UWO CS2214

Tutorial \#7
Problem 1 Let a, b, c, m be four positive integers with $m>1$. Assume that a has an inverse modulo m. Prove that if each of b and c is an inverse of a modulo m then we have: $b \equiv c \bmod m$.

Solution 1 Let us assume that each of b and c is an inverse of a modulo m. Thus, we have

$$
a b \equiv 1 \bmod m \text { and } a c \equiv 1 \bmod m
$$

This implies

$$
a b \equiv a c \bmod m
$$

That is:

$$
a(b-c) \equiv 0 \bmod m
$$

In other words, m divides $a(b-c)$. Since a has an inverse modulo m, we have:

$$
\operatorname{gcd}(a, m)=1
$$

Therefore, m divides $b-c$, that is:

$$
b \equiv c \bmod m
$$

Problem 2 Let a, b, m be three positive integers with $m>1$. Consider the function f from \mathbb{Z}_{m} to \mathbb{Z}_{m} defined by

$$
f(p)=a p+b \bmod m
$$

1. Prove that f is injective if and only a and m are relatively prime.
2. Prove that if a and m are relatively prime, then f is surjective. Is the converse true?
3 . When a and m are relatively prime, what is the inverse function of f ?

Solution 2

1. f injective means that for all $p, q \in \mathbb{Z}_{m}$ we have

$$
f(p)=f(q) \quad \longrightarrow \quad p \equiv q \bmod m
$$

The equation $f(p)=f(q)$ is equivalent to:

$$
a p+b \equiv a q+b \bmod m,
$$

that is:

$$
a(p-q) \equiv 0 \bmod m .
$$

Therefore, f injective means that for all $p, q \in \mathbb{Z}_{m}$ we have

$$
a(p-q) \equiv 0 \bmod m \quad \longrightarrow \quad p \equiv q \bmod m .
$$

In other words:

$$
m \text { divides } a(p-q) \quad \longrightarrow \quad m \text { divides }(p-q)
$$

This proves that if a and m are relatively prime, then f is injective. Now, suppose that f is not injective. Then, there exists $p, q \in \mathbb{Z}_{m}$, with $p \neq q$ and m divides $a(p-q)$. Because $0<p-q<m$ holds, we cannot have $\operatorname{gcd}(a, m)=1$, otherwise m would divide $p-q$.
2. Assume that a and m are relatively prime and let us prove that f is surjective. Since a and m are relatively prime, we know that f is injective. Now observe that the domain and the codomain of f are the same finite set \mathbb{Z}_{m}. Since f is injective, the images $f(p)$ for all $p \in \mathbb{Z}_{m}$ are disctint and thus there are m of them. Since the codomain of f is \mathbb{Z}_{m}, necessarily, every element of \mathbb{Z}_{m} must have a pre-image in \mathbb{Z}_{m} by f, thus f is surjective.
The converse is true and this can be proved by a similar reasoning: if a and m are not relatively prime, then f is not injective and two different elements $p, q \in \mathbb{Z}_{m}$ have the same image. Hence, at least one element of \mathbb{Z}_{m} does not have a pre-image by f in \mathbb{Z}_{m}, that is, f is not surjective. The key point here is that the domain and the codomain of f are the same finite set \mathbb{Z}_{m}.
3. Assume that a and m are relatively prime. Then, there exists $c \in \mathbb{Z}_{m}$ such that $a c \equiv 1 \bmod m$. The inverse function f^{-1} of f is given by

$$
f^{-1}(q)=c(q-b) \bmod m .
$$

Problem 3 Find s, t, and $\operatorname{gcd}(a, b)$ such that $s a+t b=\operatorname{gcd}(a, b)$ holds in the following cases:

1. $a=2$ and $b=3$,
2. $a=11$ and $b=12$,
3. $a=12$ and $b=15$,
4. $a=3$ and $b=7$,

Solution 3

1. $-1 \times 2+1 \times 3=1=\operatorname{gcd}(a, b)$,
2. $-1 \times 11+1 \times 12=1=\operatorname{gcd}(a, b)$,
3. $-1 \times 12+1 \times 15=3=\operatorname{gcd}(a, b)$,
4. $-2 \times 3+1 \times 7=1=\operatorname{gcd}(a, b)$,

Problem 4

1. Find all integers x such that $0 \leq x<21$ and $4 x+9 \equiv 13 \bmod 21$. Justify your answer.
2. Find all integers x and y such that $0 \leq x<21,0 \leq y<21, x+2 y \equiv 4$ $\bmod 21$ and $3 x-y \equiv 10 \bmod 21$. Justify your answer.
3. Find all integers x such that $0 \leq x<21, x \equiv 2 \bmod 3$ and $x \equiv 6$ $\bmod 7$.

Solution 4

1. We have $4 \times 5 \equiv-1 \bmod 21$. Thus, we have $4 \times 16 \equiv 1 \bmod 21$, since $5 \equiv-16 \bmod 21$. That is, 16 is the inverse of 4 modulo 21 . We multiply by 16 each side of:

$$
4 x+9 \equiv 13 \bmod 21
$$

leading to:

$$
x+9 \times 16 \equiv 16 \times 13 \bmod 21,
$$

that is:

$$
x \equiv 16(13-9) \bmod 21,
$$

which finally yields: $x \equiv 1 \bmod 21$.
2. We eliminate y in order to solve for x first. Multiplying $3 x-y \equiv 10$ $\bmod 21$ by 2 yields $6 x-2 y \equiv 20 \bmod 21$. Adding this equation side-by-side with $x+2 y \equiv 4 \bmod 21$ yields $7 x \equiv 3 \bmod 21$. Since $3 \times 7 \equiv 0 \bmod 21$, we have $0 x \equiv 9 \bmod 21$, which is false. Therefore, the input problem has no solutions for x and consequently no solutions for y.
3. We apply the Chinese Remainder Theorem. We have $m=3, n=7$, $a=2, b=6$. We need s and t such that $s m+t n=1$, hence we can choose $s=-2$ and $t=1$. Then, we have

$$
c \equiv a+(b-a) s m \equiv 2+(6-2) \times-2 \times 3 \equiv 20 \bmod 21 .
$$

Problem 5 (Modular exponentiation) When dealing with congruences, an important question is that of modular exponentiation, that is, computing an expression of the form $a^{n} \bmod m$ where a is an integer and m, n are positive integers.

1. Assume that n is even and at least equal to 2 . Let r be the remainder of the division of $a^{\frac{n}{2}}$ by m. Prove that we have $a^{n} \equiv r^{2} \bmod m$.
2. Assume that n is odd and at least equal to 3 . Let r be the remainder of the division of $a^{\frac{n-1}{2}}$ by m. Prove that we have $a^{n} \equiv\left(a r^{2}\right) \bmod m$.
3. Use the previous questions in order to compute $4^{43} \bmod 60$ without using any computer.

Solution 5

1. Indeed, using Tutorial 6, we have

$$
a^{n} \equiv a^{\frac{n}{2}} \times a^{\frac{n}{2}} \equiv r \times r \equiv r^{2} \bmod m .
$$

2. Indeed, using again Tutorial 6 , we have

$$
a^{n} \equiv a^{\frac{n-1}{2}} \times a^{\frac{n-1}{2}} \times a \equiv r \times r \times a \equiv\left(a r^{2}\right) \bmod m .
$$

3. We have

$$
\begin{array}{lll}
4^{43} & \equiv\left(4^{21}\right)^{2} 4 \bmod 60 & \operatorname{applying}(2) \\
4^{43} \equiv\left(\left(4^{10}\right)^{2} 4\right)^{2} 4 \bmod 60 & \text { applying }(1) & \\
4^{43} \equiv\left(\left(\left(4^{5}\right)^{2}\right)^{2} 4\right)^{2} 4 \bmod 60 & \text { applying }(1) & \\
\left.4^{43} \equiv\left(\left(\left(4^{2}\right)^{2} 4\right)^{2}\right)^{2} 4\right)^{2} 4 \bmod 60 & \text { applying }(2) \\
4^{43} \equiv\left(\left(\left((16)^{2} 4\right)^{2}\right)^{2} 4\right)^{2} 4 \bmod 60 & \text { using } 4^{2} \equiv 16 \bmod 60 \\
4^{43} \equiv\left(\left((16 \times 4)^{2}\right)^{2} 4\right)^{2} 4 \bmod 60 & \text { using4} \equiv 4 \bmod 60 \\
4^{43} \equiv\left(\left((4)^{2}\right)^{2} 4\right)^{2} 4 \bmod 60 & \text { using } 4^{2} \equiv 16 \bmod 60 \\
4^{43} \equiv\left((16)^{2} 4\right)^{2} 4 \bmod 60 & \text { using} 4^{3} \equiv 4 \bmod 60 \\
4^{43} \equiv(4)^{2} 4 \bmod 60 & \text { using } 4^{3} \equiv 4 \bmod 60 x s \\
4^{43} \equiv 4 \bmod 60 . & &
\end{array}
$$

Problem 6 (RSA) Let us consider an RSA Public Key Crypto System. Alice selects 2 prime numbers: $p=5$ and $q=11$. Alice selects her public exponent $e=3$ and sends it to Bob. Bob wants to send the message $M=4$ to Alice.

1. Compute the product $n=p q$
2. Is this choice for of e valid here?
3. Compute d, the private exponent of Alice.
4. Encrypt the plain-text M using Alice public exponent. What is the resulting cipher-text C ?
5. Verify that Alice can obtain M from C, using her private decryption exponent.

Solution 6

1. We have $n=p q=55$.
2. We have $\operatorname{gcd}(r,(p-1)(q-1))=\operatorname{gcd}(3,40)=1$, hence $e=3$ is a valid choice (note that 3 is a prime number, any way).
3. Alice's private exponent d satisfies $d e=1 \bmod (p-1)(q-1)$, hence $3 d=1 \bmod 40$, which gives $d=27$ since $3 \times 27=81=1+2 \times 40$.
4. Bob sends: $C=M^{e} \bmod n=4^{3} \bmod 55=64 \bmod 55=9$.
5. Alice receives C and computes $C^{d} \bmod n=9^{27} \bmod 55=4$. To compute $9^{27} \bmod 55$ by hand, one can proceed as in the previous problem:

$$
\begin{array}{lll}
9^{27} & \equiv\left(9^{13}\right)^{2} 9 \bmod 55 & \text { applying }(2) \\
9^{27} & \equiv\left(\left(9^{6}\right)^{2} 9\right)^{2} 9 \bmod 55 & \text { applying }(2) \\
9^{27} & \left.\equiv\left(\left(9^{2}\right)^{2} 9^{2}\right)^{2} 9\right)^{2} 9 \bmod 55 & \text { applying }(1,2) \\
9^{27} & \equiv\left(\left((26)^{2} 9^{2}\right)^{2} 9\right)^{2} 9 \bmod 55 & \text { using } 9^{2} \equiv 26 \bmod 55 \\
9^{27} \equiv\left(\left(16 \times 9^{2}\right)^{2} 9\right)^{2} 9 \bmod 55 & \text { using } 26^{2} \equiv 16 \bmod 55 \\
9^{27} \equiv\left((16 \times 26)^{2} 9\right)^{2} 9 \bmod 55 & \text { using } 9^{2} \equiv 26 \bmod 55 \\
9^{27} \equiv\left((31)^{2} 9\right)^{2} 9 \bmod 55 & \text { using } 16 \times 26 \equiv 31 \bmod 55 \\
9^{27} \equiv(26 \times 9)^{2} 9 \bmod 55 & \text { using } 31^{2} \equiv 26 \bmod 55 \\
9^{27} \equiv(14)^{2} 9 \bmod 55 & \text { using }(26 \times 9) \equiv 14 \bmod 55 \\
9^{27} & \equiv 31 \times 9 \bmod 55 & \text { using } 14^{2} \equiv 31 \bmod 55 \\
9^{27} & \equiv 4 \bmod 55 & \text { using } 31 \times 9 \equiv 4 \bmod 55
\end{array}
$$

Problem 7 (Functions and matrices) Consider the set of ordered pairs (x, y) where x are y are real numbers. Such a pair can be seen as a point in the plane equipped with Cartesian coordinates (x, y).

1. For each of the following functions $F_{1}, F_{2}, F_{3}, F_{4}$, determine a (2×2) matrix A so that the point of coordinates $\left(\begin{array}{ll}x & y\end{array}\right)$ is sent to the point ($x^{\prime} y^{\prime}$) when we have

$$
\begin{equation*}
\binom{x^{\prime}}{y^{\prime}}=A\binom{x}{y} \tag{1}
\end{equation*}
$$

where

$$
A=\left(\begin{array}{ll}
a & b \tag{2}\\
c & d
\end{array}\right) .
$$

(a) $F_{1}(x, y)=(y, x)$
(b) $F_{2}(x, y)=\left(\frac{x+y}{2}, \frac{x+y}{3}\right)$
(c) $F_{3}(x, y)=(x,-y)$
(d) $F_{4}(x, y)=F_{1}\left(F_{3}(x, y)\right)$
2. Determine which of the above functions $F_{1}, F_{2}, F_{3}, F_{4}$ is injective? surjective? Justify your answer.

Solution 7

1. $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. If $\left(y_{1}, x_{1}\right)=\left(y_{2}, x_{2}\right)$ holds then we have $\left(x_{1}, y_{1}\right)=$ $\left(x_{2}, y_{2}\right)$, hence F_{1} is injective. F_{1} is also surjective since we have $F_{1}^{-1}\left(x^{\prime}, y^{\prime}\right)=\left(y^{\prime}, x^{\prime}\right)$.
2. $A=\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{3}\end{array}\right) . F_{2}$ is not injective. Indeed, if $x=-y$ then $F_{2}(x, y)=$ $(0,0)$; thus many points like $(1,-1),(2-2)$ have the same image by $F_{2} . F_{2}$ is not injective. Indeed, for a point (a, b) to have a pre-image by F_{2}, it must satisfy $3 b=2 a$; thus many points like $(1,-1),(2-2)$ do not have a pre-image by F_{2}.
3. $A=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. If $\left(x_{1},-y_{1}\right)=\left(x_{2},-y_{2}\right)$ holds then we have $\left(x_{1}, y_{1}\right)=$ $\left(x_{2}, y_{2}\right)$, hence F_{3} is injective. F_{3} is also surjective since we have $F_{3}^{-1}\left(x^{\prime}, y^{\prime}\right)=\left(x^{\prime}, y^{\prime}\right)$.
4. We have $F_{4}(x, y)=F_{1}\left(F_{3}(x, y)\right)=(-y, x)$ and we have $A=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$. Since F_{1} and F_{3} are both injective, it follows that F_{4} is injective as well. Similarly, since F_{1} and F_{3} are both surjective, it follows that F_{4} is surjective as well.
