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The PRAM Model

The RAM Model

Recall

The Random Access Machine is a convenient model of a sequential
computer. Its features are as follows.

The computation unit executes a user defined program.

It uses a read-only input tape and a write-only output tape.

The RAM has an unbounded number of local memory cells.

Each memory cell can hold an integer of unbounded size.

The instruction set includes operations for: moving data between
memory cells, comparisons and conditional branching, additions,
subtractions, multiplications.

Execution starts with the first instruction of the program and
terminates when an Halt instruction is reached.

Each operation takes one time unit regardless of the the operand
sizes.

Time complexity = the number of instructions executed.

Space complexity = the number of memory cells accessed.
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The PRAM Model

The PRAM Model: Definition (1/6)

Architecture

The Parallel Random Access Machine is a natural generalization of RAM.
It is also an idealization of a shared memory machine. Its features are as
follows.

It holds an unbounded collection of RAM processors P0,P1,P2, . . .
without tapes.

It holds an unbounded collection of shared memory cells
M[0],M[1],M[2], . . .

Each processor Pi has its own (unbounded) local memory (register
set) and Pi knows its index i .

Each processor Pi can access any shared memory cell M[j ] in unit
time, unless there is a conflict (see further).
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The PRAM Model

The PRAM Model: Definition (2/6)
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The PRAM Model

The PRAM Model: Definition (3/6)

Program execution (1/2)

The input of a PRAM program consists of n items stored in
M[0], . . . ,M[n − 1].

The output of a PRAM program consists of n′ items stored in n′

memory cells, say M[n], . . . ,M[n + n′ − 1].

• A PRAM instruction executes in a 3-phase cycle:
1 Read (if needed) from a shared memory cell,
2 Compute locally (if needed),
3 Write in a shared memory cell (if needed).

All processors execute their 3-phase cycles synchronously.

Special assumptions have to be made in order to resolve shared
memory access conflicts.

The only way processors can exchange data is by writing into and
reading from memory cells.
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The PRAM Model

The PRAM Model: Definition (4/6)

Program execution (2/2)

P0 has a special activation register specifying the maximum index of
an active processor:

1 Initially, only P0 is active; it computes the number of required active
processors,

2 Then, P0 loads this number in the activation register,
3 The corresponding processors start executing their programs.

Computations proceed until P0 halts, at which time all other active
processors are halted.

Parallel time complexity = the time for P0’s computations.

Parallel space complexity = the maximum number of shared
memory cells in use during the computations.
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The PRAM Model

The PRAM Model: Definition (6/6)

Summary of main assumptions

Inputs/Outputs are placed in the shared memory

Memory cell stores an arbitrarily large integer

Each instruction takes unit time

Instructions are synchronized across the processors

PRAM complexity measures

for each individual processor

time: number of instructions executed
space: number of memory cells accessed

PRAM machine

time: time taken by the longest running processor
hardware: maximum number of active processors
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The PRAM Model

The PRAM Model: Remarks

The PRAM Model is attractive for designing parallel algorithms:

It is natural: the number of operations executed per one cycle on p
processors is at most p.

It is strong: any processor can read or write any shared memory cell
in unit time.

It is simple: ignoring any communication or synchronization overhead.

This natural, strong and simple PRAM model can be used as a benchmark:
If a problem has no feasible (or efficient) solution on a PRAM then it is
likely that it has no feasible (or efficient) solution on any parallel machine.

The PRAM model is an idealization of existing shared memory
parallel machines.

The PRAM ignores lower level architecture constraints (memory
access overhead, synchronization overhead, intercommunication
throughput, connectivity, speed limits, etc.)
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The PRAM Model

Constrained PRAM Models (1/2)

A small-memory PRAM satisfies the axioms of a PRAM except that is has
a bounded number of shared memory cells.

A m-cell PRAM is a small-memory PRAM with m shared memory
cells.

If the input (or output) data set exceeds the capacity of the shared
memory, then this data can be distributed evenly among the registers
of the processors.

Limiting the amount of shared memory corresponds to restricting the
amount of information that can be communicated between processors
in one step.

For example, a distributed memory machine with processors
interconnected by a shared bus can be modeled as a PRAM with a
single shared memory.
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The PRAM Model

Constrained PRAM Models (2/2)

A small PRAM satisfies the axioms of a PRAM except that is has a
bounded number of processors.

A p-processor PRAM is a small PRAM with p + 1 processors
(counting P0).
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Performance counters

Performance counters (1/8)

Recall

The Parallel Time, denoted by T (n, p), is the time elapsed

from the start of a parallel computation to the moment where the last
processor finishes,

on an input data of size n,

and using p processors.

T (n, p) takes into account

computational steps (such as adding, multiplying, swapping variables),

routing (or communication) steps (such as transferring and
exchanging information between processors).
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Performance counters

Performance counters (2/8)

Example 1

Parallel search of an item x

in an unsorted input file with n items,

in a shared memory with p processors,

where any cell can be accessed by only one processor at a time.

Broadcasting x costs O(log(p)), leading to

T (n, p) = O(log(p)) + O(n/p).
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Performance counters

Performance counters (3/8)

Definition

The parallel efficiency, denoted by E (n, p), is

E (n, p) =
SU(n)

pT (n, p)
,

where SU(n) is a lower bound for a sequential execution. Observe
that we have SU(n) ≤ p T (n, p) and thus E (n, p) ≤ 1.

One also often considers the speedup factor defined by

S(n, p) =
SU(n)

T (n, p)
.
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Performance counters

Performance counters (4/8)

Remark

Reasons for inefficiency:

large communication latency compared to computational
performances (it would be better to calculate locally rather than
remotely)

too big overhead in synchronization, poor coordination, poor load
distribution (processors must wait for dependent data),

lack of useful work to do (too many processors for too little work).
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Performance counters

Performance counters (5/8)

The Work is defined by W (n, p) = atstart + · · ·+ atend where at is the
number of active processors a time t.

A data-processor iso-efficiency function is an asymptotically maximal
function f1 such that for all p0 > 0 there exists n0 such that for n ≥ n0 we
have E (n, f1(n)) ≥ E (n0, p0).

A processor-data iso-efficiency function is an asymptotically minimal
function f2 such that for all n0 > 0 there exists p0 such that for p ≥ p0 we
have E (f2(p), p) ≥ E (n0, p0).

The iso-efficiency function f2 quantifies the growth rate of the problem size,
required to keep the efficiency fixed while increasing the number of
processors. It reflects the ability of a parallel algorithm to maintain a
constant efficiency. A large iso-efficiency function f2 indicates poor
scalability, whereas a small one indicates that only a small increment in the
problem size is sufficient for efficient exploitation of newly added processors.

(Moreno Maza) Parallel Random-Access Machines CS3101 18 / 65



Performance counters

Performance counters (6/8)

Example 2

Consider the following problem: summing n numbers on a small PRAM
with p ≤ n processors. With the assumption that every “basic” operation
runs in unit time, we have SU(n) = n.

Each processor adds locally dnp e numbers.

Then the p partial sums are summed using a parallel binary reduction
on p processors in dlog(p)e iterations.

Thus, we have: T (n, p) ∈ O(np + log(p)).

Elementary computations give

f1(n) =
n

log(n)
and f2(p) = p log(p).
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Performance counters

Performance counters (7/8)

Example 3 (1/2)

Consider a tridiagonal linear system of order n:
· · · · · · · · · · · ·

ai−2xi−2 + bi−1xi−1 + cixi = ei−1

ai−1xi−1 + bixi + ci+1xi+1 = ei
aixi + bi+1xi+1 + ci+2xi+2 = ei+1

· · · · · · · · · · · ·
For every even i replacing xi with − ei−ci+1xi+1−ai−1xi−1

bi
leads to another

tridiagonal system of order n/2:
· · · · · · · · · · · ·

Ai−3xi−3 + Bi−1xi−1 + Ci+1xi+1 = Ei−1

Ai−1xi−1 + Bi+1xi+1 + Ci+3xi+3 = Ei+1

· · · · · · · · · · · ·
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Performance counters

Performance counters (8/8)

Example 3 (2/2)

the number of processors, here p = n, can be set such that

the number of parallel steps, here O(logn), is known and small,

processors activity (scheduling) is easy to organize,

data-communication is not intensive.
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Handling Shared Memory Access Conflicts: PRAM submodels

Handling Shared Memory Access Conflicts (1/23)

Definition

EREW (Exclusive Read Exclusive Write): No two processors are
allowed to read or write the same shared memory cell
simultaneously.

CREW (Concurrent Read Exclusive Write): Simultaneous reads of
the same memory cell are allowed, but no two processors can
write the same shared memory cell simultaneously.

PRIORITY CRCW (PRIORITY Concurrent Read Conc. Write):

Simultaneous reads of the same memory cell are allowed.
Processors are assigned fixed and distinct priorities.
In case of write conflict, the processor with highest
priority is allowed to complete WRITE.
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Handling Shared Memory Access Conflicts: PRAM submodels

Handling Shared Memory Access Conflicts (2/23)

Definition

ARBITRARY CRCW (ARBITRARY Concurrent Read Conc. Write):

Simultaneous reads of the same memory cell are allowed.
In case of write conflict, one randomly chosen processor
is allowed to complete WRITE.
An algorithm written for this model should make no
assumptions about which processor is chosen in case of
write conflict.

COMMON CRCW (COMMON Concurrent Read Conc. Write):

Simultaneous reads of the same memory cell are allowed.
In case of write conflict, all processors are allowed to
complete WRITE iff all values to be written are equal.
An algorithm written for this model should make sure
that this condition is satisfied. If not, the algorithm is
illegal and the machine state will be undefined.
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Handling Shared Memory Access Conflicts: PRAM submodels

Handling Shared Memory Access Conflicts (3/23)

Example 4: concurrent search

Consider a p-processor PRAM with p < n.

Assume that the shared memory contains n distinct items and P0

owns a value x .

The goal is to let P0 know whether x occurs within the n items.

Concurrent search EREW PRAM algorithm

(a) P0 broadcasts x to P1,P2, . . . ,Pp in O(log(p)) steps using binary
broadcast tree.

(b) Every processor P1,P2, . . . ,Pp performs local searches on (at most)
dn/pe items, hence in dn/pe steps.

(c) Every processor defines a Boolean flag Found. The final answer is
obtained by a parallel reduction, that is by, means of a binary tree.

This leads to T (n, p) = O(log(p) + dn/pe).
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Handling Shared Memory Access Conflicts: PRAM submodels

Handling Shared Memory Access Conflicts (4/23)

Concurrent search CREW PRAM algorithm

A similar approach, but P1,P2, . . . ,Pp can read x in O(1). However, the
final reduction is still in log(p), leading again to
T (n, p) = O(log(p) + dn/pe).

Concurrent search COMMON PRAM algorithm

Now, the final step takes O(1). Indeed, those processors with their flag
Found equal to true can write simultaneously to the same memory cell
initialized to false. Hence, we have T (n, p) = O(dn/pe).
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Handling Shared Memory Access Conflicts: PRAM submodels

Handling Shared Memory Access Conflicts (5/23)

Example 5: statement

On a CREW-PRAM Machine, what does the pseudo-code do?

A[1..6] := [0,0,0,0,0,1];

for each 1 <= step <= 5 do

for each 1 <= i <= 5 do in parallel

A[i] := A[i] + A[i+1]; // done by processor #i

print A;
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Handling Shared Memory Access Conflicts: PRAM submodels

Handling Shared Memory Access Conflicts (6/23)

Example 5: solution

No data races occur thanks to the execution model (the 3-phasis
cycle) and CREW handling.

On an actual computer, there would be data races and an uncertain
result, that is, a non-deterministic answer.
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Handling Shared Memory Access Conflicts: PRAM submodels

Handling Shared Memory Access Conflicts (7/23)

Example 6: statement

Write an EREW-PRAM Program for the following task:

Given 2n input integer number compute their maximum
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Handling Shared Memory Access Conflicts: PRAM submodels

Handling Shared Memory Access Conflicts (8/23)

Example 6: solution

Input: 2n integer numbers stored in M[1], . . . ,M[2n], where n ≥ 2 is a
power of 2.

Output: The maximum of those numbers, written at M[2n + 1].
Program: Active Proocessors P[1], ...,P[n];

step := 0;

jump := 2^step;

while jump <= n do {

// id the index of one of the active processor

if (id mod jump = 0)

M[2 * id] := max(M[2 * id], M[2 * id - jump]);

step := step + 1;

jump := 2^step;

}

if (id = n) then M[2n+1] := M[2n];

As in GPU programs, scalar variables (variables of type int, float, char) are,
by default, stored only in the register file of each processor. Hence, in the
above program step, jump are not in shared memory, but in the register file of
each processor.
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Handling Shared Memory Access Conflicts: PRAM submodels

Handling Shared Memory Access Conflicts (9/23)

Example 7: statement

This is a follow-up on Example 6.

1 What is T (2n, n)? SU(n)? S(2n, n)?

2 What is W (2n, n)? E (2n, n)?

3 Propose a variant of the algorithm for an input of size n using p
processors, for a well-chosen value of p, such that we have
S(2n, n) = 50%?
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Handling Shared Memory Access Conflicts: PRAM submodels

Handling Shared Memory Access Conflicts (10/23)

Example 7: solution

1 log(n), n, n/log(n).

2 nlog(n), n/(nlog(n)).
3 Algorithm:

1 Use p := n/log(n) processors, instead of n.
2 Make each of these p processors compute serially the maximum of

log(n) numbers. This requires log(n) parallel steps and has total work
n.

3 Run the previous algorithm on these p “local maxima”. This will take
log(p) ∈ O(log(n)) steps with a total work of
plog(p) ∈ O((n/log(n))log(n)).

4 Therefore the algorithm runs in at most 2log(n) parallel steps and uses
n/log(n) processors. Thus, we have S(n, p) = 50%.

(Moreno Maza) Parallel Random-Access Machines CS3101 32 / 65



Handling Shared Memory Access Conflicts: PRAM submodels

Handling Shared Memory Access Conflicts (11/23)

Example 8: statement

Write a COMMON CRCW-PRAM Program for the following task:

Given n input integer numbers compute their maximum.

And such that this program runs essentially in constant time, that is,
O(1).
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Handling Shared Memory Access Conflicts: PRAM submodels

Handling Shared Memory Access Conflicts (12/23)

Example 8: solution

Input: n integer numbers stored in M[1], . . . ,M[n], where n ≥ 2.

Output: The maximum of those numbers, written at M[n + 1].

Program: Active Proocessors P[1], ...,P[n^2];

// id the index of one of the active processor

if (id <= n)

M[n + id] := true;

i := ((id -1) mod n) + 1;

j := ((id -1) quo n) + 1;

if (M[i] < M[j])

M[n + i] := false;

if (M[n + i] = true)

M[n+1] := M[i];
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Handling Shared Memory Access Conflicts: PRAM submodels

Handling Shared Memory Access Conflicts (13/23)

Example 9: statement

This is a follow-up on Example 8.

1 What is T (n, n2)? SU(n)? S(n, n2)?

2 What is W (n, n2)? E (n, n2)?
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Handling Shared Memory Access Conflicts: PRAM submodels

Handling Shared Memory Access Conflicts (14/23)

Example 9: solution

1 O(1), n, n.

2 n2, 1/n.
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Handling Shared Memory Access Conflicts: PRAM submodels

Handling Shared Memory Access Conflicts (15/23)

Example 10: statement

Write a CREW-PRAM program, then an EREW-PRAM program for the
following task:

Given two polynomials of degree less than n, say
a = an−1x

n−1 + · · ·+ a1X + a0 and b = bn−1x
n−1 + · · ·+ b1X + b0

compute their product in parallel time O(log2(n)).

We may make assumptions of the form “n is a power of 2”.
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Handling Shared Memory Access Conflicts: PRAM submodels

Handling Shared Memory Access Conflicts (16/23)

Example 10: CREW solution (1/3)

Input: Two polynomials a = an−1x
n−1 + · · ·+ a1X + a0 and

b = bn−1x
n−1 + · · ·+ b1X + b0 such that M[i] holds ai−1

and M[n+i] holds bi−1 for 1 ≤ i ≤ n and n is a power of 2.

Output: Their product.

Program: Active Proocessors P[1], ...,P[n^2];

// id the index of one of the active processor

i := ((id -1) mod n) + 1;

j := ((id -1) quo n) + 1;

M[2n + id] := M[i] * M[n + j];

....

The problem in the above code is that we have to sum up all M[2n + i]

* M[2n + j] contributing to the same coefficient of the product.
Indeed, we need to write these products in consecutive memory location to
sum them conveniently.
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Handling Shared Memory Access Conflicts: PRAM submodels

Handling Shared Memory Access Conflicts (17/23)

Example 10: CREW solution (2/3)

Observe that a · b has 2n − 1 coefficients.

The number nd of terms contributing to X d satisfies

nd =

{
d + 1 for 0 ≤ d ≤ n − 1,

2n − d for n ≤ d ≤ 2n − 2.

Observe that 1 ≤ nd ≤ n for all 0 ≤ d ≤ 2n − 2.

For each d ∈ {0, . . . , 2n− 2}, we allocate n slots (we assume that the
memory allocator initializes them to zero) to write the nd terms
contributing to X d .

More precisely, M[(2 * n) + (d * n) + i + 1] stores the product
M[i + 1] * M[n + j + 1] if d = i + j , for 0 ≤ i , j ≤ n − 1. Note
the shift for i and j .
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Handling Shared Memory Access Conflicts: PRAM submodels

Handling Shared Memory Access Conflicts (18/23)

Example 10: CREW solution (3/3)

Active Proocessors P[1], ...,P[n^2];

// id the index of one of the active processor

i := ((id -1) mod n); j := ((id -1) quo n);

// Observe that i and j are now in 0..(n-1)

d := i+j;

M[(2 * n) + (d * n) + i + 1] := M[i + 1] * M[n + j + 1];

After this point n processors can work together on a parallel reduction
for a given d .

Since d ∈ {0, . . . , 2n − 2}, each processor will participate to at most
2 parallel reductions.

For simplicity, the code should make each processor work on 2 parallel
reductions.

Hence additional “zero” slots must be added.
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Handling Shared Memory Access Conflicts: PRAM submodels

Handling Shared Memory Access Conflicts (19/23)

Example 10: complete CREW model solution (1/2)

// Active Proocessors P[1], ...,P[n^2];

// id the index of one of the active processor

//compute the products concurrently without write conflict

i := (id - 1) mod n

j := (id - 1) quo n

d := i+j

M[(2 * n) + (d * n) + i + 1] := M[i+1] * M[n + j + 1];

// from M[2n] to M[2n +n(2n - 1)], do reduction in

// stride of n and keep the result from M[2n +n(2n - 1) + 1]

// to M[2n +n(2n - 1) + 2n -1],

// we only have n^2 processors, so we need two sreduction steps

for k=1; k<=n; k *= 2

if id mod (2*k) == 0

M[2n + id] += M[2n + id + k]

if (id - 1) mod n == 0

M[2n + (2n -1) * n + id quo n + 1] = M[2n + id]
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Handling Shared Memory Access Conflicts: PRAM submodels

Handling Shared Memory Access Conflicts (20/23)

Example 10: complete CREW model solution(2/2)

for k=1; k<=n; k *= 2

if id mod (2*k) == 0

M[2n + n^2 + id] += M[2n + n^2 + id + k]

if (id - 1) mod n == 0 && id <= n * (n - 1)

M[2n + (2n -1) * n + n + id quo n + 1] = M[2n + n^2 + id]

The complexity analysis goes as follows:

T (2n, n2) = Θ(1) mult phase + Θ(log(n)) add phase = Θ(log(n))

E (2n, n2) = Θ(n2)
Θ(n2 log(n))

= Θ(1/ log(n)).

(Moreno Maza) Parallel Random-Access Machines CS3101 42 / 65



Handling Shared Memory Access Conflicts: PRAM submodels

Handling Shared Memory Access Conflicts (21/23)

Example 10: EREW-PRAM solution

The difference with the CREW-PRAM situation is the need to broadcast
the 2n input coefficients in order to prevent from concurrent reads:

Since each input coefficient needs to be read n times, we need n
copies, that is, n3 coefficients in total. (A better estimate can be
achieved using a divide-and-conquer process.)

Since we have n2 processors at hand, we need n parallel steps to write
those n3 coefficients.

Then, the complexity analysis goes as follows:

T (2n, n2) = Θ(n)broadcast + Θ(1) mult + Θ(log(n)) add = Θ(n)

E (2n, n2) = Θ(n2)
Θ(n2×n)

= Θ(1/n).
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Simulation of large PRAMs on small PRAMs
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Simulation of large PRAMs on small PRAMs

Simulation of large PRAMs on small PRAMs (1/3)

Proposition 1

Let p′ < p. Then, any problem that can be solved on a p-processor PRAM
in t steps can be solved on a p′-processor PRAM in t ′ = O(tp/p′) steps
assuming the same size of shared memory.

Proof

In order to reach this result, each of the processors P ′i of the p′-processor PRAM
can simulate a group Gi of (at most) dp/p′e processors of the p-processor PRAM
as follows. Each simulating processor P ′i simulates one 3-phase cycle of Gi by

1 executing all their READ instructions,

2 executing all their local COMPUTATIONS,

3 executing all their WRITE instructions.

One can check that, whatever is the model for handling shared memory cell access

conflict, the simulating PRAM will produce the same result as the larger PRAM.
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Simulation of large PRAMs on small PRAMs

Simulation of large PRAMs on small PRAMs (1/3)
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3 executing all their WRITE instructions.

One can check that, whatever is the model for handling shared memory cell access

conflict, the simulating PRAM will produce the same result as the larger PRAM.
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Simulation of large PRAMs on small PRAMs

Simulation of large PRAMs on small PRAMs (2/3)

Proposition 2

Assume m′ < m. Then, any problem that can be solved on a p-processor
and m-cell PRAM in t steps can be solved on a max(p,m′)-processor and
m′-cell PRAM in t ′ = O(tm/m′) steps.

Proof of Proposition 2 (1/2)

Naturally, the idea is to use the register set of the processors of the m′-cell
PRAM in order to compensate the diminution of shared memory.

This is why it is necessary to assume that the m′-cell PRAM has at least m′

processors. (After that, one can use Proposition 1 to save on processors.)

Let P1, . . . ,Pp be the processors of the m-cell PRAM:

We use processors P ′1, . . . ,P
′
m′′ on the m′-cell PRAM to simulate

P1, . . . ,Pp where m′′ = max(p,m′).
Moreover, we (mentally) group the m cells of the m-cell PRAM into m′

continuous segments S1, . . . ,Sm′ of size m/m′.
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Simulation of large PRAMs on small PRAMs

Simulation of large PRAMs on small PRAMs (2/3)

Proof of Proposition 2 (2/2)

We use the register set of processor P ′i for simulating the segment Si , for all
1 ≤ i ≤ m′.

We use the shared memory cell M ′[i ], for 1 ≤ i ≤ m′, on the m′-cell PRAM,
as an auxiliary memory.

Simulation of one 3-phase cycle of the m-cell PRAM:

READ: for all 0 ≤ k < m/m′ repeat

1 for all 1 ≤ i ≤ m′, the processor P ′i writes the value of the
k-th cell of Si into M ′[i ];

2 for all 1 ≤ i ≤ p, the processor P ′i reads from the share
memory, provided that Pi would read its value at position
congruent to k modulo m/m′.

COMPUTE: the local computation of Pi is simulated by P ′i , for all 1 ≤ i ≤ p.

WRITE: Analogous to READ.
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Comparing the Computational Power of PRAM Submodels

Remark

By PRAM submodels, we mean either EREW, CREW, COMMON,
ARBITRARY or PRIORITY.

Definition

PRAM submodel A is computationally stronger than PRAM submodel B,
written A ≥ B, if any algorithm written for B will run unchanged on A in
the same parallel time, assuming the same basic properties.

Proposition 3

We have:

PRIORITY ≥ ARBITRARY ≥ COMMON ≥ CREW ≥ EREW.
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Comparing the Computational Power of PRAM Submodels

Comparing the Computational Power of PRAM Submodels

Theorem 1

Any polylog time PRAM algorithm is robust with respect to all PRAM
submodels.

Remark

In other words, any PRAM algorithm which runs in polylog time on
one submodel can be simulated on any other PRAM submodel and
run within the same complexity class.

This results from Proposition 3 and Lemma 2.

Lemma 1 provides a result weaker than Lemma 2 but the proof of the
former helps understanding the proof of the latter.
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Comparing the Computational Power of PRAM Submodels

Lemma 1

Assume PRIORITY CRCW with the priority scheme based trivially on
indexing: lower indexed processors have higher priority. Then, one step of
p-processor m-cell PRIORITY CRCW can be simulated by a p-processor
mp-cell EREW PRAM in O(log(p)) steps.
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Comparing the Computational Power of PRAM Submodels

Comparing the Computational Power of PRAM Submodels

Proof of Lemma 1 (1/3)

Naturally, the idea is to

store all the WRITE (or READ) needs for one cycle in memory

evaluate their priorities

execute the instruction of the winner

But there is a trap, we should avoid access conflict also during this
simulation algorithm.
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Comparing the Computational Power of PRAM Submodels

Comparing the Computational Power of PRAM Submodels

Proof of Lemma 1 (2/3)

(1) Each PRIORITY processor Pk is simulated by EREW processor P ′k ,
for all 1 ≤ k ≤ p.

(2) Each shared memory cell M[i ], for all i = 1, . . . ,m, of PRIORITY

is simulated by an array of p shared memory cells M ′[i , k], k = 1, . . . , p
of EREW,
M ′[i , 1] plays the role of M[i ],
M ′[i , 2], . . . ,M ′[i , p] are auxiliary cells used for resolving conflicts,

initially empty,
M ′[i , 1], . . . ,M ′[i , p] are regarded as the nodes of a row of a complete
binary tree Ti with p leaves and height dlog(p)e; initially, they are
regarded as the leaf row of Ti .
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Comparing the Computational Power of PRAM Submodels

Proof of Lemma 1 (3/3)

(3) Simulation of a PRIORITY WRITE substep. Each EREW processor

must find out whether it is the processor with lowest index within the
group asking to write to the same memory cell, and if so,
must become the group winner and perform the WRITE operation; the
other processors of its group just fail and do not write.

This is done as follows:
1 For all 1 ≤ k ≤ p repeat: if Pk wants to write into M[i ], then P ′k

turns active and becomes the k-th leaf of Ti .
2 Each active left processor stores its ID into the parent cell in its tree,

marks it as occupied and remains active.
3 Each active right processor checks its parent cell: if it is empty, then it

stores its ID there and remains active, otherwise it becomes inactive.
4 This is repeated one row after another from bottom to top in Ti , in
dlog(p)e iterations.

5 The process who managed to reach the root of Ti , becomes the winner
and can WRITE.
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Comparing the Computational Power of PRAM Submodels

Lemma 2

One step of PRIORITY CRCW with p processors and m shared memory
cells by an EREW PRAM in O(log(p)) steps with p processors and m + p
shared memory cells.
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Comparing the Computational Power of PRAM Submodels

Proof of Lemma 2 (1/3)

1 Each PRIORITY processor Pk is simulated by EREW processor P ′k .

2 Each PRIORITY cell M[i ] is simulated by EREW cell M ′[i ].

3 EREW uses an auxiliary array A of p cells.

4 If Pk wants to access M[i ], then processor P ′k writes pair (i , k) into A[k].

5 If Pk does not want to access any PRIORITY cell, processor P ′k writes
(0, k) into A[k].

6 All p processors sort the array A into lexicographic order using (logp)-time
parallel sort.
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Comparing the Computational Power of PRAM Submodels

Proof of Lemma 2 (2/3)

1 Each P ′k appends to cell A[k] a flag f defined as follows

f = 0 if the first component of A[k] is either 0 or it is the same as the
first component of A[k − 1].
f = 1 otherwise.

2 Further steps differ for simulation of WRITE or READ.

PRIORITY WRITE:

1 Each P ′k reads the triple (i , j , f ) from cell A[k] and
writes it into A[j ].

2 Each P ′k reads the triple (i , k , f ) from cell A[k] and
writes into M[i ] iff f = 1.
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Comparing the Computational Power of PRAM Submodels

Proof of Lemma 2 (3/3)

PRIORITY READ:
1 Each P ′k reads the triple (i , j , f ) from cell A[k].
2 If f = 1, it reads value vi from M[i ] and overwrites the

third component in A[k] (the flag f ) with vi .
3 In at most logp steps, this third component is then

distributed in subsequent cells of A until it reaches either
the end or an element with a different first component.

4 Each P ′k reads the triple (i , j , vi ) from cell A[k] and
writes it into A[j ].

5 Each P ′k who asked for a READ reads the value vi from
the triple (i , k, vi ) in cell A[k].
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More PRAM algorithms and exercies

Parallel scan (1/5)

Another common and important data parallel primitive.

This problem seems inherently sequential, but there is an efficient
parallel algorithm.

Applications: sorting, lexical analysis, string comparison, polynomial
evaluation, stream compaction, building histograms and data
structures (graphs, trees, etc.) in parallel.
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More PRAM algorithms and exercies

Parallel scan (2/5)

Let S be a set, let + : S × S → S be an associative operation on S
with 0 as identity. Let A[0 · · · n − 1] be an array of n elements of S .

Tthe all-prefixes-sum or inclusive scan of A computes the array B of n
elements of S defined by

B[i ] =

{
A[0] if i = 0

B[i − 1] + A[i ] if 0 < i < n

The exclusive scan of A computes the array B of n elements of S :

C [i ] =

{
0 if i = 0

C [i − 1] + A[i − 1] if 0 < i < n

An exclusive scan can be generated from an inclusive scan by shifting
the resulting array right by one element and inserting the identity.

Similarly, an inclusive scan can be generated from an exclusive scan.

We shall focus on exclusive scan.
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More PRAM algorithms and exercies

Parallel scan (3/5)

Here’s a sequential algorithm for the exclusive scan.

void scan( float* output, float* input, int length)

{

output[0] = 0; // since this is a prescan, not a scan

for(int j = 1; j < length; ++j)

{

output[j] = input[j-1] + output[j-1];

}

}
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More PRAM algorithms and exercies

Parallel scan (4/5)

Write a CREW algorithm for parallel scanning that would implement
the principle used in the following example.

Analyze its efficiency.
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More PRAM algorithms and exercies

Parallel scan (5/5)

Input: Elements located in M[1], . . . ,M[n], where n is a power of 2.
Output: The n prefix sums located in M[n + 1], . . . ,M[2n].

Program: Active Proocessors P[1], ...,P[n]; // id the active processor index

for d := 0 to (log(n) -1) do

if d is even then

if id > 2^d then

M[n + id] := M[id] + M[id - 2^d]

else

M[n + id] := M[id]

end if

else

if id > 2^d then

M[id] := M[n + id] + M[n + id - 2^d]

else

M[id] := M[n + id]

end if

end if

if d is odd then M[n + id] := M[id] end if
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More PRAM algorithms and exercies

Mysterious algorithm

What does the following CREW-PRAM algorithm compute?

Input: n elements located in M[1], . . . ,M[n], where n ≥ 2 is a
power of 2.

Output: Some values in located in M[n + 1], . . . ,M[2n].
Program: Active Proocessors P[1], ...,P[n];

// id the index of one of the active processor

M[n + id] := M[id];

M[2 n + id] := id + 1;

for d := 1 to log(n) do

if M[2 n + id] <= n then {

j := M[2 n + id];

v := M[n + id];

M[n + j] := v + M[n + j];

jj := M[2 n + j];

M[2 n + id] := jj;

}

}

Analyze its efficiency.
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