CS3350B Computer Architecture
CPU Performance and Profiling

Marc Moreno Maza
http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html

Department of Computer Science
University of Western Ontario, Canada

Tuesday January 10, 2017

http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html

Components of a computer

Computer

Memory

CPU Devices
Control
Datapath I

Output

Memory hierarchy

Processor SUPER FAST
SUPER EXPENSIVE

TINY CAPACITY

CPU CACHE FASTER

; EXPENSIVE

SMALL CAPACITY

EDO, SD-RAM, DDR-SDRAM, RO-RAM PHYSICAL MEMORY FAST
PRICED REASONABLY

and More... AVERAGE CAPACITY
SO, Flash Drive SOLID STATE MEMORY WERAGE SPEED

A
PRICED REASONABLY
AVERAGE CAPACITY

sLow
Mechanical Hard Drives. CHEAN
LARGE CAPACTITY

Levels of program code

» High-level language
» Level of abstraction closer
to the problem domain
» Designed for productivity
and portability
» Assembly language
» Textual representation of
instructions
» Many constructs of the
HLL are translated into
combinations of low-level
constructs

» Hardware representation
» Binary digits (bits)
» Encoded instructions and
data

High-level
language
program
(inC)

Assembly
language
program

(for MIPS)

Binary machine
language
program

(for MIPS)

swap(int v[], int k)

(int temp:
temp = vlkl:
vlk] = v[k+1];

vlk+1] = temp;

swap:
muli $2, $5,4
add $2, $4,$2
Tw $15, 0($2)
Tw $16, 4(%2)
sw o $16, 0($2)
sw o $15, 4($2)
ir $31

Assembler

00000000101000010000000000011000
00000000000110000001100000100001
10001100011000100000000000000000
10001100111100100000000000000100
1010110011110010000¢ 000000000
1010110001100010000 000000100
00000011111000000000000000001000

Understanding Performance

> Algorithm analysis:
Algorithm analysis:
estimates the number of operations executed, the number of
cache misses, etc.

» Programming language, compiler, architecture
the compilation process determines the machine instructions
executed per HLL operation

» Processor and memory system
determine how fast instructions are executed
» 1/0 system (including OS)
determines how fast |/O operations are executed

Performance Metrics

» Purchasing perspective:
given a collection of machines, which one has the

» best performance?
» best cost?
» best cost/performance?

» Design perspective:
faced with design options, which one has the
» best performance improvement?
» best cost?
» best cost/performance?
» Both require:
» basis for comparison,
» metrics for evaluation.
» Our goal is to understand what factors in the
architecture contribute to overall system performance
and the relative importance (and cost) of these factors

CPU Performance

» We are normally interested in reducing

» Response time (aka execution time) — the time between the
start and the completion of a task

- Important to individual users

» Thus, to maximize performance, we need to minimize
execution time

performancey = 1/execution_timey

If X is n times faster than Y, then

performancey execution_timey

performancey, execution_timey

» And we are interested in increasing
» Throughput - the total amount of work done in a given unit of
time
- Important to data center managers
» Decreasing response time usually improves throughput, but
other factors are important (task scheduling, memory
bandwidth, etc.)

CPU Clocking

v

Almost all computers are constructed using a clock that
determines when events take place in the hardware

+—Clock period—+

Clock (cycles) J | | |]_I
Data transfer
and computation < X
Update state C C O

v

Clock period (cycle): duration of a clock cycle (CC)
» determines the speed of a computer processor
» e.g., 250ps = 0.25ns = 250 x 107125

» Clock frequency or rate (CR): cycles per second

» the inverse of the clock period
» e.g., 3.0GHz = 3000MHz = 3.0 x 10°Hz

» CR=1/CC.

Performance Factors

» It is important to distinguish elapsed time and the time spent
on our task
» CPU execution time (CPU time) - time the CPU spends
working on a task
» Does not include time waiting for 1/O or running other

programs
CPUexecutiontime = #CPUclockcycles x clock — cycle
for a program for a program

or

CPUexecutiontime = #CPUclockcycles / clock —rate
for a program for a program

» Thus, we can improve performance by reducing either the
length of the clock cycle or the number of clock cycles
required for a program.

Instruction Performance

#CPU clockcycles = #lInstructions x Average # of clock cycles
for a program for a program per instruction

» Clock cycles per instruction (CPI) - the average number of
clock cycles each instruction takes to execute:
» different instructions may take different amounts of time
depending on what they do;
» a way to compare two different implementations of the same
instruction set architecture (ISA).

The Classic Performance Equation

CPUtime = Instruction_count x CPI x clock_cycle
or
CPUtime = Instruction_count x CPI/clock_rate

» always Keep in mind that the only complete and reliable
measure of computer performance is time.
» For example, redesigning the hardware implementation of an

instruction set to lower the instruction count may lead to an
organization with

» a slower clock cycle time or,
» higher CPI,
that offsets the improvement in instruction count.

» Similarly, because CPI depends on the type of instruction
executed, the code that executes the fewest number of
instructions may not be the fastest.

A Simple Example (1/2)

n
Overall effective CPI =)" (CPI; x IC;)

i=1

Op Freq Pl; | Freq x CPI;
ALU 50% 1 5
Load | 20% | 5 1.0
Store | 10% | 3 3

Branch | 20% | 2 4
S =22

(1)
5
4

3
4
1.6

(1) How much faster would the machine be if a better data cache
reduced the average load time to 2 cycles?
CPU time new = 1.6 x IC x CC; so 2.2 versus 1.6 which
means 37.5% faster

A Simple Example (2/2)

Overall effective CPI =) (CPI; xIC;)

i=1

Op Freq | CPI; | Freq x CPI;
ALU 50% 1 5
Load | 20% | 5 1.0
Store | 10% 3 3
Branch | 20% | 2 4

S =22

2
5 .25
1.0 1.0
3 3
2 4
2.0 1.95

(2) How does this compare with using branch prediction to save a

cycle off the branch time?

CPU time new = 2.0 x IC x CC so 2.2 versus 2.0 means 10%

faster

(3) What if two ALU instructions could be executed at once?
CPU time new = 1.95 x IC x CC so 2.2 versus 1.95 means

12.8% faster

Understanding Program Performance

CPU time = Instruction_count x CPI x clock_cycle

» The performance of a program depends on the algorithm, the
language, the compiler, the architecture, and the actual

hardware.
Instruction_count | CPI | clock_cycle
Algorithm X X
Programming language X X
Compiler X X
ISA X X X
Processor organization X X

Performance Summary

CPU Time Instructions Clock cycles Seconds

X X
Program Instruction Clock cycle

» Performance depends on
» Algorithm: affects IC, possibly CPI
» Programming language: affects IC, CPI
» Compiler: affects IC, CPI
» Instruction set architecture: affects IC, CPI, T,

Check Yourself

A given application written in Java runs 15 seconds on a desktop
processor. A new Java compiler is released that requires only 0.6
as many instructions as the old compiler. Unfortunately, it
increases the CPl by 1.1. How fast can we expect the application
to run using this new compiler? Pick the right answer from the
three choices below:

a. 15X06 =8.2 sec
b. 15 x0.6x1.1=9.9 sec

15x1.1 _
C. 55 = 27.5 sec

Power Trends

10,000 300 2667 3300 w00 20
2000 -
100
T 1000 _
= 80 Z
77
£ 100 o =
b 2
3 125 0 8
8 104 O .
20

o

1+ T t t t t t t — 2
0y ©hs e E = oo =+ = =z [F RNt =
LY L 2 58 EL cEoeBgVNEg g8 itIa
8o 2% I £g2 22z 5z 583 0G5S 285 855
@ © @@= 2 ET =52 £%S S g =1

dT 53 E2S 58u 35082 0T
idg = 3408 o =
£ a= o

» In complementary metal oxide semiconductor (CMOS)
integrated circuit technology

Power = Capacitiveload x Voltage? x Frequency switched
(%x30) 5V > 1V) (%x1000)

Reducing Power

» Suppose a new CPU has

» 85% of capacitive load of old CPU
» 15% voltage and 15% frequency reduction

Phew Cola % 0.85 x (Vgiq x 0.85)2 x Foiq x 0.85

Poua Cola * Vgld x Fold

» The power wall

» We can't reduce voltage further
» We can’t remove more heat

» How else can we improve performance?

=0.85* = 0.52

Uniprocessor Performance

100,00(

Intal Xaon 4 cores 3.6 GHz (Boost to 4.0)
Intel Cnm iT4 mres 3.4 GHz (boost to 3.8 GHz)
Intel Xeon & cores, 3.3 GHz (boost o 3.8 GHz) 34,067
Intl ko & ooves 5 GFi (boset 1o 36 CHg " -
Intel Cora 7 Extreme 4 cores 3.2 GHz (boost 03,5 GHz) g — 8753 1
Intel Core Duo Extreme 2 cores, 3.0 GHz 3)

10,000 -

Intel Xeon EE 3.2 GHz
Intel DBSOEMV R motherboard (3.06 GHz, Pertium 4 processor with Hyper-threading Technology)
IBM Powerd, 1.3 GHz @2

Intsl VC820 motherboard, 1.0 GHz Pentium Il processor, i
Professional Warkstation XP1000, 657 MHz 21264A
Digital Alph
AlphaSanver 4000 /600, 600 MHz 2116
Digital Alphastation 5/500, 500 MHz

g 22%/year

100 —-

Parformance (vs. VAX-11/780)

IBM RS6000/540, 30 MHz
MIPS M2000, 25 MHz
MIPS MW/120, 16.7 MHz

un-

T T T T T T T T T T T T T T T T T
1078 1980 1082 1024 1086 1088 1000 1002 1004 1006 1008 2000 2002 2004 2006 2008 2010 2012 2014

» Constrained by power, instruction-level parallelism, memory
latencv

Multiprocessors

» Multicore microprocessors
> More than one processor per chip

» Requires explicitly parallel programming
» Compare with instruction level parallelism

- Hardware executes multiple instructions at once
- Hidden from the programmer
» Hard to do
- Programming for performance
- Load balancing
- Optimizing communication and synchronization

SPEC CPU Benchmark

» Programs used to measure performance
» Supposedly typical of actual workload
» Standard Performance Evaluation Corp (SPEC)
» Develops benchmarks for CPU, /0O, Web, ...
» SPEC CPU2006
» Elapsed time to execute a selection of programs
- Negligible 1/0, so focuses on CPU performance

» Normalize relative to reference machine
» Summarize as geometric mean of performance ratios

- CINT2006 (integer) and CFP2006 (floating-point)

n
{J H Execution time ratio;
i=1

CINT2006 for Intel Core i7 920

Execution | Reference

Instruction Clock cycle time Time Time

Description Name count x 10° (seconds x 10-?) | (seconds) | (seconds) | SPECratio
Interpreted string processing | perl 2252 0.60 0.376 508 a770 19.2
Block-sorting bzip2 2390 0.70 0.376 629 9650 15.4
compression
GNU C compiler gee 794 1.20 0.376 358 8050 22.5
Combinatorial optimization mef 221 2.66 0.376 221 9120 41.2
Go game (Al) go 1274 1.10 0.376 527 10480 19.9
Search gene sequence hmmer 2616 0.60 0.376 590 9330 15.8
Chess game (Al) sjeng 1948 0.80 0.376 586 12100 20.7
Quantum computer libquantum 650 0.44 0.376 109 20720 190.0
simulation
Video compression h264avc 3793 0.50 0.376 713 22130 31.0
Discrete event omnetpp 367 2.10 0.376 290 6250 215
simulation library
Games,/path finding astar 1250 1.00 0.376 470 7020 14.9
XML parsing xalanchmk 1045 0.70 0.376 275 6900 25.1
Geometric mean - - - - - - 25.7

Profiling Tools

» Many profiling tools
» gprof (static instrumentation)
» cachegrind, Dtrace (dynamic instrumentation)
» perf (performance counters)

» perf in linux-tools, based on event sampling

» Keep a list of where “interesting events” (cycle, cache miss,
etc) happen

» CPU Feature: Counters for hundreds of events

- Performance: Cache misses, branch misses, instructions per
cycle, ...

» Intel®64 and IA-32 Architectures Software Developer's
Manual: Appendix A lists all counters http://www.intel.
com/products/processor/manuals/index.html

» perf user guide:
https://perf.wiki.kernel.org/index.php/Tutorial

http://www.intel.com/products/processor/manuals/index.html
http://www.intel.com/products/processor/manuals/index.html
https://perf.wiki.kernel.org/index.php/Tutorial

Exercise 1

void copymatrixl(int (*src)[n], void copymatrix2(int (*src) [n],

int (*dst)[n], int n) { int (*dst)[n], int n) {
int 1i,j; int 1i,j;
for (i = 0; i < n; i++) for (j = 0; j < m; j++)
for (j = 0; j < m; j++) for (i = 0; i < n; i++)
dst[i] [j] = srclil[j]; dst[i] [j] = srclil [j];
} }

» copymatrixl vs copymatrix2
» What do they do?
» What is the difference?
» Which one performs better? Why?

» perf stat -e cycles -e cache-misses ./copymatrixl
perf stat -e cycles -e cache-misses ./copymatrix?2
» What does the output like?
» How to interpret it?
» Which program performs better?

Exercise 2

void lowerl (char* s) { void lower2 (char* s) {
int i; int i;
for (i = 0; i < strlen(s); i++) int n

= strlen(s);
if (s[il>=’A’ && s[i]l<=’Z’) for (i = 0; i < n; i++)
s[i] -= ’A’-’a’; if (s[il>=’A’ && s[il<=’Z’)
} s[i]l -= ’A’-’a’;
}
» lowerl vs lower2
» What do they do?
» What is the difference?
» Which one performs better? Why?
» perf stat -e cycles -e cache-misses ./lowerl
perf stat -e cycles -e cache-misses

./lower2
» What does the output like?
» How to interpret it?
» Which program performs better?

