CS33508B

Computer Architecture
Winter 2015

Performance Metrics |

Marc Moreno Maza

http://www.cse.psu.edu/~

Components of a Computer

Computer

CPU

Control l

Datapath

Memory

Devices

Output

Input I

Levels of Program Code

0 High-level language

e Level of abstraction closer
to problem domain

e Provides for productivity
and portability

0 Assembly language

e Textual representation of
Instructions

0 Hardware representation
e Binary digits (bits)

e Encoded instructions and
data

High-level
language
program

(in C)

Assembly
language
program
(for MIPS)

Binary machine
language
program

(for MIPS)

swap(int v[1, int k)
{int temp:
temp = v[k];
vik] = v[k+17;
vlk+1] = temp:
}

swap:

muli $2, $5.4
add $2, $4,%°2
Tw $15, 0($2)
Tw $16, 4(%$2)
Sw $16, 0($2)
Sw $15, 4(%$2)
jr $31

Assembler

00000000101000010000000000011000
00000000000110000001100000100001
10001100011000100000000000000000
10001100111100100000000000000100
10101100111100100000000000000000
10101100011000100000000000000100
OOOOOOlllllOOOOOOOOOOOOOOOOQ&OOO

Old School Machine Structures
(Layers of Abstraction)

Software

Hardware

Application (ex: browser)

Operating
, System
Compiler (Mac OSX)
Assembler

Processor /O system

Datapath & Control

Digital Design

Circuit Design

Transistors

Instruction Set
Architecture

New-School Machine Structures

Software

0 Parallel Requests
Assigned to computer

Harness Scaleg
e.g., Search “Katz”)
J Parallelism & |C°omputer
0 Parallel Threads Achieve High
Performance

Assigned to core
e.g., Lookup, Ads

0 Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions

0 Parallel Data
>]1 data item @ one time
e.g., Add of 4 pairs of words

0 Hardware descriptions
All gates working in parallel
at same time

Hardware

I Warehouse §

Memory -1

-

InputrOutput

nstruction Unit(s Functional
sioiioict Unit(s)

Hioinl
#hoi-t-tal
Hebtotol

BhrahrBABl
/,l’

. I
Main Memory -~ i
1

J

ogic Gates

aEight Great Ideas in Pursuing Performance
e Design for Moore’s Law
e Use abstraction to simplify design
e Make the common case fast
e Performance via parallelism
e Performance via pipelining
e Performance via prediction
e Hierarchy of memories

e Dependability via redundancy

Abstractions

0 Abstraction helps us deal with complexity
e Hide lower-level detall

0 Instruction set architecture (ISA)
e The hardware/software interface

a Application binary interface
e The ISA plus system software interface

O Implementation
e The details underlying and interface

Understanding Performance

aAlgorithm
e Determines number of operations executed

aProgramming language, compiler, architecture

e Determine number of machine instructions executed per
operation

aProcessor and memory system
e Determine how fast instructions are executed

a1/O system (including OS)
e Determines how fast I/O operations are executed

Performance Metrics

0 Purchasing perspective

e given a collection of machines, which has the

- best performance ?
- least cost ?

- best cost/performance?
0 Design perspective

e faced with design options, which has the

- best performance improvement ?
- least cost ?

- best cost/performance?

0 Both require
e basis for comparison
e metric for evaluation
0 Our goal is to understand what factors in the architecture
contribute to overall system performance and the relative
iImportance (and cost) of these factors

CPU Performance

0 Normally interested in reducing

e Response time (aka execution time) — the time between the start
and the completion of a task

- Important to individual users
e Thus, to maximize performance, need to minimize execution time

performance, = 1/ execution_time,

If X is n times faster than Y, then

performancey execution_time,

performance, execution_time,

0 And increasing
e Throughput — the total amount of work done in a given time
- Important to data center managers

e Decreasing response time almost always improves throughput
10

Performance Factors

0 Want to distinguish elapsed time and the time spent on
our task

0 CPU execution time (CPU time) — time the CPU spends
working on a task

e Does not include time waiting for 1/O or running other programs

CPU execution time _ # CPU clock cycles

X clock cycle time
for a program for a program

or

for a program clock rate

0 Can improve performance by reducing either the length
of the clock cycle or the number of clock cycles required
for a program

11

CPU Clocking

0 Operation of digital hardware governed by a constant-

rate clock
«+—Clock period—»
Clock (cycles)
Data transfer i
and computation < >< ><
Update state O O

0 Clock period (cycle): duration of a clock cycle
e e.9., 250ps = 0.25ns = 250x10-1°s

0 Clock frequency (rate): cycles per second
e e.9., 3.0GHz = 3000MHz = 3.0x10°Hz

QOCR=1/CC

v

12

Clock Cycles per Instruction

0 Not all instructions take the same amount of time to
execute
e One way to think about execution time is that it equals the

number of instructions executed multiplied by the average time
per instruction

CPU clock cycles # Instructions Average clock cycles

for a program for a program X per instruction

0 Clock cycles per instruction (CPI) — the average number
of clock cycles each instruction takes to execute

e A way to compare two different implementations of the same ISA

CPI for this instruction class
A B C
CPI 1 2 3

Effective CPI

0 Computing the overall effective CPI is done by looking at
the different types of instructions and their individual
cycle counts and averaging

n
Overall effective CPI = 2 (CPI. x IC)
i=1

e Where IC, is the count (percentage) of the number of instructions
of class | executed

e CPI. is the (average) number of clock cycles per instruction for
that instruction class

e nis the number of instruction classes

0 The overall effective CPI varies by instruction mix — a
measure of the dynamic frequency of instructions across
one or many programs

THE Performance Equation
0 Our basic performance equation is then

CPU time = Instruction_count x CPIl x clock cycle

or

Instruction_count x CPI
CPUtime = -----mmmemmmemmmemc oo e
clock_rate

0 These equations separate the three key factors that
affect performance

e Can measure the CPU execution time by running the program
e The clock rate is usually given

e Can measure overall instruction count by using profilers/
simulators without knowing all of the implementation details

e CPI varies by instruction type and ISA implementation for which
we must know the implementation details
15

Determinates of CPU Performance

CPU time = Instruction_count x CPI x clock cycle

Instruction
count

CPI

clock cycle

Algorithm

Programming
language

Compiler

ISA

Processor
organization

Technology

16

Determinates of CPU Performance

CPU time = Instruction_count x CPI x clock cycle

Instruction CPI clock cycle
count

Algorithm

J X X
Programmin
Iangguage) X X
Compiler X X
ISA X N N
Processor
organization X R
Technology X

A Simple Example

Op Freq | CPIl. | Freq x CPI,
ALU 50% 1 5 5 5 .25
Load 20% S 1.0 4 10 1.0
Store 10% 3 3 3 3 3
Branch 20% 2 4 A 2 A
Y= 22| 16 20 1.95

0 How much faster would the machine be if a better data cache
reduced the average load time to 2 cycles?
CPUtimenew =16 xXICxCC so 2.2/1.6 means 37.5% faster
0 How does this compare with using branch prediction to shave
a cycle off the branch time?
CPUtimenew =2.0xICxCC so 2.2/2.0 means 10% faster
0 What if two ALU instructions could be executed at once?
CPUtimenew =1.95xICxCC so 2.2/1.95 means 12.8% faster

19

Performance Summary

CPUTime Instructions y Clockcycles Seconds

X
Program Instruction Clockcycle

a Performance depends on
e Algorithm: affects IC, possibly CPI
e Programming language: affects IC, CPI
e Compiler: affects IC, CPI
e Instruction set architecture: affects IC, CPI, T,

Power Trends

Clock Rate (MHz)

10,000 3600 ogg7 3300 3400 T 120
2000 - o
1 100
1000 4+ _
T80 Z
I =
100 + T60 o
25 =
" 1%5 g [l +40 2
3.3 4.1 4.9 720
1 | O—T—— | | | | | | | 0
— — — — aQ €
2y 82 83 5 e5 Ti-tEgs s 255 28T
== %E %E ctoe £2 SE2 258 2238 5€2 509
= — - & §7 EZR Tt 2s Sz osfox®
ey & d% T Tx © =

a In complementary metal-oxide—semiconductor (CMOS)
Integrated circuit technology

Power = Capacitive loadx Voltage” x Frequency

\ \ \

x30 5V - 1V x1000

21

Reducing Power

0 Suppose a new CPU has
e 85% of capacitive load of old CPU
e 15% voltage and 15% frequency reduction

P, _ C,;%0.85%x(V, 4 ><O.285)2 xF ,;%0.85 _085*-052
Poig Coa % Voig XFoiq

The power wall
We can’t reduce voltage further
We can’t remove more heat

How else can we improve performance?

22

Performance (vs. VAX-11/780)

Uniprocessor Performance

100,000

10,000 f----

1000 -+

100 -----

10 4-----

-- AMD fthlon 64, 2.8 GHz -2 45 e B

___ Digital AlphaServar 8400 &'575, 575 MHz 21264

Intal Xeon 4 cores 3.6 GHz (Boost to 4.0)
Intal Cora i7 4 cores 3.4 GHz (boost to 3.8 GHz)

Intal Xeon & cores, 3.3 GHz (boost to 3.6 GHz) 34,067
Intal Xeon 4 cores, 3.3 GHz (boost to 2.6 GHz) 1 000
Intal Core i7 Extreme 4 cores 3.2 GHz (boost to 2.5 GHz) _-.24129
Intal Core Duo Extrame 2 coras, 3.0 GHV 43421 BT
Intal Core 2 Extrama 2 coras, 2.9 GH?_

AMD Athlon, 2.5 GH
Intel Xeon EE 3.2 GHz 7.108
Intel DESOEMVR motharboard (3.06 GHz, Pantium 4 procassor with Hy par-threading Technology) 5,043 5.681
IBM Powerd, 1.3 GHz g° 4195

Intel VCE20 motherboard, 1.0 GHz Pentium Ill processor o4 018
Professional Workstation XP1000, 857 MHz 212644

gy T
AlphaSearmver 4000 5600, 600 MHz 211 54/./.
Digital Alphastation /500, 500 MHz &

IEM RSE000/S40, 30 MHz
MIPS M2000, 25 MHz
MIPS M 20, 16.7 MHz

1.5, VAX 11785

I I I I T I I I I I I I T I I T
1980 1982 19284 16886 1928 1900 1802 1994 1996 1808 2000 2002 2004 2006 2008 2010 2mz 2014

Constrained by power, instruction-level parallelism,
memory latency

23

Multiprocessors

2 Multicore microprocessors
e More than one processor per chip

a Requires explicitly parallel programming

e Compare with instruction level parallelism
- Hardware executes multiple instructions at once
- Hidden from the programmer

e Hard to do
- Programming for performance
- Load balancing
- Optimizing communication and synchronization

SPEC CPU Benchmark

d Programs used to measure performance
e Supposedly typical of actual workload

a Standard Performance Evaluation Corp (SPEC)
e Develops benchmarks for CPU, 1/O, Web, ...

aSPEC CPU2006

e Elapsed time to execute a selection of programs
- Negligible I1/O, so focuses on CPU performance

e Normalize relative to reference machine

e Summarize as geometric mean of performance ratios
- CINT2006 (integer) and CFP2006 (floating-point)

ri/H Execution timeratio

i=1

CINT2006 for Intel Core 17 920

Executlon

Reference

Instruction Clock cycle time Time Time

Description Count x 10° (seconds x 10-?) | (seconds) | (seconds) | SPECratlo
Interprated string processing | per! 2252 080 0.378 508 ayvo 19.2
Block-sorting bzip2 2390 0.70 0.376 629 9650 15.4
comprassion
GNU C compiler gee 794 1.20 0.376 358 8050 225
Combinatorial optimization mcf 221 2.68 0.3786 221 9120 41.2
Go game (Al) go 1274 1.10 0.376 527 10490 19.9
Search gene sequence himmer 2616 0.60 0.376 500 9330 15.8
Chess game (Al) sjeng 1948 0.80 0.376 586 12100 20.7
Quantum computer libguantum 550 0.44 0.378 109 20720 190.0
simulation
Video compression h2&dave 3793 0.50 0.3786 713 22130 31.0
Discrate avent omnetpp 367 2.10 0.378 290 8250 21.5
simulation library
Games/path finding astar 1250 1.00 0.378 470 7020 14.9
AML parsing xalanchmk 1045 0.70 0.378 275 8200 251
Geometric mean - - - - - - 25.7

26

Profiling Tools

0 Many profiling tools
e gprof (static instrumentation)
e cachegrind, Dtrace (dynamic instrumentation)
e perf (performance counters)

a perfin linux-tools, based on event sampling

e Keep a list of where “interesting events” (cycle, cache miss, etc)
happen

e CPU Feature: Counters for hundreds of events

- Performance: Cache misses, branch misses, instructions per
cycle, ...

e Intel® 64 and IA-32 Architectures Software Developer's Manual:
Appendix A lists all counters

e perf user guide:

http://www.intel.com/products/processor/manuals/index.htm
http://code.google.com/p/kernel/wiki/PerfUserGuid

Exercise 1

void copymatrix1(int n, int (*src)[n],
int (*dst)[n]) {
int i,j;
for (Ii=0;1<n;i++)
for j=0;]<n;j++)

dst[i][j] = src[il[j]; }

void copymatrix2(int n, int (*src)[n],
int (*dst)[n]) {
int i,j;
for j =0;] <n;j++)
for (i =0;i1<n;i++)

dst[i][j] = srcil[j]; }

O copymatrixl vs copymatrix?

e What do they do?
e What is the difference?

e Which one performs better? Why?

A perf stat —-e cycles —-e cache-misses ./copymatrixl
perf stat —-e cycles —-e cache-misses ./copymatrix?2

e What's the output like?
e How to interpret it?

e Which program performs better?

28

Exercise 2

void lowerl (char* s) { void lower2 (char* s) {
int i; int i
for (i=0; 1 < strlen(s); i++) int n = strlen(s);
if (s[i] >="A"&& sJi] <='2Z") for (I=0;1<n;i++)
s[i] -="A'-'a’; if (s[i] >="A"&& s[i] <="'2Z")
} s[i] -="A-"a’; }

O lowerl vs lower?2
e What do they do?
e What is the difference?
e Which one performs better? Why?

O perf stat —-e cycles —-e cache-misses ./lowerl
perf stat —-e cycles —-e cache-misses ./lower?2

e What does the output look like?
e How to interpret it?
e Which program performs better?

