S , that is, we have:

p(E1 ∩ E2∣S) = p(E1∣S)p(E2∣S).

4 We again assume p(S) = 1
2 .

Then, we have:

p(S ∣ E1 ∩ E2) =
p(E1 ∣ S)p(E2 ∣ S)

p(E1 ∣ S)p(E2 ∣ S) + p(E1 ∣ S)p(E2 ∣ S)

r(w1,w2) =
p(w1)p(w2)

p(w1)p(w2) + q(w1)q(w2)

See Tutorial 10 for a proof.



Bayesian spam filters using multiple words

Example

We have 2000 spam messages and 1000 non-spam messages. The
word “stock” occurs 400 times in the spam messages and 60 times
in the non-spam. The word “undervalued” occurs in 200 spam
messages and 25 non-spam. What is the probability for an
incoming message to be spam if both words are present.

1 p(stock) = 400
2000 = 0.2 and q(stock) = 60

1000 = 0.06

2 p(undervalued) = 200
2000 = 0.1 and

q(undervalued) = 25
1000 = 0.025

r(stock,undervalued) =
p(stock)p(undervalued)

p(stock)p(undervalued) + q(stock)q(undervalued)

=
(0.2)(0.1)

(0.2)(0.1) + (0.06)(0.025)
≈ 0.930

If our threshold is .9, we classify the message as spam and reject
it.



Bayesian spam filters using multiple words
In general, the more words we consider, the more accurate the
spam filter. With the independence assumption if we consider k
words:

p(S ∣
k

⋂

i=1

Ei) =

k

∏

i=1
p(Ei ∣ S)

k

∏

i=1
p(Ei ∣ S) +

k

∏

i=1
p(Ei ∣ S)

r(w1,w2, . . . ,wn) =

k

∏

i=1
p(wi)

k

∏

i=1
p(wi) +

k

∏

i=1
q(wi)

We can further improve the filter by considering pairs of words as
a single block or certain types of strings.
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