
CS3101b – Theory of High-performance
Computing

Marc Moreno Maza

University of Western Ontario, London, Ontario (Canada)

CS3101

Plan

1 Hardware Acceleration Technologies

2 Distributed computing with Julia

3 Optimizing Code for Data Locality: A Case Study

4 Multicore Programming with CilkPlus

5 CS3101 Course Outline

Hardware Acceleration Technologies

Plan

1 Hardware Acceleration Technologies

2 Distributed computing with Julia

3 Optimizing Code for Data Locality: A Case Study

4 Multicore Programming with CilkPlus

5 CS3101 Course Outline

Hardware Acceleration Technologies

Electronic Numerical Integrator And Computer (ENIAC). The first
general-purpose, electronic computer. It was a Turing-complete, digital

computer capable of being reprogrammed and was running at 5,000 cycles
per second for operations on the 10-digit numbers.

Hardware Acceleration Technologies

The IBM Personal Computer, commonly known as the IBM PC
(Introduced on August 12, 1981).

Hardware Acceleration Technologies

The Pentium Family.

Hardware Acceleration Technologies

Hardware Acceleration Technologies

Hardware Acceleration Technologies

Core Core Core Core

L1
inst

L1
data

L1
ins

L1
data

L1
ins

L1
data

L1
ins

L1
data

L2 L2

Main Memory

Hardware Acceleration Technologies

Hardware Acceleration Technologies

Hardware Acceleration Technologies

Capacity
Access Time
Cost

Staging
Xfer Unit

CPU Registers
100s Bytes
300 – 500 ps (0.3-0.5 ns)

L1 d L2 C h

Registers

L1 Cache
Instr. Operands prog./compiler

1-8 bytes

Upper Level

faster

L1 and L2 Cache
10s-100s K Bytes
~1 ns - ~10 ns
$1000s/ GByte

L1 Cache
Blocks

cache cntl
32-64 bytes

L2 Cache
h tl

Main Memory
G Bytes
80ns- 200ns
~ $100/ GByte

Memory
OS

cache cntl
64-128 bytesBlocks

Disk
10s T Bytes, 10 ms
(10,000,000 ns)
~ $1 / GByte

Disk

Pages OS
4K-8K bytes

user/operator $1 / GByte

Tape
infinite
sec-min

Tape

Files user/operator
Mbytes

Lower Level
Larger

sec min
~$1 / GByte

Hardware Acceleration Technologies

Once uopn a time, every thing was slow in a computer . . .

Distributed computing with Julia

Plan

1 Hardware Acceleration Technologies

2 Distributed computing with Julia

3 Optimizing Code for Data Locality: A Case Study

4 Multicore Programming with CilkPlus

5 CS3101 Course Outline

Distributed computing with Julia

Tasks (aka Coroutines)

Tasks

Tasks are a control flow feature that allows computations to be
suspended and resumed in a flexible manner

This feature is sometimes called by other names, such as symmetric
coroutines, lightweight threads, cooperative multitasking, or one-shot
continuations.

When a piece of computing work (in practice, executing a particular
function) is designated as a Task, it becomes possible to interrupt it
by switching to another Task.

The original Task can later be resumed, at which point it will pick up
right where it left off

Distributed computing with Julia

Producer-consumer scheme example

function producer()

produce("start")

for n=1:2

produce(2n)

end

produce("stop")

end

To consume values, first the producer is wrapped in a Task, then consume is called
repeatedly on that object:

ulia> p = Task(producer)

Task

julia> consume(p)

"start"

julia> consume(p)

2

julia> consume(p)

4

julia> consume(p)

"stop"

Distributed computing with Julia

Julia’s message passing principle

Julia’s message passing

Julia provides a multiprocessing environment based on message
passing to allow programs to run on multiple processors in shared or
distributed memory.

Julias implementation of message passing is one-sided:
• the programmer needs to explicitly manage only one processor in a

two-processor operation
• these operations typically do not look like message send and message

receive but rather resemble higher-level operations like calls to user
functions.

Distributed computing with Julia

Remote references and remote calls: example

moreno@gorgosaurus:~$ julia -p 4

julia> r = remotecall(2, rand, 2, 2)

RemoteRef(2,1,6)

julia> fetch(r)

2x2 Array{Float64,2}:

0.675311 0.735236

0.682474 0.569424

julia> s = @spawnat 2 1+fetch(r)

RemoteRef(2,1,8)

julia> fetch(s)

2x2 Array{Float64,2}:

1.67531 1.73524

1.68247 1.56942

Commnets on the example

Starting with julia -p n provides n processors on the local machine.
The first argument to remote call is the index of the processor that will do the
work.
The first line we asked processor 2 to construct a 2-by-2 random matrix, and in the
third line we asked it to add 1 to it.
The @spawnat macro evaluates the expression in the second argument on the
processor specified by the first argument.

Distributed computing with Julia

Distributed arrays and parallel reduction (1/4)

[moreno@compute-0-3 ~]$ julia -p 5

_

_ _ _(_)_ | A fresh approach to technical computing

(_) | (_) (_) | Documentation: http://docs.julialang.org

_ _ _| |_ __ _ | Type "help()" to list help topics

| | | | | | |/ _‘ | |

| | |_| | | | (_| | | Version 0.2.0-prerelease+3622

_/ |__’_|_|_|__’_| | Commit c9bb96c 2013-09-04 15:34:41 UTC

|__/ | x86_64-redhat-linux

julia> da = @parallel [2i for i = 1:10]

10-element DArray{Int64,1,Array{Int64,1}}:

2

4

6

8

10

12

14

16

18

20

Distributed computing with Julia

Distributed arrays and parallel reduction (2/4)

julia> procs(da)

4-element Array{Int64,1}:

2

3

4

5

julia> da.chunks

4-element Array{RemoteRef,1}:

RemoteRef(2,1,1)

RemoteRef(3,1,2)

RemoteRef(4,1,3)

RemoteRef(5,1,4)

julia>

julia> da.indexes

4-element Array{(Range1{Int64},),1}:

(1:3,)

(4:5,)

(6:8,)

(9:10,)

julia> da[3]

6

julia> da[3:5]

3-element SubArray{Int64,1,DArray{Int64,1,Array{Int64,1}},(Range1{Int64},)}:

6

8

10

Distributed computing with Julia

Distributed arrays and parallel reduction (3/4)

julia> fetch(@spawnat 2 da[3])

6

julia>

julia> { (@spawnat p sum(localpart(da))) for p=procs(da) }

4-element Array{Any,1}:

RemoteRef(2,1,71)

RemoteRef(3,1,72)

RemoteRef(4,1,73)

RemoteRef(5,1,74)

julia>

julia> map(fetch, { (@spawnat p sum(localpart(da))) for p=procs(da) })

4-element Array{Any,1}:

12

18

42

38

julia>

julia> sum(da)

110

Distributed computing with Julia

Distributed arrays and parallel reduction (4/4)

julia> reduce(+, map(fetch,

{ (@spawnat p sum(localpart(da))) for p=procs(da) }))

110

julia>

julia> preduce(f,d) = reduce(f,

map(fetch,

{ (@spawnat p f(localpart(d))) for p=procs(d) }))

methods for generic function preduce

preduce(f,d) at none:1

julia> function Base.minimum(x::Int64, y::Int64)

min(x,y)

end

minimum (generic function with 10 methods)

julia> preduce(minimum, da)

2

Optimizing Code for Data Locality: A Case Study

Plan

1 Hardware Acceleration Technologies

2 Distributed computing with Julia

3 Optimizing Code for Data Locality: A Case Study

4 Multicore Programming with CilkPlus

5 CS3101 Course Outline

Optimizing Code for Data Locality: A Case Study

A typical matrix multiplication C code

#define IND(A, x, y, d) A[(x)*(d)+(y)]

uint64_t testMM(const int x, const int y, const int z)

{

double *A; *B; *C;

long started, ended;

float timeTaken;

int i, j, k;

srand(getSeed());

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for (i = 0; i < x; i++)

for (j = 0; j < y; j++)

for (k = 0; k < z; k++)

// A[i][j] += B[i][k] + C[k][j];

IND(A,i,j,y) += IND(B,i,k,z) * IND(C,k,j,y);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}

Optimizing Code for Data Locality: A Case Study

Issues with matrix representation

A

=

B

C
x

Contiguous accesses are better:
• Data fetch as cache line (Core 2 Duo 64 byte per cache line)
• With contiguous data, a single cache fetch supports 8 reads of doubles.
• Transposing the matrix C should reduce L1 cache misses!

Optimizing Code for Data Locality: A Case Study

Transposing for optimizing spatial locality

float testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C; double *Cx;

long started, ended; float timeTaken; int i, j, k;

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

Cx = (double *)malloc(sizeof(double)*y*z);

srand(getSeed());

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for(j =0; j < y; j++)

for(k=0; k < z; k++)

IND(Cx,j,k,z) = IND(C,k,j,y);

for (i = 0; i < x; i++)

for (j = 0; j < y; j++)

for (k = 0; k < z; k++)

IND(A, i, j, y) += IND(B, i, k, z)*IND(Cx, j, k, z);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}

Optimizing Code for Data Locality: A Case Study

Issues with data reuse

C

1024 1024384

4

A B

C= x

10
24

10
24

38
4

Naive calculation of a row of A, so computing 1024 coefficients: 1024
accesses in A, 384 in B and 1024× 384 = 393, 216 in C. Total
= 394, 524.

Computing a 32× 32-block of A, so computing again 1024
coefficients: 1024 accesses in A, 384× 32 in B and 32× 384 in C.
Total = 25, 600.

The iteration space is traversed so as to reduce memory accesses.

Optimizing Code for Data Locality: A Case Study

Blocking for optimizing temporal locality

float testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C;

long started, ended; float timeTaken; int i, j, k, i0, j0, k0;

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

srand(getSeed());

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for (i = 0; i < x; i += BLOCK_X)

for (j = 0; j < y; j += BLOCK_Y)

for (k = 0; k < z; k += BLOCK_Z)

for (i0 = i; i0 < min(i + BLOCK_X, x); i0++)

for (j0 = j; j0 < min(j + BLOCK_Y, y); j0++)

for (k0 = k; k0 < min(k + BLOCK_Z, z); k0++)

IND(A,i0,j0,y) += IND(B,i0,k0,z) * IND(C,k0,j0,y);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}

Optimizing Code for Data Locality: A Case Study

Transposing and blocking for optimizing data locality

float testMM(const int x, const int y, const int z)

{

double *A; double *B; double *C, double *Cx;

long started, ended; float timeTaken; int i, j, k, i0, j0, k0;

A = (double *)malloc(sizeof(double)*x*y);

B = (double *)malloc(sizeof(double)*x*z);

C = (double *)malloc(sizeof(double)*y*z);

srand(getSeed());

for (i = 0; i < x*z; i++) B[i] = (double) rand() ;

for (i = 0; i < y*z; i++) C[i] = (double) rand() ;

for (i = 0; i < x*y; i++) A[i] = 0 ;

started = example_get_time();

for(j =0; j < y; j++)

for(k=0; k < z; k++)

IND(Cx,j,k,z) = IND(C,k,j,y);

for (i = 0; i < x; i += BLOCK_X)

for (j = 0; j < y; j += BLOCK_Y)

for (k = 0; k < z; k += BLOCK_Z)

for (i0 = i; i0 < min(i + BLOCK_X, x); i0++)

for (j0 = j; j0 < min(j + BLOCK_Y, y); j0++)

for (k0 = k; k0 < min(k + BLOCK_Z, z); k0++)

IND(A,i0,j0,y) += IND(B,i0,k0,z) * IND(Cx,j0,k0,z);

ended = example_get_time();

timeTaken = (ended - started)/1.f;

return timeTaken;

}

Optimizing Code for Data Locality: A Case Study

Experimental results

Computing the product of two n× n matrices on my laptop (Quad-core
Intel i7-3630QM CPU @ 2.40GHz L2 cache 6144 KB, 8 GBytes of RAM)

n naive transposed 8× 8-tiled t. & t.
1024 7854 1086 1105 999
2048 8335 8646 10166 7990
4096 747100 69149 100538 69745
8192 6914349 546585 823525 562433

Timings are in milliseconds.

The cache-oblivious multiplication (more on this later) and the titled
multiplication have simiilar performance.

Optimizing Code for Data Locality: A Case Study

Other performance counters

Hardware count events

CPI Clock cycles Per Instruction: the number of clock cycles that
happen when an instruction is being executed. With pipelining we can
improve the CPI by exploiting instruction level parallelism

L1 and L2 Cache Miss Rate.

Instructions Retired: In the event of a misprediction, instructions that
were scheduled to execute along the mispredicted path must be
canceled.

Optimizing Code for Data Locality: A Case Study

Analyzing cache misses in the naive and transposed multiplication

A

=

B

C
x

Let A, B and C have format (m,n), (m, p) and (p, n) respectively.
A is scanned once, so mn/L cache misses if L is the number of
coefficients per cache line.
B is scanned n times, so mnp/L cache misses if the cache cannot
hold a row.
C is accessed “nearly randomly” (for m large enough) leading to mnp
cache misses.
Since 2mnp arithmetic operations are performed, this means roughly
one cache miss per flop!
If C is transposed, then the ratio improves to 1 for L.

Optimizing Code for Data Locality: A Case Study

Analyzing cache misses in the tiled multiplication

C

1024 1024384

4

A B

C= x

10
24

10
24

38
4

Let A, B and C have format (m,n), (m, p) and (p, n) respectively.

Assume all tiles are square of order b and three fit in cache.

If C is transposed, then loading three blocks in cache cost 3b2/L.

This process happens n3/b3 times, leading to 3n3/(bL) cache misses.

Three blocks fit in cache for 3b2 < Z, if Z is the cache size.

So O(n3/(
√
ZL)) cache misses, if b is well chosen, which is optimal.

Multicore Programming with CilkPlus

Plan

1 Hardware Acceleration Technologies

2 Distributed computing with Julia

3 Optimizing Code for Data Locality: A Case Study

4 Multicore Programming with CilkPlus

5 CS3101 Course Outline

Multicore Programming with CilkPlus

Cilk and CilkPlus

Cilk has been developed since 1994 at the MIT Laboratory for
Computer Science by Prof. Charles E. Leiserson and his group, in
particular by Matteo Frigo.

Cilk has been integrated into Intel C compiler under the name
CilkPlus, see http://www.cilk.com/

CilkPlus (resp. Cilk) is a small set of linguistic extensions to C++

(resp. C) supporting fork-join parallelism

Both Cilk and CilkPlus feature a provably efficient work-stealing
scheduler.

CilkPlus provides a hyperobject library for parallelizing code with
global variables and performing reduction for data aggregation.

CilkPlus includes the Cilkscreen race detector and the Cilkview

performance analyzer.

Multicore Programming with CilkPlus

Nested Parallelism in CilkPlus

int fib(int n)

{

if (n < 2) return n;

int x, y;

x = cilk_spawn fib(n-1);

y = fib(n-2);

cilk_sync;

return x+y;

}

The named child function cilk spawn fib(n-1) may execute in
parallel with its parent

CilkPlus keywords cilk spawn and cilk sync grant permissions
for parallel execution. They do not command parallel execution.

Multicore Programming with CilkPlus

Scheduling

Memory I/O

Network

P$ $ $…P
P P P
$ $ $

A scheduler’s job is to map a computation to particular processors. Such
a mapping is called a schedule.

If decisions are made at runtime, the scheduler is online, otherwise, it
is offline

Cilk++’s scheduler maps strands onto processors dynamically at
runtime.

Multicore Programming with CilkPlus

The CilkPlus Platform

Cilk++
Compiler

Conventional

Hyperobject
Library1

2 3int fib (int n) {
if (n<2) return (n);
else {

int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);

Cilk++source

Conventional
Compiler

y b();
cilk_sync;
return (x+y);

}
}

Cilkview
S l bilit A l

6

BinaryBinary Cilkscreen

Linker

5

int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x = fib(n-1);
y = fib(n 2);

int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x = fib(n-1);
y = fib(n 2);

Scalability Analyzer

BinaryBinary Cilkscreen
Race Detector

y = fib(n-2);
return (x+y);

}
}

y = fib(n-2);
return (x+y);

}
} Serialization

Runtime4Conventional
Regression Tests

Parallel
Regression Tests

Runtime
System

4

Reliable Single-
Threaded Code

Exceptional
Performance

Reliable Multi-
Threaded Code

Multicore Programming with CilkPlus

Benchmarks for the parallel version of the divide-n-conquer mm

Multiplying a 4000x8000 matrix by a 8000x4000 matrix

on 32 cores = 8 sockets x 4 cores (Quad Core AMD Opteron 8354)
per socket.

The 32 cores share a L3 32-way set-associative cache of 2 Mbytes.

#core Elision (s) Parallel (s) speedup

8 420.906 51.365 8.19
16 432.419 25.845 16.73
24 413.681 17.361 23.83
32 389.300 13.051 29.83

Multicore Programming with CilkPlus

Benchmarks using Cilkview

CS3101 Course Outline

Plan

1 Hardware Acceleration Technologies

2 Distributed computing with Julia

3 Optimizing Code for Data Locality: A Case Study

4 Multicore Programming with CilkPlus

5 CS3101 Course Outline

CS3101 Course Outline

Course Topics

Week 1: Course presentation and orientation

Week 2-3: Distributed and parallel computing with the Julia interactive
system

Week 4-5: Multicore architectures and the fork-join multithreaded
parallelism

Week 6: Analyzing the cache complexity of algorithms

Weeks 7-8: Cache memories and their impact on the performance of
computer programs

Week 9-10: Fundamental models of concurrent computations (PRAM
and its variants)

Week 11: Highly data parallel architecture models (pipeline, stream,
vector, etc.)

Weeks 12: Many-core processors (GPGPUs) with an overview of
many-core programming

CS3101 Course Outline

About this course

Prerequisites: Computer Science 2101A/B or 2211A/B.

Objectives: introducing students to the necessary theoretical
background (architectures, models of computations, algorithms) in
order to understand and practice high-performance computing.

This course can be seen as extension of other CS courses such as
3331A - Foundations of Computer Science I 3305B - Operating
Systems 3340B - Analysis of Algorithms I 3350B - Computer
Architecture, providing the parallel dimension of Today’s Computer
Science.

In the future, it should become a preliminary requirement to 4402B -
Distributed and Parallel Systems.

We will cover a large variety of materials and we will have tutorial
every week.

CS3101 Course Outline

High-performance computing and symbolic computation

www.bpaslib.org
www.metafork.org

www.cumodp.org www.regularchains.org

www.bpaslib.org
www.metafork.org
www.cumodp.org
www.regularchains.org

CS3101 Course Outline

Acknowledgments and references

Acknowledgments.

Charles E. Leiserson (MIT), Matteo Frigo (Axis Semiconductor) Saman P.
Amarasinghe (MIT) and Cyril Zeller (NVIDIA) for sharing with me the sources of
their course notes and other documents.
My past and current graduate students, in particular: Changbo Chen (Chinese
Academy of Science) Xiaohui Chen (UWO), Svyatoslav Covanov (UWO & École
Polytechnique) Anisul Sardar Haque (Mississauga), Xin Li (U. Carlos III), Farnam
Mansouri (Microsoft), Wei Pan (Intel Corp.) and Ning Xie (UWO) for their
contribution to the materials presented in this tutorial.

References.

The Implementation of the Cilk-5 Multithreaded Language by Matteo Frigo Charles
E. Leiserson Keith H. Randall.
Cache-Oblivious Algorithms by Matteo Frigo, Charles E. Leiserson, Harald Prokop
and Sridhar Ramachandran.
The Cache Complexity of Multithreaded Cache Oblivious Algorithms by Matteo
Frigo and Volker Strumpen.
How To Write Fast Numerical Code: A Small Introduction by Srinivas Chellappa,
Franz Franchetti, and Markus Pueschel.
Models of Computation: Exploring the Power of Computing by John E. Savage.
http://developer.nvidia.com/category/zone/cuda-zone

http://www.csd.uwo.ca/∼moreno/HPC-Resources.html

	Hardware Acceleration Technologies
	Distributed computing with Julia
	Optimizing Code for Data Locality: A Case Study
	Multicore Programming with CilkPlus
	CS3101 Course Outline

