UWO CS2214

Tutorial \#3

Problem 1 Professor Cuthbert Calculus has designed a machine which consists of three components A, B, C which are either running or stopped. The constraints on those components are the following:

1. if A is running, then at least one of the components B or C is stopped,
2. if B is stopped, then at least one of the components A or C is running,
3. if C is running, then B is running as well.

Can the machine of Professor Cuthbert Calculus be built, that is, is the conjunction of the above three statements satisfiable. Justify your answer.

Solution 1 Let us denote by A, B, C Boolean variables stating that the respective components A, B, C are running. Then the 3 constraints can be rephrased as follows in propositional logic:

1. $A \rightarrow(\neg B \vee \neg C)$,
2. $\neg B \rightarrow(A \vee C)$,
3. $C \rightarrow B$.

Because of the third constraint, namely $C \rightarrow B$, it is natural to test whether the conjunction of the three constraints is satisfiable with $B=C=$ true. Then, since $\neg B \vee \neg C=$ false, to satisfy the first constraint, we must have $A=$ false. With those values of the Boolean variables A, B, C, the second constraint is satisfied. Therefore, the the machine of Professor Cuthbert Calculus be built.

Problem 2 Prove that $\log _{2}(9)$ is irrational.
Solution 2 if $\log _{2}(9)$ were equal to $\frac{m}{n}$, with m, n positive integers, without common factors, then, by the definition of logarithms, we would have

$$
2^{\frac{m}{n}}=9 .
$$

Raising both sides to the n-th power, we obtain:

$$
2^{m}=9^{n} .
$$

Since n and m are non-zero, the numbers 9^{n} and 2^{m} are greater or equal to 9 and 2 , respectively. Moreover, the numbers 9^{n} and 2^{m} are odd and even, respectively. Since a number cannot be both even and odd, the numbers 9^{n} and 2^{m} cannot be equal and we have reached a contradiction. Therefore, the number $\log _{2}(9)$ is irrational.

Problem 3 Let p, q, r, s be Boolean variables. For each of the following propositions, determine whether it is satisfiable or not :

1. $(p \vee(q \wedge(q \vee s)) \wedge(\neg p \vee(\neg q \wedge(\neg q \vee r)) \wedge(p \vee s) \wedge(\neg p \vee r)$.
2. $(p \vee(q \wedge(q \vee s)) \wedge(\neg p \vee(\neg q \wedge(\neg q \vee r)) \wedge(p \vee \neg q) \wedge(\neg p \vee q)$

Solution 3

1. Using the absorption laws, the sub-expression $(q \wedge(q \vee s))$ can simply be rewritten as q and the sub-expression $(\neg q \wedge(\neg q \vee r))$ can simply be rewritten as $\neg q$. Therefore, the entire proposition becomes

$$
(p \vee q) \wedge(\neg p \vee \neg q) \wedge(p \vee s) \wedge(\neg p \vee r)
$$

Let us look first at $(p \vee q) \wedge(\neg p \vee \neg q)$. Both $(p \vee q)$ and $(\neg p \vee \neg q)$ are true if and only if p and q have opposite truth values. (This can be verified with a truth table.) Assume we choose $p=$ true and $q=$ false. Then $(p \vee s)$ is true whatever is the truth value of s, meanwhile satisfying $(\neg p \vee r)$ requires to set $r=$ true. Finally, we can conclude that the entire proposition is satisfied with $p=$ true, $q=$ false and $r=$ true.
2. Here again, $(q \wedge(q \vee s))$ can simply be rewritten as q and $(\neg q \wedge(\neg q \vee r))$ can simply be rewritten as $\neg q$. And the entire proposition becomes

$$
(p \vee q) \wedge(\neg p \vee \neg q) \wedge(p \vee \neg q) \wedge(\neg p \vee q)
$$

Remember that $(p \vee q) \wedge(\neg p \vee \neg q)$ means $p \leftrightarrow \neg q$, that is, p and q have opposite truth values. Similarly, the sub-expression $(p \vee \neg q) \wedge(\neg p \vee q)$ means that p and q have the same truth values, that is, $p \leftrightarrow q$. Therefore, the entire proposition becomes

$$
(p \leftrightarrow \neg q) \wedge(p \leftrightarrow q),
$$

which is clearly false. Finally, we can conclude that the entire proposition cannot be satisfied.

Problem 4 For any real number x, the absolute value of x, denoted by $|x|$, is defined as follows:

$$
|x|=\left\{\begin{array}{rr}
x, & \text { if } x \geq 0 \\
-x, & \text { if } x<0 .
\end{array}\right.
$$

Prove that for all real numbers a, b, the following properties hold:

1. $|a+b| \leq|a|+|b|$ (called the triangular inequality),
2. $|a-b| \geq||a|-|b||$ (called the reverse triangular inequality),
3. if b is non-negative then we have: $|a| \leq b \Longleftrightarrow-b \leq a \leq b$.

Solution 4

1. Let a, b be two real numbers. We consider 4 cases

- Case 1: $a \geq 0$ and $b \geq 0$. Then $a+b \geq 0$ and we have:

$$
|a+b|=a+b=|a|+|b| .
$$

- Case 2: $a<0$ and $b \geq 0$. In this case $a+b=-|a|+b$ and thus the sign of $a+b$ depends on whether $|a| \leq b$ or $|a|>b$ holds. If $|a| \leq b$ holds, then $a+b \geq 0$ and we have:

$$
|a+b|=-|a|+b \leq|a|+b=|a|+|b| .
$$

If $|a|>b$ holds, then $a+b<0$ and we have:

$$
|a+b|=|a|-b \leq|a|+b=|a|+|b| .
$$

- Case 3: $a \geq 0$ and $b<0$. This case is simply deduced from the previous one by exchanging the role of a and b.
- Case 4: $a<0$ and $b<0$. Then $a+b<0$ and we have:

$$
|a+b|=-(a+b)=-|a|-|b| \leq|a|+|b| .
$$

QED. It should be noted, as pointed by one student in class, that other formulas about absolute values can be used to avoid the case discussion. These formulas are

$$
\sqrt{a^{2}}=|a| \text { and }|a \times b|=|a| \times|b| \text {. }
$$

Since $a b \leq|a \times b|$ and $|a \times b|=|a| \times|b|$ both hold, we deduce:

$$
2 a b \leq 2|a| \times|b|,
$$

and thus

$$
a^{2}+2 a b+b^{2} \leq|a|^{2}+2|a| \times|b|+|b|^{2},
$$

leading to

$$
(a+b)^{2} \leq(|a|+|b|)^{2} .
$$

Taking the square-root of each side yields:

$$
\sqrt{(a+b)^{2}} \leq \sqrt{(|a|+|b|)^{2}}
$$

that is,

$$
|a+b| \leq||a|+|b||=|a|+|b| .
$$

2. Let a, b be two real numbers. One could proceed again by case inspection, discussing whether $a-b$ is non-negative or not, and discussing whether $|a|-|b|$ is non-negative or not. But there is a faster way, by applying the triangular inequality twice:

- From $a=(a-b)+b$, we deduce

$$
|a| \leq|a-b|+|b|,
$$

and thus

$$
|a|-|b| \leq|a-b| .
$$

- From $-b=(a-b)+(-a)$ and $|a|=|-a|$ and $|b|=|-b|$, we deduce

$$
|b| \leq|a-b|+|a|,
$$

and thus

$$
|b|-|a| \leq|a-b| .
$$

From $|a|-|b| \leq|a-b|$ and $|b|-|a| \leq|a-b|$, we deduce

$$
||a|-|b|| \leq|a-b|
$$

Indeed, $||a|-|b||$ is equal to either $|a|-|b|$ or $|b|-|a|$. QED.
3. Let a, b be two real numbers. We have the following equivalences:

$$
\begin{aligned}
|a| \leq b & \Longleftrightarrow(a \geq 0 \wedge|a| \leq b) \vee(a<0 \wedge|a| \leq b) \\
& \Longleftrightarrow(a \geq 0 \wedge a \leq b) \vee(a<0 \wedge-a \leq b) \\
& \Longleftrightarrow(a \geq 0 \wedge a \leq b) \vee(a<0 \wedge-b \leq a) \\
& \Longleftrightarrow(a \geq 0 \wedge-b \leq a \leq b) \vee(a<0 \wedge-b \leq a \leq b) \\
& \Longleftrightarrow-b \leq a \leq b
\end{aligned}
$$

Indeed, for the second last equivalence, we can replace ($a \geq 0 \wedge a \leq b$) with ($a \geq 0 \wedge-b \leq a \leq b$) since we know that $b \geq 0$ holds anyway. Similarly, we can replace ($a<0 \wedge-b \leq a$) with ($a<0 \wedge-b \leq a \leq b$) for the same reason. QED. Of course, we can also prove the property

$$
|a| \leq b \quad \Longleftrightarrow \quad-b \leq a \leq b
$$

by case inspection, discussing $a \geq 0$ or $a<0$.

