CS3350B Computer Architecture

Memory Hierarchy: Why?

Marc Moreno Maza

http://wuw.csd.uwo.ca/~moreno/cs3350_moreno/index.html
Department of Computer Science
University of Western Ontario, Canada

Thursday January 12, 2017

Marc Moreno Maza (http://www.csd.uwo.cCS3350B Computer Architecture Memory Hi Thursday January 12, 2017

http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html
http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html

Components of a Computer

Processor Devices

Control

Cache Main Secondary Memory
Memory (Disk)

Marc Moreno Maza (http://www.csd.uwo.cCS3350B Computer Architecture Memory Hi Thursday January 12, 2017

http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html

The “Memory Wall”

@ Processor vs DRAM speed disparity continues to grow

—
(@]
o
o
=
-
' Q
S0
)
O
i}o
<
)
o
—
hY

PU
@
8 ___ Processor-Memory
g 100 Performance Gap:
E rowing 50%/yr,
5 d g y
R
S 10| ADRAM
7%lyear
DRAM
1 O NMNMFTOUDOMNODIDO - ANMNTWOONODOO O
O 0LV OVODDODIDITDHIOOIDDDD OO
SC202RC2028228 08283 2]
Time

Marc Moreno Maza (http://www.csd.uwo.cCS3350B Computer Architecture Memory Hi Thursday January 12, 2017

http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html

Principles of Locality

@ A program is likely to access a relatively small portion of the address
space at any instant of time
e Temporal Locality (locality in time): If a memory location is referenced
then it is likely to be referenced again soon
o Spatial Locality (locality in space): If a memory location is referenced,
then the locations with nearby addresses are likely to be referenced soon.
@ What program structures lead to temporal and spatial locality in code?

In data?

Locality Example:
- Reference to array elements in succession sum = O;

(stride-1 reference pattern): for (i=0; i<n; i++)
Spatial locality sum += alil;
- Reference to sum each iteration: return sum;

Temporal locality

Marc Moreno Maza (http://www.csd.uwo.cCS3350B Computer Architecture Memory Hi Thursday January 12, 2017 4 /27

http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html

Locality Exercise 1

@ Question: Does this function in C have good locality? If yes, which
type?

int sumarrayrows(int a[M][N]) {
int i, j, sum = O;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)
sum += al[i] [j];
return sum;

}

Marc Moreno Maza (http://www.csd.uwo.cCS3350B Computer Architecture Memory Hi Thursday January 12, 2017

http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html

Locality Exercise 2

@ Question: Does this function in C have good locality? If yes, which
type?

int sumarraycols(int a[M][N]) {
int i, j, sum = O;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)
sum += al[i] [j];
return sum;

}

Marc Moreno Maza (http://www.csd.uwo.cCS3350B Computer Architecture Memory Hi Thursday January 12, 2017

http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html

Locality Exercise 3

@ Question: Can you permute the loops so that the function scans the
3D array al] with a stride-1 reference pattern (and thus has good
spatial locality)?

int sumarray3d(int a[M][N][N]) {
int i, j, k, sum = O;

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
for (k = 0; k < M; k++)
sum += alk] [i] [j];
return sum;

}

Marc Moreno Maza (http://www.csd.uwo.cCS3350B Computer Architecture Memory Hi Thursday January 12, 2017

http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html

Why Memory Hierarchies?

@ Some fundamental and enduring properties of hardware and software:
o Fast storage technologies (SRAM) cost more per byte and have less
capacity
o Gap between CPU and main memory (DRAM) speed is widening
o Well-written programs tend to exhibit good locality
@ These fundamental properties complement each other beautifully.

@ They suggest an approach for organizing memory and storage systems
known as a memory hierarchy, to obtain the effect of a large, cheap,
fast memory.

Marc Moreno Maza (http://www.csd.uwo.cCS3350B Computer Architecture Memory Hi Thursday January 12, 2017 8 /27

http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html

Increasing
distance
from the
processor
in access
time

Processor

14~8 bytes (word)

)

+1to 4 block
Main Memory

¢1.024+ bytes (disksector 5

Secondary Memory

(Relative) size of the memory at each level

Inclusive —

what is in L1$
is a subset of
what is in L2$
is a subset of
what is in MM
is a subset of
what is in SM

page)

@ CPU looks first for data in L1, then in L2, ..., then in main memory.

Thursday January 12, 2017

9 /27

Marc Moreno Maza (http://www.csd.uwo.cCS3350B Computer Architecture Memory Hi

http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html

Photo of a CPU: Nehalem Die

44

O SIS s

TR
YT E YT

=
S|
=
< | |
2
S
2
=
£
©
o
—

|
i

18.9 mm (0.75 inch)

Marc Moreno Maza (http://www.csd.uwo.cCS3350B Computer Architecture Memory Hi Thursday January 12, 2017 10 / 27

http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html

ea Breakdown

32KB 1$ per core
32KB D$ per core y
emory
512KB L2% per core Controller
Share one 8-MB L3$ R

Load
Store
Queue

—

Marc Moreno Maza (http://www.csd.uwo.cCS3350B Computer Architecture Memory Hi

http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html

Cache Parameters of Two Processors

Intel Nehalem

AMD Barcelona

organization

L1 cache size &

32KB for each per core;
64B blocks; Split I$ and D$

64KB for each per core;
64B blocks; Split I$ and D$

L1 associativity

4-way (1), 8-way (D) set
assoc.; ~LRU replacement

2-way set assoc.; LRU
replacement

L1 write policy

write-back, write-allocate

write-back, write-allocate

organization

L2 cache size &

256MB (0.25MB) per
core; 64B blocks; Unified

512KB (0.5MB) per
core; 64B blocks; Unified

L2 associativity

8-way set assoc.; ~LRU

16-way set assoc.; ~LRU

L2 write policy

write-back, write-allocate

write-back, write-allocate

organization

L3 cache size &

8192KB (8MB) shared by
cores; 64B blocks; Unified

2048KB (2MB) shared by
by cores; 64B blocks; Unified

L3 associativity

16-way set assoc.

32-way set assoc.; evict block
shared by fewest cores

L3 write policy

write-back, write-allocate

write-back, write-allocate

Marc Moreno Maza (http://www.csd.uwo.cCS3350B Computer Architecture Memory Hi

Thursday January 12, 2017 12 /27

http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html

@ Cache: A small-and-fast storage device that acts as a staging area for
subset of data in a larger-and-slower device
@ Fundamental idea of a memory hierarchy:
o For each k, the fast-and-small device at level k serves as cache for the
larger-and-slower device at level k + 1.
@ Why do memory hierarchies work?
o Programs tend to access (thus find) data at level k more often than
they access data at level k+1
e Thus, storage at level k +1 can be slower, and thus larger and cheaper
per bit.
o Net effect: Large pool of memory that costs as little as the cheap
storage near the bottom, but that serves data to programs at ~ rate of
the fast storage near the top.

Marc Moreno Maza (http://www.csd.uwo.cCS3350B Computer Architecture Memory Hi Thursday January 12, 2017 13 /27

http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html

Caching in a Memory Hierarc

@ Each level of memory is

tevelk: |[@] o Jlo Jlz | ‘ partitioned into blocks of
consecutive byes and of
equal size (which depends
on the level)
@ The smaller, faster, more
o J[r J[z J[z] ive st device at
Level ket iy o s o expensive storage-device a
4
level k caches a subset of
2 Jle J[wo [z]
the blocks from level k + 1
(12 |[1z J[12 |[15]
@ Data is copied between

levels in block-sized transfer
units.

Marc Moreno Maza (http://www.csd.uwo.cCS3350B Computer Architecture Memory Hi Thursday January 12, 2017 14 /27

http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html

eral Caching Concepts

@ A Program needs an object d, which is

[z] :‘zequest stored in some block b
N @ Cache hit (at level k)
Level k: ‘El ‘ o The Program finds b in the cache at level
k. e.g., block 14
P $;quest o Cache miss (at level k
e b is not at level k, so the level k cache
must fetch it from level k + 1. e.g., block 12
[o] o If the level k cache is full, then some
Level (5]l | current block must be replaced (evicted).
k+1: o] Which one is the “victim"?
[15] - Placement (mapping) policy: where can

the new block go? e.g., b mod 4

- Replacement policy: which block should
be evicted? e.g., LRU (least recently
used).

Marc Moreno Maza (http://www.csd.uwo.cCS3350B Computer Architecture Memory Hi

Thursday January 12, 2017 15 / 27

http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html

ral Caching cepts

@ Types of cache misses:
e Cold (compulsory) miss at level k
- A cold miss occurs at level k for a block b when this block is missing
for the first time in the level k cache
e Conflict miss at level k
- Most caches limit block positions at level k to a small subset
(sometimes a singleton) of the block positions at level k + 1
- e.g. block i at level k + 1 must be placed in block i mod 4 at level k
- Conflict misses occur at level k when multiple data items from level
k +1 all map to the same block at level k
- e.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time, with
ai > i mod 4 mapping
e Capacity miss at level k
- Occurs when the set of active blocks (that is, the data set with which
the Program is working) is larger than the cache at level k

Marc Moreno Maza (http://www.csd.uwo.cCS3350B Computer Architecture Memory Hi Thursday January 12, 2017 16 / 27

http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html

More Caching Concepts

e Hit Rate: the percentage of memory accesses found in a level of the
memory hierarchy
o Hit Time: Time to access that level which consists of:
Time to determine hit/miss + Time to access the block.

@ Miss Rate: the percentage of memory accesses not found in a level
of the memory hierarchy, that is, 1 - (Hit Rate).

@ Miss Penalty: Time to replace a block in that level with the
corresponding block from a lower level which consists of:

Time to determine hit/miss

Time to access the block in the lower level
-+ Time to transmit that block to the level that experienced the miss
-+ Time to insert the block in that level
+ Time to pass the block to the requester

Hit Time <« Miss Penalty

Marc Moreno Maza (http://www.csd.uwo.cCS3350B Computer Architecture Memory Hi Thursday January 12, 2017 17 / 27

http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html

Examples of Cache Memories in the Hierarchy

Cache Type What Cached | Where Cached | Latency Managed By
(cycles)
Registers 4-byte word CPU registers 0.5 Compiler
TLB Address On-Chip TLB 0.5 Hardware
translations

L1 cache 32-byte block On-Chip L1 0.5 Hardware

L2 cache 32-byte block | On/Off-Chip L2 | 10 Hardware

Virtual Memory | 4-KB page Main memory 100 Hardware+

[

Buffer cache Parts of files Main memory 100 oS

Network buffer | Parts of files Local disk 10,000,000 AFS/NFS

cache client

Browser cache | Web pages Local disk 10,000,000 Web browser

Web cache Web pages Remote server 1,000,000,000 | Web proxy
disks server

@ The TLB (Translation lookaside buffer) stores the recent translations of virtual
memory to physical memory and can be called an address-translation cache

@ The Andrew File System (AFS) and Network File System (NFS) are distributed file
system protocols

@ A proxy server is a server (a computer system or an application) that acts as an
intermediary for requests from clients seeking resources from other servers.

Marc Moreno Maza (http://www.csd.uwo.cCS3350B Computer Architecture Memory Hi

Thursday January 12, 2017 18 / 27

http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html

@ Being able to look at code and get a qualitative sense of its locality
properties is a key skill for professional programmer.

e Examples of projects driven by data locality (and other features):

BLAS (Basic Linear Algebra Subprograms)
http://www.netlib.org/blas/

SPIRAL, Software/Hardware Generation for DSP Algorithms
http://wuw.spiral.net/

FFTW, by Matteo Frigo and Steven G, Johnson
http://wuw.fftw.org/

Cache-Oblivious Algorithms, by Matteo Frigo, Charles E. Leiserson,
Harald Prokop, and Sridhar Ramachandran, 1999
https://en.wikipedia.org/wiki/Cache-oblivious_algorithm

Marc Moreno Maza (http://www.csd.uwo.cCS3350B Computer Architecture Memory Hi Thursday January 12, 2017 19 / 27

http://www.netlib.org/blas/
http://www.spiral.net/
http://www.fftw.org/
https://en.wikipedia.org/wiki/Cache-oblivious_algorithm
http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html

Memory Performance

e Cache Miss Rate: number of cache misses/total number of cache

references (accesses)
Miss rate + hit rate = 1.0 (100%)

@ Miss Penalty: the
difference in access time of a given memory level, where a block is
missing, and the lower level, where the block is found.

o Average Memory Access Time (AMAT) is the average time to
access memory considering both hits and misses
AMAT = Time for a Hit + Miss Rate * Miss Penalty

@ What is the AMAT for a processor with a 200 ps clock, a miss
penalty of 50 clock cycles, a miss rate of 0.02 misses per instruction
and a cache access time of 1 clock cycle?

Marc Moreno Maza (http://www.csd.uwo.cCS3350B Computer Architecture Memory Hi Thursday January 12, 2017 20 / 27

http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html

Memory Performance

e Cache Miss Rate: number of cache misses/total number of cache
references (accesses)
Miss rate + hit rate = 1.0 (100%)

@ Miss Penalty: the
difference in access time of a given memory level, where a block is
missing, and the lower level, where the block is found.

o Average Memory Access Time (AMAT) is the average time to
access memory considering both hits and misses
AMAT = Time for a Hit + Miss Rate * Miss Penalty

@ What is the AMAT for a processor with a 200 ps clock, a miss
penalty of 50 clock cycles, a miss rate of 0.02 misses per instruction
and a cache access time of 1 clock cycle?
1+ 0.02 * 50 = 2 clock cycles, or 2 * 200 = 400 ps

Marc Moreno Maza (http://www.csd.uwo.cCS3350B Computer Architecture Memory Hi Thursday January 12, 2017 20 / 27

http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html

Measuring Cache Performance - Effect on CPI

@ Assuming that the cache hit costs are included as part of the normal
CPU execution cycle, we have:

CPUtime = ICxCPIxCC
= IC x (CPIigea) + Average memory stall cycles) x CC

CPIstall

@ A simple definition for memory-stall cycles:
Memory-stall cycles = #accesses/program x miss rate x miss penalty

This ignores extra costs of write misses.

Marc Moreno Maza (http://www.csd.uwo.cCS3350B Computer Architecture Memory Hi Thursday January 12, 2017 21 /27

http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html

Impacts of Cache Performance

@ Relative cache miss penalty increases as processor performance
improves (faster clock rate and/or lower CPI). Indeed:
o Memory speed unlikely to improve as fast as processor cycle time.
o When calculating CPI;.1, the cache miss penalty is measured in
processor clock cycles needed to handle a miss.
o The lower is CPljgea1, the more pronounced is the impact of stalls

@ Processor with a CPIigea1 of 2, a 100 cycle miss penalty, 36%
load/store instr's, and 2% instruction-cache miss rate, and 4%
data-cache miss rate.

o Memory-stall cycles = 2% x 100 + 36% x 4% x 100 = 3.44
e So CPIg.y =2 + 3.44 =5.44
o More than twice the CPILigea!

@ What if the CPI;ge, is reduced to 17
e What if the data cache miss rate went up by 1%7?

Marc Moreno Maza (http://www.csd.uwo.cCS3350B Computer Architecture Memory Hi Thursday January 12, 2017 22 /27

http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html

Impacts of Cache Performance

@ Relative cache miss penalty increases as processor performance
improves (faster clock rate and/or lower CPI). Indeed:
o Memory speed unlikely to improve as fast as processor cycle time.
o When calculating CPI;.1, the cache miss penalty is measured in
processor clock cycles needed to handle a miss.
o The lower is CPljgea1, the more pronounced is the impact of stalls

@ Processor with a CPIigea1 of 2, a 100 cycle miss penalty, 36%
load/store instr's, and 2% instruction-cache miss rate, and 4%
data-cache miss rate.

o Memory-stall cycles = 2% x 100 + 36% x 4% x 100 = 3.44
e So CPIg.y =2 + 3.44 =5.44
o More than twice the CPILigea!

@ What if the CPI;ge, is reduced to 17

e What if the data cache miss rate went up by 1%7?
Memory-stall cycles = 2% x 100 + 36% x 4% x 100 = 3.800

Marc Moreno Maza (http://www.csd.uwo.cCS3350B Computer Architecture Memory Hi Thursday January 12, 2017 22 /27

http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html

Multiple Cache Levels
CPU mMem

L1$
. Access

Main Memory
A

Miss

v

Hit

Marc Moreno Maza (http://www.csd.uwo.cCS3350B Computer Architecture Memory Hi

Thursday January 12, 2017

http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html

Multiple Cache Levels

e With advancing technology, the CPU has more room on die for bigger
L1 caches and for second level cache - normally a unified L2 cache
(i.e., it holds both instructions and data,) and in some cases even a
unified L3 cache.

e New AMAT Calculation:

AMAT = L1 Hit Time + L1 Miss Rate * L1 Miss Penalty,
L1 Miss Penalty L2 Hit Time + L2 Miss Rate » L.2 Miss Penalty

and so forth (final miss penalty is Main Memory access time)

Marc Moreno Maza (http://www.csd.uwo.cCS3350B Computer Architecture Memory Hi Thursday January 12, 2017 24 /27

http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html

New AMAT Example

@ 1 cycle L1 hit time, 2% L1 miss rate,
5 cycle L2 hit time, 5% L2 miss rate.

@ 100 cycle main memory access time
@ Without L2 cache:

@ With L2 cache:

Marc Moreno Maza (http://www.csd.uwo.cCS3350B Computer Architecture Memory Hi Thursday January 12, 2017 25 /27

http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html

New AMAT Example

@ 1 cycle L1 hit time, 2% L1 miss rate,
5 cycle L2 hit time, 5% L2 miss rate.

@ 100 cycle main memory access time

@ Without L2 cache:
AMAT =1 + .02*100 = 3

@ With L2 cache:
AMAT =1 4 .02*%(5 + .05*100) = 1.2

Marc Moreno Maza (http://www.csd.uwo.cCS3350B Computer Architecture Memory Hi Thursday January 12, 2017

http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html

Summary

@ Wanted: effect of a large, cheap, fast memory
@ Approach: Memory Hierarchy

e Successively lower levels contain “most used” data from next higher
level
o Exploits temporal & spatial locality of programs
o Do the common case fast, worry less about the exceptions (RISC
design principle)
e Challenges to programmer:
o Develop cache friendly (efficient) programs

@ From Wikipedia: Reduced instruction set computing, or RISC, is a CPU design strategy
based on the insight that a simplified instruction set provides higher performance when
combined with a microprocessor architecture capable of executing those instructions using
fewer microprocessor cycles per instruction.[1] A computer based on this strategy is a

reduced instruction set computer, also called RISC.

Marc Moreno Maza (http://www.csd.uwo.cCS3350B Computer Architecture Memory Hi Thursday January 12, 2017 26 / 27

http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html

Layout of C Arrays in Memory (hints for the exercises)

@ C arrays allocated in row-major order
e Each row in contiguous memory locations
@ Stepping through columns in one row:
o for (i = 0; i < N; i++)
sum += al[0] [i];
o Accesses successive elements of size k bytes

o If block size (B) > k bytes, exploit spatial locality

Compulsory miss rate = k bytes / B.

e Typically k=8 and B=8k or B=16k.
@ Stepping through rows in one column:
o for (i = 0; i < nj; i++)
sum += al[i] [0];

o Accesses distant elements
o No spatial locality!

Compulsory miss rate = 1 (i.e. 100%)

Marc Moreno Maza (http://www.csd.uwo.cCS3350B Computer Architecture Memory Hi

Thursday January 12, 2017

27 / 27

http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html

