
CS3350B
 Computer Architecture

Winter 2015

Performance Metrics I

Marc Moreno Maza

www.csd.uwo.ca/Courses/CS3350b

http://www.cse.psu.edu/~

Components of a Computer

 CPU

Computer

Control

Datapath

Memory Devices

Input

Output

Levels of Program Code

 High-level language

 Level of abstraction closer
to problem domain

 Provides for productivity
and portability

 Assembly language

 Textual representation of
instructions

 Hardware representation

 Binary digits (bits)

 Encoded instructions and
data

3

Old School Machine Structures
(Layers of Abstraction)

4

I/O system Processor

Compiler

Operating

System

(Mac OSX)

Application (ex: browser)

Digital Design

Circuit Design

Instruction Set
 Architecture

Datapath & Control

Transistors

Memory
Hardware

Software
Assembler

New-School Machine Structures

 Parallel Requests

Assigned to computer

e.g., Search “Katz”

 Parallel Threads

Assigned to core

e.g., Lookup, Ads

 Parallel Instructions

>1 instruction @ one time

e.g., 5 pipelined instructions

 Parallel Data

>1 data item @ one time

e.g., Add of 4 pairs of words

 Hardware descriptions

All gates working in parallel

at same time

Smart
Phone

Warehouse
Scale

Computer

Software Hardware

Harness
Parallelism &
Achieve High
Performance

Logic Gates

Core Core …

 Memory (Cache)

Input/Output

Computer

Main Memory

Core

 Instruction Unit(s)

 Functional
Unit(s)

A3+B3 A2+B2 A1+B1 A0+B0

5

Eight Great Ideas in Pursuing Performance

 Design for Moore’s Law

 Use abstraction to simplify design

 Make the common case fast

 Performance via parallelism

 Performance via pipelining

 Performance via prediction

 Hierarchy of memories

 Dependability via redundancy

6

Abstractions

 Abstraction helps us deal with complexity

 Hide lower-level detail

 Instruction set architecture (ISA)

 The hardware/software interface

 Application binary interface

 The ISA plus system software interface

 Implementation

 The details underlying and interface

7

Understanding Performance

Algorithm

 Determines number of operations executed

Programming language, compiler, architecture

 Determine number of machine instructions executed per
operation

Processor and memory system

 Determine how fast instructions are executed

 I/O system (including OS)

 Determines how fast I/O operations are executed

8

Performance Metrics

 Purchasing perspective
 given a collection of machines, which has the

- best performance ?

- least cost ?

- best cost/performance?

 Design perspective

 faced with design options, which has the
- best performance improvement ?

- least cost ?

- best cost/performance?

 Both require
 basis for comparison

 metric for evaluation

 Our goal is to understand what factors in the architecture

contribute to overall system performance and the relative

importance (and cost) of these factors
9

CPU Performance

 Normally interested in reducing

 Response time (aka execution time) – the time between the start
and the completion of a task

- Important to individual users

 Thus, to maximize performance, need to minimize execution time

performanceX = 1 / execution_timeX

If X is n times faster than Y, then

performanceX execution_timeY
 -------------------- = --------------------- = n

performanceY execution_timeX

 And increasing

 Throughput – the total amount of work done in a given time

- Important to data center managers

 Decreasing response time almost always improves throughput
10

Performance Factors

 Want to distinguish elapsed time and the time spent on
our task

 CPU execution time (CPU time) – time the CPU spends
working on a task

 Does not include time waiting for I/O or running other programs

CPU execution time # CPU clock cycles

 for a program for a program
 = x clock cycle time

CPU execution time # CPU clock cycles for a program

 for a program clock rate
 = ---

 Can improve performance by reducing either the length
of the clock cycle or the number of clock cycles required
for a program

 or

11

CPU Clocking

 Operation of digital hardware governed by a constant-
rate clock

 Clock period (cycle): duration of a clock cycle

 e.g., 250ps = 0.25ns = 250×10–12s

 Clock frequency (rate): cycles per second

 e.g., 3.0GHz = 3000MHz = 3.0×109Hz

 CR = 1 / CC

Clock (cycles)

Data transfer

and computation

Update state

Clock period

12

Clock Cycles per Instruction

 Not all instructions take the same amount of time to
execute

 One way to think about execution time is that it equals the
number of instructions executed multiplied by the average time
per instruction

CPI for this instruction class

A B C

CPI 1 2 3

 Clock cycles per instruction (CPI) – the average number
of clock cycles each instruction takes to execute

 A way to compare two different implementations of the same ISA

CPU clock cycles # Instructions Average clock cycles

 for a program for a program per instruction
 = x

13

Effective CPI

 Computing the overall effective CPI is done by looking at
the different types of instructions and their individual
cycle counts and averaging

Overall effective CPI = (CPIi x ICi)
i = 1

n

 Where ICi is the count (percentage) of the number of instructions
of class i executed

 CPIi is the (average) number of clock cycles per instruction for
that instruction class

 n is the number of instruction classes

 The overall effective CPI varies by instruction mix – a
measure of the dynamic frequency of instructions across
one or many programs

14

THE Performance Equation

 Our basic performance equation is then

 CPU time = Instruction_count x CPI x clock_cycle

 Instruction_count x CPI

 clock_rate
 CPU time = ---

 or

 These equations separate the three key factors that
affect performance

 Can measure the CPU execution time by running the program

 The clock rate is usually given

 Can measure overall instruction count by using profilers/
simulators without knowing all of the implementation details

 CPI varies by instruction type and ISA implementation for which
we must know the implementation details

15

Determinates of CPU Performance

Instruction_
count

CPI clock_cycle

Algorithm

Programming
language

Compiler

ISA

Processor
organization

Technology

 CPU time = Instruction_count x CPI x clock_cycle

16

Determinates of CPU Performance

Instruction_
count

CPI clock_cycle

Algorithm

Programming
language

Compiler

ISA

Processor
organization

Technology

 CPU time = Instruction_count x CPI x clock_cycle

X

X X

X X

X X

X

X

X

X

X

17

A Simple Example

 How much faster would the machine be if a better data cache
reduced the average load time to 2 cycles?

 How does this compare with using branch prediction to shave
a cycle off the branch time?

 What if two ALU instructions could be executed at once?

Op Freq CPIi Freq x CPIi

ALU 50% 1

Load 20% 5

Store 10% 3

Branch 20% 2

 =

.5

1.0

.3

.4

2.2

CPU time new = 1.6 x IC x CC so 2.2/1.6 means 37.5% faster

1.6

.5

 .4

.3

.4

.5

1.0

.3

.2

2.0

CPU time new = 2.0 x IC x CC so 2.2/2.0 means 10% faster

.25

1.0

.3

.4

1.95

CPU time new = 1.95 x IC x CC so 2.2/1.95 means 12.8% faster
19

20

Performance Summary

Performance depends on

 Algorithm: affects IC, possibly CPI

 Programming language: affects IC, CPI

 Compiler: affects IC, CPI

 Instruction set architecture: affects IC, CPI, Tc

cycle Clock

Seconds

nInstructio

cycles Clock

Program

nsInstructio
Time CPU

 21

Power Trends

 In complementary metal–oxide–semiconductor (CMOS)
integrated circuit technology

FrequencyVoltageload CapacitivePower 2

×1000 5V → 1V ×30

22

Reducing Power

 Suppose a new CPU has

 85% of capacitive load of old CPU

 15% voltage and 15% frequency reduction

0.520.85
FVC

0.85F0.85)(V0.85C

P

P 4

old

2

oldold

old

2

oldold

old

new

 The power wall

 We can’t reduce voltage further

 We can’t remove more heat

 How else can we improve performance?

23

Uniprocessor Performance

Constrained by power, instruction-level parallelism,

memory latency

24

Multiprocessors

Multicore microprocessors

 More than one processor per chip

Requires explicitly parallel programming

 Compare with instruction level parallelism

- Hardware executes multiple instructions at once

- Hidden from the programmer

 Hard to do

- Programming for performance

- Load balancing

- Optimizing communication and synchronization

25

SPEC CPU Benchmark

Programs used to measure performance

 Supposedly typical of actual workload

Standard Performance Evaluation Corp (SPEC)

 Develops benchmarks for CPU, I/O, Web, …

SPEC CPU2006

 Elapsed time to execute a selection of programs

- Negligible I/O, so focuses on CPU performance

 Normalize relative to reference machine

 Summarize as geometric mean of performance ratios

- CINT2006 (integer) and CFP2006 (floating-point)

n

n

1i

iratio time Execution

26

CINT2006 for Intel Core i7 920

Profiling Tools

 Many profiling tools

 gprof (static instrumentation)

 cachegrind, Dtrace (dynamic instrumentation)

 perf (performance counters)

 perf in linux-tools, based on event sampling

 Keep a list of where “interesting events” (cycle, cache miss, etc)
happen

 CPU Feature: Counters for hundreds of events

- Performance: Cache misses, branch misses, instructions per
cycle, …

 Intel® 64 and IA-32 Architectures Software Developer's Manual:
Appendix A lists all counters
http://www.intel.com/products/processor/manuals/index.htm

 perf user guide:
http://code.google.com/p/kernel/wiki/PerfUserGuid

 27

http://www.intel.com/products/processor/manuals/index.htm
http://code.google.com/p/kernel/wiki/PerfUserGuid

Exercise 1

void copymatrix1(int n, int (*src)[n],

 int (*dst)[n]) {

 int i,j;

 for (i = 0; i < n; i++)

 for (j = 0; j < n; j++)

 dst[i][j] = src[i][j]; }

void copymatrix2(int n, int (*src)[n],

 int (*dst)[n]) {

 int i,j;

 for (j = 0; j < n; j++)

 for (i = 0; i < n; i++)

 dst[i][j] = src[i][j]; }

 copymatrix1 vs copymatrix2

 What do they do?

 What is the difference?

 Which one performs better? Why?

 perf stat –e cycles –e cache-misses ./copymatrix1

perf stat –e cycles –e cache-misses ./copymatrix2

 What’s the output like?

 How to interpret it?

 Which program performs better?

28

Exercise 2

void lower1 (char* s) {

 int i;

 for (i = 0; i < strlen(s); i++)

 if (s[i] >= 'A' && s[i] <= 'Z')

 s[i] -= 'A'-'a';

}

void lower2 (char* s) {

 int i;

 int n = strlen(s);

 for (i = 0; i < n; i++)

 if (s[i] >= 'A' && s[i] <= 'Z')

 s[i] -= 'A'-'a‘; }

 lower1 vs lower2

 What do they do?

 What is the difference?

 Which one performs better? Why?

 perf stat –e cycles –e cache-misses ./lower1

perf stat –e cycles –e cache-misses ./lower2

 What does the output look like?

 How to interpret it?

 Which program performs better?

29

