Tutorial \#6

Problem 1 1. Find all integers x such that $0 \leq x<15$ and $4 x+9 \equiv 13$ $\bmod 15$. Justify your answer.
2. Find all integers x and y such that $0 \leq x<15,0 \leq y<15, x+2 y \equiv 4$ $\bmod 15$ and $3 x-y \equiv 10 \bmod 15$. Justify your answer.

Solution 1

1. We have $4 \times 4 \equiv 1 \bmod 15$. That is, 4 is the inverse of 4 modulo 15 . We multiply by 4 each side of:

$$
4 x+9 \equiv 13 \bmod 15
$$

leading to:

$$
x+4 \times 9 \equiv 4 \times 13 \bmod 15
$$

that is:

$$
x \equiv 4(13-9) \bmod 15
$$

which finally yields: $x \equiv 1 \bmod 15$.
2. We eliminate y in order to solve for x first. Multiplying

$$
3 x-y \equiv 10 \bmod 15
$$

by 2 yields

$$
6 x-2 y \equiv 5 \bmod 15
$$

Adding this equation side-by-side with

$$
x+2 y \equiv 4 \bmod 15
$$

yields

$$
7 x \equiv 9 \bmod 15
$$

Since

$$
7 \times 13 \equiv 1 \bmod 15
$$

we have

$$
x \equiv 9 \times 13 \bmod 15
$$

that is,

$$
x \equiv 12 \bmod 15
$$

Substituting x with 12 into

$$
3 x-y \equiv 10 \bmod 15
$$

yields

$$
y \equiv 11 \bmod 15
$$

Problem 2 Let a, b, q, r be non-negative integer numbers such that $b>0$ and we have

$$
\begin{array}{c|c}
a & b \tag{1}\\
\cline { 2 - 2 } & q
\end{array}
$$

That is:

$$
a=b q+r \text { and } 0 \leq r<b
$$

Prove that we have:

$$
\begin{equation*}
q=\left\lfloor\frac{a}{b}\right\rfloor . \tag{2}
\end{equation*}
$$

Solution 2 From $a=b q+r$ and $0 \leq r<b$ we derive

$$
\begin{equation*}
b q \leq b q+r<b(q+1) \tag{3}
\end{equation*}
$$

thus

$$
\begin{equation*}
b q \leq a<b(q+1) \tag{4}
\end{equation*}
$$

that is

$$
\begin{equation*}
q \leq a / b<q+1 \tag{5}
\end{equation*}
$$

which means:

$$
\begin{equation*}
q=\left\lfloor\frac{a}{b}\right\rfloor . \tag{6}
\end{equation*}
$$

Problem 3 Let $a, b, q_{1}, r_{1}, q_{2}, r_{2}$ be non-negative integer numbers such that $b \neq 0$ and we have

$$
\begin{array}{c|c}
a & b \tag{7}\\
r_{1} & q_{1}
\end{array} \quad \text { and } \quad \begin{array}{c|c}
a & b \\
\cline { 2 - 3 } & r_{2}
\end{array} .
$$

Thus we have: $a=b q_{1}+r_{1}=b q_{2}+r_{2}$ as well as $0 \leq r_{1}<b$ and $0 \leq r_{2}<b$. Prove that $q_{1}=q_{2}$ and $r_{1}=r_{2}$ necessarily both hold

Solution 3 Let $a=b q_{1}+r_{1}=b q_{2}+r_{2}$, with $0 \leq r_{1}<b$ and $0 \leq r_{2}<b$, where $a, b, q_{1}, r_{1}, q_{2}, r_{2}$ are non-negative integers. We wish to show that $q_{1}=q_{2}$ and $r_{1}=r_{2}$.

Assume that $r_{1} \neq r_{2}$ holds. Then, without loss of generality, assume that $r_{2}>r_{1}$ holds. We then have:

$$
\begin{equation*}
b\left(q_{1}-q_{2}\right)=r_{2}-r_{1} . \tag{8}
\end{equation*}
$$

Since $0 \leq r_{1}<b$ and $0 \leq r_{2}<b$, and $r_{2}>r_{1}$, it must be that

$$
\begin{equation*}
0<\left(r_{2}-r_{1}\right)<b \tag{9}
\end{equation*}
$$

since the largest difference has $r_{2}=b-1$ and $r_{1}=0$, and $r_{1} \neq r_{2}$ by assumption (so $r_{2}-r_{1} \neq 0$). But Equation (8) implies that b divides $r_{2}-r_{1}$, which cannot be given Equation (9), because the multiples of b are $0, \pm b, \pm 2 b, \ldots$.. This is a contradiction, and we conclude that $r_{1}=r_{2}$.

Since we have shown that $r=r_{1}=r_{2}$ holds, it follows that

$$
\begin{equation*}
\Rightarrow b\left(q_{1}-q_{2}\right)=0 . \tag{10}
\end{equation*}
$$

Equation (10) implies that either $b=0$ or $q_{1}-q_{2}=0$ holds. Since we have $b \neq 0$ by assumption, we conclude that it must be that $q_{1}-q_{2}=0$ holds, meaning that $q_{1}=q_{2}$, which is what we set out to prove.

QED
Problem 4 In the previous exercise, if a, b, q_{1}, q_{2}, are non-negative integer numbers satisfying $a=b q_{1}+r_{1}=b q_{2}+r_{2}$ while r_{1}, r_{2} are integers satisfying $-b<r_{1}<b$ and $-b<r_{2}<b$. Do we still reach the same conclusion? Justify your answer.

Solution 4 No, we do not. Indeed, with $a=7$ and $b=3$, we then have two possible divisions:

Problem 5 Let a and b be integers, and let m be a positive integer. Then, the following properties are equivalent.

1. $a \equiv b \bmod m$,
2. $a \bmod m=b \bmod m$.

Solution 5 Let q_{a}, r_{a} be the quotient and the remainder in the division of a by m. Similarly, let q_{b}, r_{b} be the quotient and the remainder in the division of b by m. Thus, we have:

$$
\begin{array}{c|l}
a & m \\
r_{a} & q_{a}
\end{array} \quad \text { and } \begin{array}{c|c}
b & m \\
r_{b} & q_{b} .
\end{array}
$$

That is:

$$
a=q_{a} m+r_{a} \text { and } 0 \leq r_{a}<m,
$$

and

$$
b=q_{b} m+r_{b} \text { and } 0 \leq r_{b}<m .
$$

We now prove the desired equivalence.

1. We first assume that $a \equiv b \bmod m$ holds and prove that $a \bmod m=$ $b \bmod m$ holds as well. The assumption means that there exists an integer k such that we have $a-b=k m$. It follows that

$$
a-b=k m=\left(q_{a}-q_{b}\right) m+r_{a}-r_{b} .
$$

Thus:

$$
r_{a}-r_{b}=m\left(k-q_{a}+q_{b}\right) .
$$

That is, m divides $r_{a}-r_{b}$. Meanwhile, $0 \leq r_{a}<m$ and $0 \leq r_{b}<m$ imply:

$$
-m<r_{a}-r_{b}<m
$$

The only way $r_{a}-r_{b}$ could be a multiple of m while satisfying the above constraint is with $r_{a}-r_{b}=0$. Therefore, we have proved $a \bmod m=$ $b \bmod m$.
2. Conversely, assume that $a \bmod m=b \bmod m$ and let us $a \equiv b \bmod m$ holds as well. This follows immediately from the equalities:

$$
a=q_{a} m+r_{a} \text { and } b=q_{b} m+r_{b} .
$$

Indeed, $r_{a}=r_{b}$ then implies $a-b=\left(q_{a}-q_{b}\right) m$.
Problem 6 Let a and b be integers, and let m be a positive integer. Prove the following properties

1. $\quad a+b \bmod m=(a \bmod m)+(b \bmod m) \bmod m$,
2. $a b \bmod m=(a \bmod m) \times(b \bmod m) \bmod m$.

Solution 6

1. Let $q_{a}, r_{a}, q_{b}, r_{b}, q_{a+b}, r_{a+b}, q, r$ be integers such that

We are asked to prove:

$$
\begin{equation*}
r_{a+b}=r \tag{12}
\end{equation*}
$$

From the hypotheses, we have:

$$
\begin{align*}
r_{a+b} & =a+b-m q_{a+b} \\
& =q_{a} m+r_{a}+q_{b} m+r_{b}-m q_{a+b} \\
& =r_{a}+r_{b}+m\left(q_{a}+q_{b}-q_{a+b}\right) \tag{13}\\
& =r+q m+m\left(q_{a}+q_{b}-q_{a+b}\right) \\
& =r+m\left(q+q_{a}+q_{b}-q_{a+b}\right)
\end{align*}
$$

It follows that $r_{a+b} \equiv r \bmod m$ holds, that is, m divides $r_{a+b}-r$. From the hypotheses, we also have:

$$
\begin{equation*}
0 \leq r_{a+b}<m \text { and } 0 \leq r<m \tag{14}
\end{equation*}
$$

from which we derive:

$$
\begin{equation*}
-m<r_{a+b}-r<m \tag{15}
\end{equation*}
$$

Since $r_{a+b}-r$ is a multiple of m, satisfying the above double inequality, we must have $r_{a+b}-r=0$. Q.E.D.
2. The proof is similar to the one of the previous property.

