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Tutorial #11

Problem 1 Let A be the set of all ordered pairs of integers for which the
second element of the pair is nonzero. Symbolically,

A = Z× (Z \ {0}).

Define a binary relation R on A as follows: For all (a, b), (c, d) ∈ A,

(a, b) R (c, d)⇔ ac = bd.

1. Is R reflexive?
2. Is R symmetric?
3. Is R anti-symmetric?
4. Is R transitive?
5. Is R an equivalence relation, a partial order, neither, or both?

Solution 1
1. Is R reflexive? No. Indeed, consider (a, c) ∈ Z× (Z \ {0}). We have:

(a, c) R (a, c)⇔ a2 = c2.

The statement a2 = c2 is equivalent to (a − c)(a + c) = 0, that is
a = c ∨ a = −c. Therefore, we (2, 3) 6∈ R. Thus, R is not reflexive.

2. Is R symmetric? Yes. Indeed, consider (a, b), (c, d)inZ×(Z\{0}). We
have:

(a, b) R (c, d)⇔ ac = bd,

and

(c, d) R (a, b)⇔ ca = db,

Clearly, we have:

ca = db⇔ ac = bd,

Therefore, we have:

(a, b) R (c, d)⇔ (c, d) R (a, b).

3. Is R anti-symmetric? No. Indeed, we have (6, 10)R(5, 3).

1



4. Is R transitive? No. Indeed, we have (6, 10)R(5, 3) and (5, 3)R(21, 35).
But we do not have (6, 10)R(21, 35), since 6× 21 6= 10× 35.

5. Is R an equivalence relation, a partial order, neither, or both? Neither.
It is not an equivalence relation, since it is not reflexive. It is not a
partial order, since it is not anti-symmetric.

Problem 2 1. Show that the relation

R = {(x, y)| (x− y) is an even integer}

is an equivalence relation on the set R of real numbers.

2. Show that the relation

R = {((x1, y1), (x2, y2)) | (x1 <x2) or ((x1 = x2) and (y1 ≤y2))}

is a total ordering relation on the set R× R.

Solution 2

1. (a) R is reflexive, since for all x ∈ R, we have x − x = 0 which is
even, hence for all x ∈ R, we have (x, x) ∈ R.

(b) R is symmetric, since for all x, y ∈ R, if x− y ≡ 0 mod 2 holds
then so does y − x ≡ 0 mod 2, that is, if (x, y) ∈ R holds then
so does (y, x) ∈ R.

(c) R is transitive, since for all x, y, z ∈ R, if x − y ≡ 0 mod 2 and
y−x ≡ 0 mod 2 both hold then so does x−z = (x−y)+(y−z) ≡
0 mod 2, that is, if (x, y) ∈ R and (y, z) ∈ R both hold then so
does (x, z) ∈ R.

Therefore, R is an equivalence relation.

2. (a) R is reflexive, since for all (x1, y1) ∈ R × R, we have ((x1 =
x1) and y1 ≤ y1, that is, for all (x1, y1) ∈ R × R we have
((x1, y1), (x1, y1)) ∈ R.

(b) R is anti-symmetric, since for all (x1, y1), (x2, y2) ∈ R × R, if
((x1, y1), (x2, y2)) ∈ R and ((x2, y2), (x1, y1)) ∈ R both hold then
neither x1 < x2 nor x2 < x1 holds but both ((x1 = x2) and y1 ≤
y2) and ((x2 = x1) and y2 ≤ y1) hold, which implies (x1, y1) =
(x2, y2).
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(c) R is transitive. To prove this consider (x1, y1), (x2, y2), (x3, y3) ∈
R×R such that ((x1, y1), (x2, y2)) ∈ R and ((x2, y2), (x3, y3)) ∈ R
both hold. We shall prove that ((x1, y1), (x3, y3)) ∈ R also holds.
Four cases must be inspected:

i. x1 < x2 and x2 < x3,

ii. x1 < x2 and x2 = x3 and y2 ≤ y3,

iii. x1 = x2 and y1 ≤ y2 and x2 < x3,

iv. x1 = x2 and y1 ≤ y2 and x2 = x3 and y2 ≤ y3,

which respectively imply:

i. x1 < x3,

ii. x1 < x3,

iii. x1 < x3,

iv. x1 = x3 and y1 ≤ y3,

that is ((x1, y1), (x3, y3)) ∈ R.

3. Therefore, R is an ordering relation on the set R× R.

4. R is a total ordering relation on the set R × R. Indeed, for all
(x1, y1), (x2, y2) ∈ R× R, we have

(a) either x1 < x2 (in which case ((x1, y1), (x2, y2)) ∈ R holds),

(b) or (x1 = x2 and y1 ≤ y2 (in which case ((x1, y1), (x2, y2)) ∈ R
holds),

(c) or (x1 = x2 and y1 > y2 (in which case ((x2, y2), (x1, y1)) ∈ R
holds),

(d) or x1 > x2 (in which case ((x2, y2), (x1, y1)) ∈ R holds).

Problem 3 Let R be a binary relation on a set A. We denote by I the
identity relation on A, that is:

I = {(x, x) | x ∈ A}.

We denote by r(R) the relation given by:

r(R) = R ∪ I.

1. Prove that r(R) is reflexive.

2. Prove that R is reflexive if and only if r(R) = R.
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Clearly, if R′ is a reflexive relation so that R ⊆ R′ holds then r(R) ⊆ R′

holds as well. For that reason, the relation r(R) can be regarded as the
“smallest” reflexive relation containing R and r(R) is called the reflexive
closure of R.

Solution 3

1. Indeed R reflexive exactly means I ⊆ R.

2. From the previous question, if R reflexive, then I ⊆ R holds and thus
r(R) ⊆ R holds. Since R ⊆ r(R) clearly holds as well, we have proved
the following:

R reflexive → r(R) = R

The converse follow from the previous question.

Problem 4 Let R be a binary relation on a set A. We denote by R−1 the
inverse relation of R, that is, the binary relation on A defined by:

R−1 = {(y, x) | (x, y) ∈ R}.

We denote by s(R) the relation given by:

s(R) = R ∪R−1.

1. Prove that s(R) is symmetric.

2. Prove that R is symmetric if and only if s(R) = R.

3. Prove that if R′ is a symmetric relation so that R ⊆ R′ holds, then
s(R) ⊆ R′ holds as well.

From the third question it follows that the relation s(R) can be regarded
as the “smallest” symmetric relation containing R. For that reason, s(R) is
called the symmetric closure of R.

Solution 4

1. Let us prove that s(R) is symmetric, thus let us prove that for all
x, y ∈ A, if (x, y) ∈ s(R), then (y, x) ∈ s(R) holds as well. So, let
x, y ∈ A and assume that (x, y) ∈ s(R) holds. Since s(R) = R ∪ R−1

holds, two cases arise: either (x, y) ∈ R holds or (x, y) ∈ R−1 holds.
Consider the first case. Then, by definition of R−1, we have (y, x) ∈
R−1, thus we have (y, x) ∈ s(R). Consider now the second case, that
is, (x, y) ∈ R−1. Then, by definition of R−1, we have (y, x) ∈ R, thus
we have (y, x) ∈ s(R). Finally, we have shown that s(R) is symmetric.
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2. Let us prove that R is symmetric if and only if s(R) = R. First, we
assume that R is symmetric and we prove that s(R) = R holds as
well. We observe that R symmetric implies that R−1 ⊆ R holds and
thus we have s(R) = R. Conversely, if s(R) = R holds, then R−1 ⊆ R
holds as well which implies that R is symmetric.

3. Let R′ be a symmetric relation so that R ⊆ R′ holds. We shall prove
that s(R) ⊆ R′ holds as well. Since R ⊆ R′ holds, it is a routine exer-
cise to prove that s(R) ⊆ s(R′) holds as well. Since R′ is symmetric, it
follows from the second question that R′ = s(R′). Therefore, we have
s(R) ⊆ R′, as required.

Problem 5 Let R be a binary relation on a finite set A with cardinality n.
We denote by t(R) the transitive closure of R, that is, the binary relation
on A defined by:

t(R) = R ∪R2 ∪ · · · ∪Rn.

1. Let k be an integer such that 2 ≤ k ≤ n. Let x, y be in A. We denote
by P (x, y, k) the following predicate:

there exist (k − 1) elements x2, . . . , xk of A so that
(x, x2), (x2, x3), . . . , (xk, y) all belong to R.

Prove that the following statements are equivalent for all x, y ∈ A:

(a) (x, y) ∈ Rk,

(b) P (x, y, k) holds

2. Let k, ` be two positive integers, with k ≤ n and ` ≤ n. Let x, y, z be
in A so that P (x, y, k) and P (y, z, `) both hold. Prove that P (x, z,m),
with m = min(n, k + `), also holds.

3. Prove that t(R) is transitive.

4. Prove that if R transitive, then Rk ⊆ R for all positive integer k.

5. Prove that R transitive if and only if t(R) = R.

6. Prove that if R′ is a transitive relation so that R ⊆ R′ holds, then
t(R) ⊆ R′ holds as well.
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It follows from the last question that the relation t(R) can be regarded as
the “smallest” transitive relation containing R. This is the reason why t(R)
is called the transitive closure of R.

Solution 5

1. We proceed by induction on k, for 1 ≤ k ≤ n. We observe that
the equivalence (a) ⇐⇒ (b) is clear for all x, y,∈ A, when k = 1.
Indeed, P (x, y, 1) simply means (x, y) ∈ R. Now we assume that
for some k, with 1 ≤ k < n, the equivalence (a) ⇐⇒ (b) holds
for all x, y,∈ A. We shall prove that this equivalence holds for all
x, y,∈ A, with k + 1 instead of k. So let x, y,∈ A. Assume first that
(x, y) ∈ Rk+1 holds and let us prove that P (x, y, k + 1) holds as well.
By definition of Rk+1, we have Rk+1 = R ◦Rk, thus there exists z ∈ A
so that (x, z) ∈ Rk and (z, y) ∈ R. By induction hypothesis, (x, z) ∈
Rk is equivalent to P (x, z, k), that is, there exist (k − 1) elements
x2, . . . , xk of A so that (x, x2), (x2, x3), . . . , (xk, z) all belong to R.
Putting everything together, we deduce that there exist k elements
x2, . . . , xk, z of A so that (x, x2), (x2, x3), . . . , (xk, z), (z, y) all belong
to R. This latter statement means that P (x, y, k+1) holds, as required.
Proving the converse implication (that is, P (x, y, k + 1) → (x, y) ∈
Rk+1) can easily be done using the same arguments as those used for
proving the direct implication (x, y) ∈ Rk+1 → P (x, y, k + 1). This
completes the proof of this first question.

2. Let k, ` be two positive integers, with k ≤ n and ` ≤ n. Let x, y, z
be in A so that P (x, y, k) and P (y, z, `) both hold. We shall prove
that P (x, z,m), with m = min(n, k + `), holds as well. Recall first
that P (x, y, k) means that there exist (k − 1) elements x2, . . . , xk
of A so that (x, x2), (x2, x3), . . . , (xk, y) all belong to R. Similarly,
P (y, z, `) means that there exist (` − 1) elements xk+2, . . . x`+k so
that (y, xk+2), . . . , (x`+k, z) all belong to R. It follows that there exist
x2, . . . , xk, xk+1, xk+2, . . . x`+k ∈ A with y = xk+1, so that

(x, x2), (x2, x3), . . . , (xk, xk+1), (xk+1, xk+2), . . . , (x`+k, z)

all belong to R. The number of these “intermediate points”

x2, . . . , xk, xk+1, xk+2, . . . x`+k

is `−k−1. But if `−k−1 exceeds n−1 then there is necessarily some
repetitions among those points and thus some arcs can be removed.
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Indeed, since the set A counts n elements, the number of these “inter-
mediate points” (excluding x and z) is at most n−1 if x = z holds and
n−2 otherwise. Therefore, the number of intermediate points is m−1
with m = min(n, k + `). Therefore, we have P (x, z,m), as required.

3. Let us prove that t(R) is transitive. Let x, y, z be in A so that (x, y) ∈
t(R) and (y, z) ∈ t(R) both hold. Let us prove that (x, z) ∈ t(R) as
well. Recall that, by definition of t(R), we have:

t(R) = R ∪R2 ∪ · · · ∪Rn.

Therefore, the statement (x, y) ∈ t(R) means that there exists a pos-
itive integer k ≤ n so that (x, y) ∈ Rk. Similarly, the statement
(y, z) ∈ t(R) means that there exists a positive integer ` ≤ n so that
(y, z) ∈ R`. From the first question, we deduce that P (x, y, k) and
P (y, z, `) both hold. Then, from the second question, we deduce that
P (x, z,m), with m = min(n, k + `), also holds. This implies, using
the first question again that (x, z) ∈ Rm. Since m ≤ n holds, it fol-
lows that (x, z) belongs to one of R,R2, . . . , Rn. In other words, (x, z)
belongs to t(R), as required. This completes the proof that t(R) is
transitive.

4. The proof is by induction k ≥ 1. The base step k = 1 is clear since we
obviously have R ⊆ R. We now prove the inductive step. We assume
that Rk ⊆ R holds for some k ≥ 1. We shall prove that Rk+1 ⊆ R
holds as well. Recall that we have Rk+1 = R◦Rk. Since Rk ⊆ R holds
(by induction hypothesis) a routine proof yields

R ◦Rk ⊆ R ◦R.

Since R is transitive, it follows directly from the definition of the com-
position of two relations that R ◦ R ⊆ R holds. Therefore, we have
Rk+1 ⊆ R, which completes the proof of the inductive step and thus
the proof of the fact that if R transitive, then Rk ⊆ R for all positive
integer k.

5. We prove the equivalence:

R transitive ⇐⇒ t(R) = R.

We first assume that R is transitive. Recall that we have:
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t(R) = R ∪R2 ∪ · · · ∪Rn.

From the previous question, we have Rk ⊆ R, for all positive integer
k ≥ 1. This clearly implies t(R) = R. Conversely, if t(R) = R
holds, then from the third question, we deduce that R is transitive, as
required.

6. Let R′ be a transitive relation so that R ⊆ R′ holds. We prove that
t(R) ⊆ R′ holds as well. From R ⊆ R′, an easy routine proof (similar
to the proof of the fourth question) yields t(R) ⊆ t(R′). Since R′ is
transitive, the fifth question yields t(R′) = R′. Therefore, we have
t(R) ⊆ R′, as required.
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