
CS3350B
 Computer Architecture

Winter 2015

Performance Metrics I

Marc Moreno Maza

www.csd.uwo.ca/Courses/CS3350b

http://www.cse.psu.edu/~

Components of a Computer

 CPU

Computer

Control

Datapath

Memory Devices

Input

Output

Levels of Program Code

 High-level language

 Level of abstraction closer
to problem domain

 Provides for productivity
and portability

 Assembly language

 Textual representation of
instructions

 Hardware representation

 Binary digits (bits)

 Encoded instructions and
data

3

Old School Machine Structures
(Layers of Abstraction)

4

I/O system Processor

Compiler

Operating

System

(Mac OSX)

Application (ex: browser)

Digital Design

Circuit Design

Instruction Set
 Architecture

Datapath & Control

Transistors

Memory
Hardware

Software
Assembler

New-School Machine Structures

 Parallel Requests

Assigned to computer

e.g., Search “Katz”

 Parallel Threads

Assigned to core

e.g., Lookup, Ads

 Parallel Instructions

>1 instruction @ one time

e.g., 5 pipelined instructions

 Parallel Data

>1 data item @ one time

e.g., Add of 4 pairs of words

 Hardware descriptions

All gates working in parallel

at same time

Smart
Phone

Warehouse
Scale

Computer

Software Hardware

Harness
Parallelism &
Achieve High
Performance

Logic Gates

Core Core …

 Memory (Cache)

Input/Output

Computer

Main Memory

Core

 Instruction Unit(s)

 Functional
Unit(s)

A3+B3 A2+B2 A1+B1 A0+B0

5

Eight Great Ideas in Pursuing Performance

 Design for Moore’s Law

 Use abstraction to simplify design

 Make the common case fast

 Performance via parallelism

 Performance via pipelining

 Performance via prediction

 Hierarchy of memories

 Dependability via redundancy

6

Abstractions

 Abstraction helps us deal with complexity

 Hide lower-level detail

 Instruction set architecture (ISA)

 The hardware/software interface

 Application binary interface

 The ISA plus system software interface

 Implementation

 The details underlying and interface

7

Understanding Performance

Algorithm

 Determines number of operations executed

Programming language, compiler, architecture

 Determine number of machine instructions executed per
operation

Processor and memory system

 Determine how fast instructions are executed

 I/O system (including OS)

 Determines how fast I/O operations are executed

8

Performance Metrics

 Purchasing perspective
 given a collection of machines, which has the

- best performance ?

- least cost ?

- best cost/performance?

 Design perspective

 faced with design options, which has the
- best performance improvement ?

- least cost ?

- best cost/performance?

 Both require
 basis for comparison

 metric for evaluation

 Our goal is to understand what factors in the architecture

contribute to overall system performance and the relative

importance (and cost) of these factors
9

CPU Performance

 Normally interested in reducing

 Response time (aka execution time) – the time between the start
and the completion of a task

- Important to individual users

 Thus, to maximize performance, need to minimize execution time

performanceX = 1 / execution_timeX

If X is n times faster than Y, then

performanceX execution_timeY
 -------------------- = --------------------- = n

performanceY execution_timeX

 And increasing

 Throughput – the total amount of work done in a given time

- Important to data center managers

 Decreasing response time almost always improves throughput
10

Performance Factors

 Want to distinguish elapsed time and the time spent on
our task

 CPU execution time (CPU time) – time the CPU spends
working on a task

 Does not include time waiting for I/O or running other programs

CPU execution time # CPU clock cycles

 for a program for a program
 = x clock cycle time

CPU execution time # CPU clock cycles for a program

 for a program clock rate
 = ---

 Can improve performance by reducing either the length
of the clock cycle or the number of clock cycles required
for a program

 or

11

CPU Clocking

 Operation of digital hardware governed by a constant-
rate clock

 Clock period (cycle): duration of a clock cycle

 e.g., 250ps = 0.25ns = 250×10–12s

 Clock frequency (rate): cycles per second

 e.g., 3.0GHz = 3000MHz = 3.0×109Hz

 CR = 1 / CC

Clock (cycles)

Data transfer

and computation

Update state

Clock period

12

Clock Cycles per Instruction

 Not all instructions take the same amount of time to
execute

 One way to think about execution time is that it equals the
number of instructions executed multiplied by the average time
per instruction

CPI for this instruction class

A B C

CPI 1 2 3

 Clock cycles per instruction (CPI) – the average number
of clock cycles each instruction takes to execute

 A way to compare two different implementations of the same ISA

CPU clock cycles # Instructions Average clock cycles

 for a program for a program per instruction
 = x

13

Effective CPI

 Computing the overall effective CPI is done by looking at
the different types of instructions and their individual
cycle counts and averaging

Overall effective CPI =  (CPIi x ICi)
i = 1

n

 Where ICi is the count (percentage) of the number of instructions
of class i executed

 CPIi is the (average) number of clock cycles per instruction for
that instruction class

 n is the number of instruction classes

 The overall effective CPI varies by instruction mix – a
measure of the dynamic frequency of instructions across
one or many programs

14

THE Performance Equation

 Our basic performance equation is then

 CPU time = Instruction_count x CPI x clock_cycle

 Instruction_count x CPI

 clock_rate
 CPU time = ---

 or

 These equations separate the three key factors that
affect performance

 Can measure the CPU execution time by running the program

 The clock rate is usually given

 Can measure overall instruction count by using profilers/
simulators without knowing all of the implementation details

 CPI varies by instruction type and ISA implementation for which
we must know the implementation details

15

Determinates of CPU Performance

Instruction_
count

CPI clock_cycle

Algorithm

Programming
language

Compiler

ISA

Processor
organization

Technology

 CPU time = Instruction_count x CPI x clock_cycle

16

Determinates of CPU Performance

Instruction_
count

CPI clock_cycle

Algorithm

Programming
language

Compiler

ISA

Processor
organization

Technology

 CPU time = Instruction_count x CPI x clock_cycle

X

X X

X X

X X

X

X

X

X

X

17

A Simple Example

 How much faster would the machine be if a better data cache
reduced the average load time to 2 cycles?

 How does this compare with using branch prediction to shave
a cycle off the branch time?

 What if two ALU instructions could be executed at once?

Op Freq CPIi Freq x CPIi

ALU 50% 1

Load 20% 5

Store 10% 3

Branch 20% 2

 =

.5

1.0

.3

.4

2.2

CPU time new = 1.6 x IC x CC so 2.2/1.6 means 37.5% faster

1.6

.5

 .4

.3

.4

.5

1.0

.3

.2

2.0

CPU time new = 2.0 x IC x CC so 2.2/2.0 means 10% faster

.25

1.0

.3

.4

1.95

CPU time new = 1.95 x IC x CC so 2.2/1.95 means 12.8% faster
19

20

Performance Summary

Performance depends on

 Algorithm: affects IC, possibly CPI

 Programming language: affects IC, CPI

 Compiler: affects IC, CPI

 Instruction set architecture: affects IC, CPI, Tc

cycle Clock

Seconds

nInstructio

cycles Clock

Program

nsInstructio
Time CPU 

 21

Power Trends

 In complementary metal–oxide–semiconductor (CMOS)
integrated circuit technology

FrequencyVoltageload CapacitivePower 2 

×1000 5V → 1V ×30

22

Reducing Power

 Suppose a new CPU has

 85% of capacitive load of old CPU

 15% voltage and 15% frequency reduction

0.520.85
FVC

0.85F0.85)(V0.85C

P

P 4

old

2

oldold

old

2

oldold

old

new 





 The power wall

 We can’t reduce voltage further

 We can’t remove more heat

 How else can we improve performance?

23

Uniprocessor Performance

Constrained by power, instruction-level parallelism,

memory latency

24

Multiprocessors

Multicore microprocessors

 More than one processor per chip

Requires explicitly parallel programming

 Compare with instruction level parallelism

- Hardware executes multiple instructions at once

- Hidden from the programmer

 Hard to do

- Programming for performance

- Load balancing

- Optimizing communication and synchronization

25

SPEC CPU Benchmark

Programs used to measure performance

 Supposedly typical of actual workload

Standard Performance Evaluation Corp (SPEC)

 Develops benchmarks for CPU, I/O, Web, …

SPEC CPU2006

 Elapsed time to execute a selection of programs

- Negligible I/O, so focuses on CPU performance

 Normalize relative to reference machine

 Summarize as geometric mean of performance ratios

- CINT2006 (integer) and CFP2006 (floating-point)

n

n

1i

iratio time Execution


26

CINT2006 for Intel Core i7 920

Profiling Tools

 Many profiling tools

 gprof (static instrumentation)

 cachegrind, Dtrace (dynamic instrumentation)

 perf (performance counters)

 perf in linux-tools, based on event sampling

 Keep a list of where “interesting events” (cycle, cache miss, etc)
happen

 CPU Feature: Counters for hundreds of events

- Performance: Cache misses, branch misses, instructions per
cycle, …

 Intel® 64 and IA-32 Architectures Software Developer's Manual:
Appendix A lists all counters
http://www.intel.com/products/processor/manuals/index.htm

 perf user guide:
http://code.google.com/p/kernel/wiki/PerfUserGuid

 27

http://www.intel.com/products/processor/manuals/index.htm
http://code.google.com/p/kernel/wiki/PerfUserGuid

Exercise 1

void copymatrix1(int n, int (*src)[n],

 int (*dst)[n]) {

 int i,j;

 for (i = 0; i < n; i++)

 for (j = 0; j < n; j++)

 dst[i][j] = src[i][j]; }

void copymatrix2(int n, int (*src)[n],

 int (*dst)[n]) {

 int i,j;

 for (j = 0; j < n; j++)

 for (i = 0; i < n; i++)

 dst[i][j] = src[i][j]; }

 copymatrix1 vs copymatrix2

 What do they do?

 What is the difference?

 Which one performs better? Why?

 perf stat –e cycles –e cache-misses ./copymatrix1

perf stat –e cycles –e cache-misses ./copymatrix2

 What’s the output like?

 How to interpret it?

 Which program performs better?

28

Exercise 2

void lower1 (char* s) {

 int i;

 for (i = 0; i < strlen(s); i++)

 if (s[i] >= 'A' && s[i] <= 'Z')

 s[i] -= 'A'-'a';

}

void lower2 (char* s) {

 int i;

 int n = strlen(s);

 for (i = 0; i < n; i++)

 if (s[i] >= 'A' && s[i] <= 'Z')

 s[i] -= 'A'-'a‘; }

 lower1 vs lower2

 What do they do?

 What is the difference?

 Which one performs better? Why?

 perf stat –e cycles –e cache-misses ./lower1

perf stat –e cycles –e cache-misses ./lower2

 What does the output look like?

 How to interpret it?

 Which program performs better?

29

