
Elements of correction for the exercises of

CS2101A Lab 3

Instructor: Marc Moreno Maza, TA: Li Zhang

Wednesday, October 1, 2014

1 Exercise 1

@everywhere function fib(n)

if (n < 2) then

return n

else return fib(n-1) + fib(n-2)

end

end

function runningtime(f,n)

tic()

y = f(n)

t = toc()

t

end

N = 12

We store the timings for the serial runs in T_1

T_1 = [runningtime(fib,35+i) for i=1:N]

In fib_approximate, n is the input index and t is the threshold

@everywhere function fib_parallel(n, t)

if (n < t) then

return fib(n)

else

x = @spawn fib_parallel(n-1, t)

y = fib_parallel(n-2, t)

return fetch(x) + y

end

end

1

function runningtime(f,n,t)

tic()

y = f(n,t)

t = toc()

t

end

H = 16

[(35+i,30+t) for i=1:N, t=1:2:H]

We store the timings for the parallel runs in T_4

(my laptop has four cores): we use 8 different thresholds

T_4 = [runningtime(fib_parallel,35+i,30+t) for i=1:N, t=1:2:H]

The array S stores the speedup ratios

S = [T_1[i] / T_4[i, iceil(t/2)] for i=1:N, t=1:2:H]

using Winston

Sizes = [35+i for i=1:N]

C1 = Winston.Curve(Sizes, [S[i,1] for i=1:N])

C2 = Winston.Curve(Sizes, [S[i,2] for i=1:N])

C3 = Winston.Curve(Sizes, [S[i,3] for i=1:N])

C4 = Winston.Curve(Sizes, [S[i,4] for i=1:N])

We plot for speedup curves in one frame

p=FramedPlot()

add(p, C1, C2)

add(p, C3, C4)

C5 = Winston.Curve(Sizes, [S[i,5] for i=1:N])

C6 = Winston.Curve(Sizes, [S[i,6] for i=1:N])

C7 = Winston.Curve(Sizes, [S[i,7] for i=1:N])

C8 = Winston.Curve(Sizes, [S[i,8] for i=1:N])

We plot for speedup curves in a second frame

p2=FramedPlot()

add(p2, C5, C6)

add(p2, C7, C8)

The first four curves seem to give better results

2 exercise 2

function mmult(A,B)

2

(M,N) = size(A);

C = zeros(M,M);

for i=1:M

for j=1:M

for k=1:M

C[i,j] += A[i,k]*B[k,j];

end

end

end

C;

end

for d in [500,1000,1500,2000]

a=rand(d,d)

b=rand(d,d)

@time mmult(a,b)

end

elapsed time: 0.3470189571380615 seconds

elapsed time: 3.170802116394043 seconds

elapsed time: 23.14421010017395 seconds

elapsed time: 62.64995193481445 seconds

Theoretically, the number of arithmetic operations required to multiply two
square matrices of order n is proportional to n3. Hence, one could expect that
the running time for n = 1000 should be 8 = (1000/500)3 times that for n = 500.
But the above experimental results show a ratio close to 10. This is due to the
high rate of cache misses in the naive algorithm for matrix multiplication. We
saw in class better algorithms for this operation, in particular one based on a
blocking strategy.

3 exercise 3

function qsort!(a,lo,hi)

i, j = lo, hi

while i < hi

pivot = a[(lo+hi)>>>1]

while i <= j

while a[i] < pivot; i = i+1; end

while a[j] > pivot; j = j-1; end

if i <= j

a[i], a[j] = a[j], a[i]

i, j = i+1, j-1

end

end

if lo < j; qsort!(a,lo,j); end

3

lo, j = i, hi

end

return a

end

function sortperf(n)

qsort!(rand(n), 1, n)

end

issorted(sortperf(5000)) ## to test whether your alog is correct

should be true

[@time sortperf(2^e*1000000) for e=[0 1 2 3 4 5 6 7]]

elapsed time: 0.2307720184326172 seconds

elapsed time: 0.21168804168701172 seconds

elapsed time: 0.4441850185394287 seconds

elapsed time: 0.912261962890625 seconds

elapsed time: 1.9140989780426025 seconds

elapsed time: 3.977203130722046 seconds

elapsed time: 8.138957023620605 seconds

elapsed time: 16.795485973358154 seconds

Theoretically, the number of integer comparisons required to sort a list of
n integers (using quick-sort) is proportional to O(n log(n)). Hence, one could
expect that the running time for n = 27 1000000 should be 7/3 times that
for n = 26 1000000. (To verify this claim approximate 1000 with 210.) And,
indeed, the above experimental results show a ratio close to 2. This is due to
the relatively low rate of cache misses in quick sort algorithms.

4

	Exercise 1
	exercise 2
	exercise 3

