Tutorial \#11

Problem 1 Let A be the set of all ordered pairs of integers for which the second element of the pair is nonzero. Symbolically,

$$
A=\mathbf{Z} \times(\mathbf{Z} \backslash\{\mathbf{0}\})
$$

Define a binary relation R on A as follows: For all $(a, b),(c, d) \in A$,

$$
(a, b) R(c, d) \Leftrightarrow a c=b d
$$

1. Is R reflexive?
2. Is R symmetric?
3. Is R anti-symmetric?
4. Is R transitive?
5. Is R an equivalence relation, a partial order, neither, or both?

Solution 1

1. Is R reflexive? No. Indeed, consider $(a, c) \in \mathbf{Z} \times(\mathbf{Z} \backslash\{\mathbf{0}\})$. We have:

$$
(a, c) R(a, c) \Leftrightarrow a^{2}=c^{2}
$$

The statement $a^{2}=c^{2}$ is equivalent to $(a-c)(a+c)=0$, that is $a=c \vee a=-c$. Therefore, we $(2,3) \notin R$. Thus, R is not reflexive.
2. Is R symmetric? Yes. Indeed, consider $(a, b),(c, d) i n \mathbf{Z} \times(\mathbf{Z} \backslash\{\mathbf{0}\})$. We have:

$$
(a, b) R(c, d) \Leftrightarrow a c=b d
$$

and

$$
(c, d) R(a, b) \Leftrightarrow c a=d b
$$

Clearly, we have:

$$
c a=d b \Leftrightarrow a c=b d
$$

Therefore, we have:

$$
(a, b) R(c, d) \Leftrightarrow(c, d) R(a, b)
$$

3. Is R anti-symmetric? No. Indeed, we have $(6,10) R(5,3)$.
4. Is R transitive? No. Indeed, we have $(6,10) R(5,3)$ and $(5,3) R(21,35)$. But we do not have $(6,10) R(21,35)$, since $6 \times 21 \neq 10 \times 35$.
5. Is R an equivalence relation, a partial order, neither, or both? Neither. It is not an equivalence relation, since it is not reflexive. It is not a partial order, since it is not anti-symmetric.

Problem 2 1. Show that the relation

$$
R=\{(x, y) \mid(x-y) \text { is an even integer }\}
$$

is an equivalence relation on the set \mathbb{R} of real numbers.
2. Show that the relation

$$
R=\left\{\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \mid\left(x_{1}<x_{2}\right) \text { or }\left(\left(x_{1}=x_{2}\right) \text { and }\left(y_{1} \leq y_{2}\right)\right)\right\}
$$

is a total ordering relation on the set $\mathbb{R} \times \mathbb{R}$.

Solution 2

1. (a) R is reflexive, since for all $x \in \mathbb{R}$, we have $x-x=0$ which is even, hence for all $x \in \mathbb{R}$, we have $(x, x) \in R$.
(b) R is symmetric, since for all $x, y \in \mathbb{R}$, if $x-y \equiv 0 \bmod 2$ holds then so does $y-x \equiv 0 \bmod 2$, that is, if $(x, y) \in R$ holds then so does $(y, x) \in R$.
(c) R is transitive, since for all $x, y, z \in \mathbb{R}$, if $x-y \equiv 0 \bmod 2$ and $y-x \equiv 0 \bmod 2$ both hold then so does $x-z=(x-y)+(y-z) \equiv$ $0 \bmod 2$, that is, if $(x, y) \in R$ and $(y, z) \in R$ both hold then so does $(x, z) \in R$.
Therefore, R is an equivalence relation.
2. (a) R is reflexive, since for all $\left(x_{1}, y_{1}\right) \in \mathbb{R} \times \mathbb{R}$, we have $\left(\left(x_{1}=\right.\right.$ $\left.x_{1}\right)$ and $y_{1} \leq y_{1}$, that is, for all $\left(x_{1}, y_{1}\right) \in \mathbb{R} \times \mathbb{R}$ we have $\left(\left(x_{1}, y_{1}\right),\left(x_{1}, y_{1}\right)\right) \in R$.
(b) R is anti-symmetric, since for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R} \times \mathbb{R}$, if $\left(\left(x_{1}, \overline{y_{1}}\right),\left(x_{2}, y_{2}\right)\right) \in R$ and $\left(\left(x_{2}, y_{2}\right),\left(x_{1}, y_{1}\right)\right) \in R$ both hold then neither $x_{1}<x_{2}$ nor $x_{2}<x_{1}$ holds but both $\left(\left(x_{1}=x_{2}\right)\right.$ and $y_{1} \leq$ $\left.y_{2}\right)$ and $\left(\left(x_{2}=x_{1}\right)\right.$ and $\left.y_{2} \leq y_{1}\right)$ hold, which implies $\left(x_{1}, y_{1}\right)=$ $\left(x_{2}, y_{2}\right)$.
(c) R is transitive. To prove this consider $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \in$ $\mathbb{R} \times \mathbb{R}$ such that $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \in R$ and $\left(\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)\right) \in R$ both hold. We shall prove that $\left(\left(x_{1}, y_{1}\right),\left(x_{3}, y_{3}\right)\right) \in R$ also holds. Four cases must be inspected:
i. $x_{1}<x_{2}$ and $x_{2}<x_{3}$,
ii. $x_{1}<x_{2}$ and $x_{2}=x_{3}$ and $y_{2} \leq y_{3}$,
iii. $x_{1}=x_{2}$ and $y_{1} \leq y_{2}$ and $x_{2}<x_{3}$,
iv. $x_{1}=x_{2}$ and $y_{1} \leq y_{2}$ and $x_{2}=x_{3}$ and $y_{2} \leq y_{3}$,
which respectively imply:
i. $x_{1}<x_{3}$,
ii. $x_{1}<x_{3}$,
iii. $x_{1}<x_{3}$,
iv. $x_{1}=x_{3}$ and $y_{1} \leq y_{3}$,
that is $\left(\left(x_{1}, y_{1}\right),\left(x_{3}, y_{3}\right)\right) \in R$.
3. Therefore, R is an ordering relation on the set $\mathbb{R} \times \mathbb{R}$.
4. R is a total ordering relation on the set $\mathbb{R} \times \mathbb{R}$. Indeed, for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R} \times \mathbb{R}$, we have
(a) either $x_{1}<x_{2}$ (in which case $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \in R$ holds),
(b) or $\left(x_{1}=x_{2}\right.$ and $y_{1} \leq y_{2}$ (in which case $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \in R$ holds),
(c) or $\left(x_{1}=x_{2}\right.$ and $y_{1}>y_{2}$ (in which case $\left(\left(x_{2}, y_{2}\right),\left(x_{1}, y_{1}\right)\right) \in R$ holds),
(d) or $x_{1}>x_{2}$ (in which case $\left(\left(x_{2}, y_{2}\right),\left(x_{1}, y_{1}\right)\right) \in R$ holds).

Problem 3 Let R be a binary relation on a set A. We denote by I the identity relation on A, that is:

$$
I=\{(x, x) \mid x \in A\} .
$$

We denote by $r(R)$ the relation given by:

$$
r(R)=R \cup I .
$$

1. Prove that $r(R)$ is reflexive.
2. Prove that R is reflexive if and only if $r(R)=R$.

Clearly, if R^{\prime} is a reflexive relation so that $R \subseteq R^{\prime}$ holds then $r(R) \subseteq R^{\prime}$ holds as well. For that reason, the relation $r(R)$ can be regarded as the "smallest" reflexive relation containing R and $r(R)$ is called the reflexive closure of R.

Solution 3

1. Indeed R reflexive exactly means $I \subseteq R$.
2. From the previous question, if R reflexive, then $I \subseteq R$ holds and thus $r(R) \subseteq R$ holds. Since $R \subseteq r(R)$ clearly holds as well, we have proved the following:

$$
R \text { reflexive } \rightarrow r(R)=R
$$

The converse follow from the previous question.
Problem 4 Let R be a binary relation on a set A. We denote by R^{-1} the inverse relation of R, that is, the binary relation on A defined by:

$$
R^{-1}=\{(y, x) \mid \quad(x, y) \in R\} .
$$

We denote by $s(R)$ the relation given by:

$$
s(R)=R \cup R^{-1} .
$$

1. Prove that $s(R)$ is symmetric.
2. Prove that R is symmetric if and only if $s(R)=R$.
3. Prove that if R^{\prime} is a symmetric relation so that $R \subseteq R^{\prime}$ holds, then $s(R) \subseteq R^{\prime}$ holds as well.

From the third question it follows that the relation $s(R)$ can be regarded as the "smallest" symmetric relation containing R. For that reason, $s(R)$ is called the symmetric closure of R.

Solution 4

1. Let us prove that $s(R)$ is symmetric, thus let us prove that for all $x, y \in A$, if $(x, y) \in s(R)$, then $(y, x) \in s(R)$ holds as well. So, let $x, y \in A$ and assume that $(x, y) \in s(R)$ holds. Since $s(R)=R \cup R^{-1}$ holds, two cases arise: either $(x, y) \in R$ holds or $(x, y) \in R^{-1}$ holds. Consider the first case. Then, by definition of R^{-1}, we have $(y, x) \in$ R^{-1}, thus we have $(y, x) \in s(R)$. Consider now the second case, that is, $(x, y) \in R^{-1}$. Then, by definition of R^{-1}, we have $(y, x) \in R$, thus we have $(y, x) \in s(R)$. Finally, we have shown that $s(R)$ is symmetric.
2. Let us prove that R is symmetric if and only if $s(R)=R$. First, we assume that R is symmetric and we prove that $s(R)=R$ holds as well. We observe that R symmetric implies that $R^{-1} \subseteq R$ holds and thus we have $s(R)=R$. Conversely, if $s(R)=R$ holds, then $R^{-1} \subseteq R$ holds as well which implies that R is symmetric.
3. Let R^{\prime} be a symmetric relation so that $R \subseteq R^{\prime}$ holds. We shall prove that $s(R) \subseteq R^{\prime}$ holds as well. Since $R \subseteq R^{\prime}$ holds, it is a routine exercise to prove that $s(R) \subseteq s\left(R^{\prime}\right)$ holds as well. Since R^{\prime} is symmetric, it follows from the second question that $R^{\prime}=s\left(R^{\prime}\right)$. Therefore, we have $s(R) \subseteq R^{\prime}$, as required.

Problem 5 Let R be a binary relation on a finite set A with cardinality n. We denote by $t(R)$ the transitive closure of R, that is, the binary relation on A defined by:

$$
t(R)=R \cup R^{2} \cup \cdots \cup R^{n} .
$$

1. Let k be an integer such that $2 \leq k \leq n$. Let x, y be in A. We denote by $P(x, y, k)$ the following predicate:

$$
\begin{aligned}
& \text { there exist }(k-1) \text { elements } x_{2}, \ldots, x_{k} \text { of } A \text { so that } \\
& \qquad\left(x, x_{2}\right),\left(x_{2}, x_{3}\right), \ldots,\left(x_{k}, y\right) \text { all belong to } R .
\end{aligned}
$$

Prove that the following statements are equivalent for all $x, y \in A$:
(a) $(x, y) \in R^{k}$,
(b) $P(x, y, k)$ holds
2. Let k, ℓ be two positive integers, with $k \leq n$ and $\ell \leq n$. Let x, y, z be in A so that $P(x, y, k)$ and $P(y, z, \ell)$ both hold. Prove that $P(x, z, m)$, with $m=\min (n, k+\ell)$, also holds.
3. Prove that $t(R)$ is transitive.
4. Prove that if R transitive, then $R^{k} \subseteq R$ for all positive integer k.
5. Prove that R transitive if and only if $t(R)=R$.
6. Prove that if R^{\prime} is a transitive relation so that $R \subseteq R^{\prime}$ holds, then $t(R) \subseteq R^{\prime}$ holds as well.

It follows from the last question that the relation $t(R)$ can be regarded as the "smallest" transitive relation containing R. This is the reason why $t(R)$ is called the transitive closure of R.

Solution 5

1. We proceed by induction on k, for $1 \leq k \leq n$. We observe that the equivalence $(a) \Longleftrightarrow(b)$ is clear for all $x, y, \in A$, when $k=1$. Indeed, $P(x, y, 1)$ simply means $(x, y) \in R$. Now we assume that for some k, with $1 \leq k<n$, the equivalence $(a) \Longleftrightarrow(b)$ holds for all $x, y, \in A$. We shall prove that this equivalence holds for all $x, y, \in A$, with $k+1$ instead of k. So let $x, y, \in A$. Assume first that $(x, y) \in R^{k+1}$ holds and let us prove that $P(x, y, k+1)$ holds as well. By definition of R^{k+1}, we have $R^{k+1}=R \circ R^{k}$, thus there exists $z \in A$ so that $(x, z) \in R^{k}$ and $(z, y) \in R$. By induction hypothesis, $(x, z) \in$ R^{k} is equivalent to $P(x, z, k)$, that is, there exist $(k-1)$ elements x_{2}, \ldots, x_{k} of A so that $\left(x, x_{2}\right),\left(x_{2}, x_{3}\right), \ldots,\left(x_{k}, z\right)$ all belong to R. Putting everything together, we deduce that there exist k elements x_{2}, \ldots, x_{k}, z of A so that $\left(x, x_{2}\right),\left(x_{2}, x_{3}\right), \ldots,\left(x_{k}, z\right),(z, y)$ all belong to R. This latter statement means that $P(x, y, k+1)$ holds, as required. Proving the converse implication (that is, $P(x, y, k+1) \rightarrow(x, y) \in$ R^{k+1}) can easily be done using the same arguments as those used for proving the direct implication $(x, y) \in R^{k+1} \rightarrow P(x, y, k+1)$. This completes the proof of this first question.
2. Let k, ℓ be two positive integers, with $k \leq n$ and $\ell \leq n$. Let x, y, z be in A so that $P(x, y, k)$ and $P(y, z, \ell)$ both hold. We shall prove that $P(x, z, m)$, with $m=\min (n, k+\ell)$, holds as well. Recall first that $P(x, y, k)$ means that there exist $(k-1)$ elements x_{2}, \ldots, x_{k} of A so that $\left(x, x_{2}\right),\left(x_{2}, x_{3}\right), \ldots,\left(x_{k}, y\right)$ all belong to R. Similarly, $P(y, z, \ell)$ means that there exist $(\ell-1)$ elements $x_{k+2}, \ldots x_{\ell+k}$ so that $\left(y, x_{k+2}\right), \ldots,\left(x_{\ell+k}, z\right)$ all belong to R. It follows that there exist $x_{2}, \ldots, x_{k}, x_{k+1}, x_{k+2}, \ldots x_{\ell+k} \in A$ with $y=x_{k+1}$, so that

$$
\left(x, x_{2}\right),\left(x_{2}, x_{3}\right), \ldots,\left(x_{k}, x_{k+1}\right),\left(x_{k+1}, x_{k+2}\right), \ldots,\left(x_{\ell+k}, z\right)
$$

all belong to R. The number of these "intermediate points"

$$
x_{2}, \ldots, x_{k}, x_{k+1}, x_{k+2}, \ldots x_{\ell+k}
$$

is $\ell-k-1$. But if $\ell-k-1$ exceeds $n-1$ then there is necessarily some repetitions among those points and thus some arcs can be removed.

Indeed, since the set A counts n elements, the number of these "intermediate points" (excluding x and z) is at most $n-1$ if $x=z$ holds and $n-2$ otherwise. Therefore, the number of intermediate points is $m-1$ with $m=\min (n, k+\ell)$. Therefore, we have $P(x, z, m)$, as required.
3. Let us prove that $t(R)$ is transitive. Let x, y, z be in A so that $(x, y) \in$ $t(R)$ and $(y, z) \in t(R)$ both hold. Let us prove that $(x, z) \in t(R)$ as well. Recall that, by definition of $t(R)$, we have:

$$
t(R)=R \cup R^{2} \cup \cdots \cup R^{n} .
$$

Therefore, the statement $(x, y) \in t(R)$ means that there exists a positive integer $k \leq n$ so that $(x, y) \in R^{k}$. Similarly, the statement $(y, z) \in t(R)$ means that there exists a positive integer $\ell \leq n$ so that $(y, z) \in R^{\ell}$. From the first question, we deduce that $P(x, y, k)$ and $P(y, z, \ell)$ both hold. Then, from the second question, we deduce that $P(x, z, m)$, with $m=\min (n, k+\ell)$, also holds. This implies, using the first question again that $(x, z) \in R^{m}$. Since $m \leq n$ holds, it follows that (x, z) belongs to one of R, R^{2}, \ldots, R^{n}. In other words, (x, z) belongs to $t(R)$, as required. This completes the proof that $t(R)$ is transitive.
4. The proof is by induction $k \geq 1$. The base step $k=1$ is clear since we obviously have $R \subseteq R$. We now prove the inductive step. We assume that $R^{k} \subseteq R$ holds for some $k \geq 1$. We shall prove that $R^{k+1} \subseteq R$ holds as well. Recall that we have $R^{k+1}=R \circ R^{k}$. Since $R^{k} \subseteq R$ holds (by induction hypothesis) a routine proof yields

$$
R \circ R^{k} \subseteq R \circ R
$$

Since R is transitive, it follows directly from the definition of the composition of two relations that $R \circ R \subseteq R$ holds. Therefore, we have $R^{k+1} \subseteq R$, which completes the proof of the inductive step and thus the proof of the fact that if R transitive, then $R^{k} \subseteq R$ for all positive integer k.
5. We prove the equivalence:

$$
R \text { transitive } \Longleftrightarrow t(R)=R .
$$

We first assume that R is transitive. Recall that we have:

$$
t(R)=R \cup R^{2} \cup \cdots \cup R^{n}
$$

From the previous question, we have $R^{k} \subseteq R$, for all positive integer $k \geq 1$. This clearly implies $t(R)=R$. Conversely, if $t(R)=R$ holds, then from the third question, we deduce that R is transitive, as required.
6. Let R^{\prime} be a transitive relation so that $R \subseteq R^{\prime}$ holds. We prove that $t(R) \subseteq R^{\prime}$ holds as well. From $R \subseteq R^{\prime}$, an easy routine proof (similar to the proof of the fourth question) yields $t(R) \subseteq t\left(R^{\prime}\right)$. Since R^{\prime} is transitive, the fifth question yields $t\left(R^{\prime}\right)=R^{\prime}$. Therefore, we have $t(R) \subseteq R^{\prime}$, as required.

