
Exercises for lab 3 of CS3101b

Instructor: Marc Moreno Maza, TA: Xiaohui Chen

Thursday 16 January 2015

1 Exercise 1

The following is a C function for computing the sequence of the Fibonacci num-
bers (in a naive way).

double fib(int n){

if(n<=2)

return(1.0);

else

return(fib(n-2)+fib(n-1));

}

1. Write a Julia program that computes fib(n)

2. Using the @time macro, measure the running times of your Julia function
fib(n) for n between 35 and 45.

3. If you are a Matlab user, here’s fib(n) in Matlab for you to perform the
same measurement.

function f=fib(n)

if n <= 2

f=1.0;

else

f=fib(n-1)+fib(n-2);

end

end

2 Exercise 2

The following is a C function for computing the product of two square matrices
(in a naive and inefficient way).

#define M 500

void mmult(double A[M][M],double B[M][M], double C[M][M]){

1



//double C[M][M];

int i,j,k;

for(i=0; i<M; i++)

for(j=0; j<M; j++){

C[i][j] = 0;

for(k=0; k<M; k++)

C[i][j] += A[i][k]*B[k][j];

}

}

1. Write a Julia program that computes mmult(A,B) where A and B are two
square matrices of the same order M (using the same naive and inefficient
algorithm as in C).

2. Using the @time macro, measure the running times of your Julia function
mmult(A,B) for M equal to 500, 1000, 1500, 2000. Your input matrices
will be randomly generated using rand(M,M).

3. If you are a Matlab user, here’s mmult(A,B,C) in Matlab for you to per-
form the same measurement.

function C=mmult(A,B,C)

[M,N] = size(A);

for i=1:M

for j=1:M

for k=1:M

C(i,j) = C(i,j) + A(i,k)*B(k,j);

end

end

end

end

3 Exercise 3

The following Julia session implements a famous algorithm for sorting called
quicksort. Look at its wikipedia page to learn how this algorithm works!

http://en.wikipedia.org/wiki/Quicksort

function qsort!(a,lo,hi)

i, j = lo, hi

while i < hi

pivot = a[(lo+hi)>>>1]

while i <= j

while a[i] < pivot; i = i+1; end

while a[j] > pivot; j = j-1; end

if i <= j

2



a[i], a[j] = a[j], a[i]

i, j = i+1, j-1

end

end

if lo < j; qsort!(a,lo,j); end

lo, j = i, hi

end

return a

end

function sortperf(n)

qsort!(rand(n), 1, n)

end

@time sortperf(5000)

1. Go through the code and make sure you agree that it is an implementation
of the algorithm presented in the wikipedia page.

2. Record the running time of sortperf(2e∗1000000) for e = 0, 1, 2, 3, 4, 5, 6, 7, 8.

3. Are your results coherent with the theoretical prediction (see the section
Formal analysis in the wikipedia page) that sorting of an array of size n
with quicksort runs in a time asymptotically proportional to O(nlog(n))?

4 Exercise 4

Read the wikipedia page dedicated to the merge-sort algorithm:

http://en.wikipedia.org/wiki/Merge sort

1. Write a Julia implementing the merge-sort algorithm and following the
style and presentation done for quicksort.

2. Compare the running times of both sorting algorithms

3


