UWO CS2214

Tutorial \#5

Problem 1 Consider the set of ordered pairs (x, y) where x are y are real numbers. Such a pair can be seen as a point in the plane equipped with Cartesian coordinates (x, y). For each of the following functions $F_{1}, F_{2}, F_{3}, F_{4}$ determine a (2×2)-matrix A so that the point of coordinates (x, y) is sent to the point $\left(x^{\prime}, y^{\prime}\right)$ when we have

$$
\binom{x^{\prime}}{y^{\prime}}=A\binom{x}{y}
$$

where

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

1. $F_{1}(x, y)=(x, y)$,
2. $F_{2}(x, y)=(x, 0)$,
3. $F_{3}(x, y)=(0, y)$,
4. $F_{4}(x, y)=(y,, x)$.

Solution 1 Note that we have:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\binom{a x+b y}{c x+d y}
$$

Hence, for each question, we need to find a, b, c, d so that, we have:

$$
\binom{a x+b y}{c x+d y}=\binom{x^{\prime}}{y^{\prime}}
$$

The solutions are:

1. Since $F_{1}(x, y)=(x, y)$, the matrix A defining F_{1} satisfies

$$
A\binom{x}{y}=\binom{x}{y}
$$

According to what we saw in the lectures, A can be the identity matrix of order 2. that is:

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

2. Since $F_{2}(x, y)=(x, 0)$, the matrix A defining F_{2} satisfies

$$
A\binom{x}{y}=\binom{x}{0},
$$

that is:

$$
\binom{a x+b y}{c x+d y}=\binom{x}{0} .
$$

This suggests the following choice for A : $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$.
3. Since $F_{3}(x, y)=(0, y)$, the matrix A defining F_{3} satisfies

$$
A\binom{x}{y}=\binom{0}{y}
$$

that is:

$$
\binom{a x+b y}{c x+d y}=\binom{0}{y} .
$$

This suggests the following choice for A : $A=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$.
4. Since $F_{4}(x, y)=(y, x)$, the matrix A defining F_{4} satisfies

$$
A\binom{x}{y}=\binom{y}{x}
$$

that is:

$$
\binom{a x+b y}{c x+d y}=\binom{y}{x} .
$$

This suggests the following choice for $A: A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
Problem 2 Following up on the previous problem, determine which of the above functions F is injective? surjective?

Solution 2

1. We study F_{1} :
(a) F_{1} is injective: Indeed, for all $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ if $F_{1}\left(x_{1}, y_{1}\right)=$ $F_{1}\left(x_{2}, y_{2}\right)$ holds then we have $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)$, which exactly means that F_{1} is injective.
(b) F_{1} is surjective: Indeed, every $\left(x^{\prime}, y^{\prime}\right)$ has a pre-image by F_{1}, namely itself, since $F_{1}\left(x^{\prime}, y^{\prime}\right)=\left(x^{\prime}, y^{\prime}\right)$ holds.
2. We study F_{2} :
(a) F_{2} is not injective: Indeed, we have $F_{2}(0,1)=(0,0)=F_{2}(0,2)$, thus two different points, namely $(0,1)$ and $(0,2)$ have the same image by F_{2}, namely $(0,0)$.
(b) F_{2} is not surjective: Indeed, $(1,1)$ has no pre-image by F_{2}.
3. For similar reasons as those for F_{2}, F_{3} is neither injective nor surjective.
4. We study F_{4} :
(a) F_{4} is injective: Indeed, for all $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ if $F_{4}\left(x_{1}, y_{1}\right)=$ $F_{4}\left(x_{2}, y_{2}\right)$ holds then we have $\left(y_{1}, x_{1}\right)=\left(y_{2}, x_{2}\right)$ that is, $y_{1}=y_{2}$ and $x_{1}=x_{2}$, thus $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)$, which exactly means that F_{1} is injective.
(b) F_{4} is surjective: Indeed, every $\left(x^{\prime}, y^{\prime}\right)$ has a pre-image by F_{4}, namely $\left(y^{\prime}, x^{\prime}\right)$, since $F_{1}\left(y^{\prime}, x^{\prime}\right)=\left(x^{\prime}, y^{\prime}\right)$ holds.

Problem 3 Let x be a real number. Prove the following identities:

1. $\lceil-x\rceil=-\lfloor x\rfloor$
2. $\lfloor-x\rfloor=-\lceil x\rceil$

Solution 3

1. Remember that for every real number x there exists a unique integer n and a real number ε so that $0 \leq \varepsilon<1$ and $x=n+\varepsilon$ hold; moreover, we have $\lfloor x\rfloor=n$. Hence, for manipulating $\lfloor x\rfloor$, it is useful to keep that property (namely the formula $x=n+\varepsilon$) in mind.
Similarly, for every real number x there exists a unique integer n and a real number ε so that $0<\varepsilon \leq 1$ and $x=n+\varepsilon$ hold; moreover, we have $\lceil x\rceil=n+1$.
Since the equality that we want to prove mixes the floor and ceiling functions, let us assume first that x is an integer n. Then, we have:

$$
\lceil-x\rceil=\lceil-n\rceil=-n=-\lfloor n\rfloor=-\lfloor x\rfloor .
$$

If x is not an integer, then there exist an integer n and a real number ε so that $0<\varepsilon<1$ and $x=n+\varepsilon$ both hold. In this case, we have:

$$
\begin{aligned}
\lceil-x\rceil & = \\
\lceil-(n+\varepsilon)\rceil & = \\
\lceil-n-1+(1-\varepsilon)\rceil & = \\
(-n-1)+1 & = \\
-n & = \\
-\lfloor n+\varepsilon\rfloor & \\
-\lfloor x\rfloor . &
\end{aligned}
$$

2. Assume first that x is an integer n. Then, we have:

$$
\lfloor-x\rfloor=\lfloor-n\rfloor=-n=-\lceil n\rceil=-\lceil x\rceil .
$$

If x is not an integer, then exist an integer n and $0<\varepsilon<1$ so that $x=n+\varepsilon$ holds. In this case, we have:

$$
\begin{aligned}
\lfloor-x\rfloor & = \\
\lfloor-(n+\varepsilon)\rfloor & = \\
\lfloor-n-1+(1-\varepsilon)\rfloor & = \\
-n-1 & = \\
-(n+1) & = \\
-\lceil n+\varepsilon\rceil & = \\
-\lceil x\rceil . &
\end{aligned}
$$

Problem 4 Let x be a real number and n be an integer. Prove the following identities:

1. $\lceil x+n\rceil=\lceil x\rceil+n$
2. $\lfloor x+n\rfloor=\lfloor x\rfloor+n$

Solution 4

1. There exist an unique integer m and $0<\varepsilon \leq 1$ so that $x=m+\varepsilon$ holds; moreover, we have $\lceil x\rceil=m+1$. Then, we have

$$
\lceil x+n\rceil=\lceil(m+n)+\varepsilon\rceil=m+n+1=\lceil m+\varepsilon\rceil+n=\lceil x\rceil+n .
$$

2. The proof is similar to that of the previous claim.

Problem 5 Which of the functions f below is injective? surjective? When f is bijective, determine its inverse

1. $f_{1}: \begin{array}{llc}\mathbb{Z} & \rightarrow & \mathbb{Z} \\ x & \longmapsto & x+2\end{array}$
2. $f_{2}: \begin{array}{ll}\mathbb{Z} & \rightarrow \\ \\ x & \longmapsto \\ x^{2}-1\end{array}$
3. $f_{3}: \begin{array}{rlc}\mathbb{R} & \rightarrow & \mathbb{R} \\ x & \longmapsto & \frac{x+2}{3}\end{array}$
4. $f_{4}: \begin{array}{lll}\mathbb{R} & \rightarrow & \mathbb{R} \\ x & \longmapsto & \lceil x\rceil\end{array}$

Solution 5

1. We study f_{1} below:
(a) f_{1} is injective. Indeed, for all $x_{1}, x_{2} \in \mathbb{Z}$, if we have $f_{1}\left(x_{1}\right)=$ $f_{1}\left(x_{2}\right)$, we deduce $x_{1}+2=x_{2}+2$, that is, $x_{1}=x_{2}$.
(b) f_{1} is surjective. Indeed, given $y \in \mathbb{Z}$, there exists $x \in \mathbb{Z}$ so that $f_{1}(x)=y$, namely $x=y-2$.
(c) it follows that f_{1} is bijective and that the inverse function of f_{1} is: $f_{1}^{-1}: \begin{array}{lll}\mathbb{Z} & \rightarrow & \mathbb{Z} \\ y & \longmapsto & y-2\end{array}$
2. We study f_{2} below:
(a) f_{2} is not injective since $f_{2}(1)=0=f_{2}(-1)$.
(b) f_{2} is not surjective since -2 has no pre-image by f_{2}. Indeed $-2=x^{2}-1$ has no solution in \mathbb{Z} (and even in \mathbb{R}).
3. We study f_{3} below:
(a) f_{3} is injective. Indeed, for all $x_{1}, x_{2} \in \mathbb{R}$, if we have $f_{3}\left(x_{1}\right)=$ $f_{3}\left(x_{2}\right)$, then we have $\frac{x_{1}+2}{3}=\frac{x_{2}+2}{3}$, that is, $x_{1}+2=x_{2}+2$, that is, $x_{1}=x_{2}$.
(b) Indeed, given $y \in \mathbb{R}$, there exists $x \in \mathbb{R}$ so that $f_{3}(x)=y$, namely $x=3 y-2$.
(c) it follows that f_{3} is bijective and that the inverse function of f_{3} is: $f_{3}^{-1}: \begin{array}{llc}\mathbb{R} & \rightarrow & \mathbb{R} \\ y & \longmapsto & 3 y-2\end{array}$
4. f_{4} is not injective since $f_{4}(\sqrt{2})=2=f_{1}(2) . f_{4}$ is not injective since $\sqrt{2}$ has no pre-image by f_{4}.
