
CS3350B Computer Architecture
MIPS Introduction

Marc Moreno Maza

http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html
Department of Computer Science

University of Western Ontario, Canada

Tuesday January 24, 2017

http://www.csd.uwo.ca/~moreno/cs3350_moreno/index.html

Abstraction of machine structures

▸ Levels of representation

Instructions: Language of the Computer

Instruction Set

▸ Machine instructions form the language of the Computer,
known as the instruction set

▸ Different computers have different instruction sets:
▸ but with many aspects in common;

▸ early computers had very simple instruction sets
▸ due to simplified implementation w.r.t. today’s
computers

▸ Nevertheless, many modern computers also have simple
instruction sets

The MIPS instruction set

▸ Used as the example throughout this course
▸ For history, see https:

//en.wikipedia.org/wiki/MIPS_instruction_set
▸ MIPS stand for Microprocessor without Interlocked

Pipeline Stages.
▸ MIPS has a large share of embedded core market

▸ Applications in consumer electronics, network/storage
equipment, cameras, printers, . . .

▸ MIPS is typical of many modern ISAs
▸ See the MIPS Reference card.

https://en.wikipedia.org/wiki/MIPS_instruction_set
https://en.wikipedia.org/wiki/MIPS_instruction_set

spim assembler and simulator

▸ spim is a simulator that runs MIPS32 assembly language
programs

▸ It provides a simple assembler, debugger and a simple
set of operating system services

▸ Interfaces: Spim, XSpim, PCSpim, QtSpim (new UI,
cross-platform)

▸ See installation and user guide at
▸ http://pages.cs.wisc.edu/~larus/spim.html

http://pages.cs.wisc.edu/~larus/spim.html

Arithmetic operations

▸ Add and subtract have three operands
▸ two sources and one destination

add a, b, c # a gets b + c
▸ All arithmetic operations have this form
▸ Design principle 1: simplicity favors regularity

▸ Regularity makes implementation simpler
▸ Simplicity enables higher performance at lower cost

ArithmeticeExample

▸ C code:
f = (g + h) - (i + j);

▸ Compiled MIPS code:
add t0, g, h # temp t0 = g + h
add t1, i, j # temp t1 = i + j
sub f, t0, t1 # f = t0 - t1

Register Operands

▸ Arithmetic instructions use register operands
▸ MIPS has a 32 × 32-bit register file

▸ use for frequently accessed data
▸ numbered 0 to 31
▸ 32-bit data called a “word”

▸ Assembler names
▸ $t0, $t1, ... $t9 for temporary values
▸ $s0, $s1, ... $s7 for saved variables

▸ Design Principle 2: smaller is faster
▸ in comparison ot main memory which has millions of
locations

Register operand example

▸ C code:
f = (g + h) - (i + j);

▸ f, ..., j in $s0, ..., $s4
▸ Compiled MIPS code:

add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

Memory operands
▸ Main memory used for storing composite data:

▸ Arrays, structures, dynamic data
▸ To apply an arithmetic operation, we need to

▸ load values from memory into registers, and
▸ store the result from register to memory

▸ Memory is byte addressable
▸ Each address identifies a word (= 4 bytes = 32 bits)

▸ each word is aligned in memory, that is,
▸ its address must be a multiple of 4

▸ MIPS is Big Endian
▸ that is, it stores the most significant byte in the smallest
address,

▸ in contrast, with little endian, the least-significant byte
is at the smallest address.

Memory operand example 1

▸ C code:
g = h + A[8];

▸ assume g in $s1, h in $s2, and the base address of A in
$s3

▸ Compiled MIPS code:
▸ With 4 bytes per word, the index 8 requires an offset of
32
lw $t0, 32($s3) # load word
add $s1, $s2, $t0

Memory Operand example 2

▸ C code:
A[12] = h + A[8];

▸ h in $s2, base address of A in $s3
▸ Compiled MIPS code:

lw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

Registers vs. memory

▸ registers are faster to access than memory
▸ operating on memory data requires loads and stores

▸ thus more instructions to be executed
▸ Compiler must use registers for variables as much as
possible

▸ only spill to memory for less frequently used variables
▸ register optimization is important!

Immediate operands

▸ Constant data specified in an instruction
addi $s3, $s3, 4

▸ There is no subtract immediate instruction
▸ just use a negative constant

addi $s2, $s1, -1
▸ Design Principle 3: make the common case fast

▸ small constants are common
▸ immediate operand avoids a load instruction

The constant zero

▸ MIPS register 0 ($zero) is the constant 0
▸ Cannot be overwritten

▸ Useful for common operations
▸ for instance, for copying between registers

add $t2, $s1, $zero

Overview: MIPS R3000 ISA

▸ Instruction categories
▸ computational
▸ load/Store
▸ jump and Branch
▸ floating point
coprocessor

▸ memory management
▸ special

▸ 3 basic instruction formats: all 32 bits wide

OP rs rt rd sha funct R-format
OP rs rt immediate I-format
OP jump target J-format

MIPS ISA: selected instructions
Category Instr OP/ Example Meaning

funct
Arithmetic add R 0/32 add $s1, $s2, $s3 $s1 = $s2 + $s3

subtract R 0/34 sub $s1, $s2, $s3 $s1 = $s2 - $s3
add immediate I 8 addi $s1, $s2, 6 $s1 = $s2 + 6
or immediate I 13 ori $s1, $s2, 6 $s1 = $s2 ∧ 6

Data load word I 35 lw $s1, 24($s2) $s1 = Memory($s2+24)
Transfer store word I 43 sw $s1, 24($s2) Memory($s2+24) = $s1

load byte I 32 lb $s1, 25($s2) $s1 = Memory($s2+25)
store byte I 40 sb $s1, 25($s2) Memory($s2+25) = $s1
load upper imm I 15 lui $s1, 6 $s1 = 6 * 216

Cond. br on equal I 4 beq $s1, $s2, L if ($s1==$s2) go to L
Branch br on not equal I 5 bne $s1, $s2, L if ($s1 != $s2) go to L

set on less than R 0/42 slt $s1, $s2, $s3 if ($s2<$s3) $s1=1
else $s1=0

set on less than I 10 slti $s1, $s2, 6 if ($s2<6) $s1=1
immediate else $s1=0

Uncond. jump J 2 j 250 go to 1000
Jump jump register R 0/8 jr $t1 go to $t1

jump and link J 3 jal 250 go to 1000; $ra=PC+4

MIPS register convention
Name Register Usage Preserve

Number on call?
$zero 0 constant 0 (hardware) n.a.
$at 1 reserved for assembler n.a.
$v0 - $v1 2-3 returned values no
$a0 - $a3 4-7 arguments yes
$t0 - $t7 8-15 temporaries no
$s0 - $s7 16-23 saved values yes
$t8 - $t9 24-25 temporaries no
$k 26-27 Interrupt/trap handler yes
$gp 28 global pointer yes
$sp 29 stack pointer yes
$fp 30 frame pointer yes
$ra 31 return addr (hardware) yes

Unsigned binary integers

▸ Given an n-bit number

x = xn−12n−1
+ xn−22n−2

+⋯ + x121
+ x020

▸ Range: 0 to + 2n – 1
▸ Example

0000 0000 0000 0000 0000 0000 0000 10112
= 0 +⋯ + 1 × 23

+ 0 × 22
+ 1 × 21

+ 1 × 20

= 0 +⋯ + 8 + 0 + 2 + 1 = 1110

▸ Using 32 bits: 0 to +4,294,967,295

2s-complement signed integers

▸ Given an n-bit number

x = xn−12n−1
+ xn−22n−2

+⋯ + x121
+ x020

▸ Range: -2n−1 to +2n−1-1
▸ Example

1111 1111 1111 1111 1111 1111 1111 11002
= −1 × 231

+ 1 × 230
+⋯ + 1 × 22

+ 0 × 21
+ 0 × 20

= −2,147,483,648 + 2,147,483,644 = −410

▸ Using 32 bits: -2,147,483,648 to +2,147,483,647

2s-complement signed integers

▸ Bit 31 is sign bit
▸ 1 for negative numbers
▸ 0 for non-negative numbers

▸ -(-2n - 1) can’t be represented
▸ Non-negative numbers have the same unsigned and
2s-complement representation

▸ Some specific numbers
▸ 0: 0000 0000 ... 0000
▸ -1: 1111 1111 ... 1111
▸ Most-negative: 1000 0000 ... 0000
▸ Most-positive: 0111 1111 ... 1111

Signed negation

▸ Complement and add 1
▸ Complement means 1 → 0, 0 → 1

x + x = 1111 . . .1112 = −1
x + 1 = −x

▸ Example: negate +2
▸ +2 = 0000 0000 . . . 00102
▸ −2 = 1111 1111 . . . 11012 + 1

= 1111 1111 . . . 11102

Sign extension

▸ Representing a number using more bits
▸ Preserve the numeric value

▸ In MIPS instruction set
▸ addi: extend immediate value
▸ lb, lh: extend loaded byte/halfword

▸ Replicate the sign bit to the left
▸ unsigned values are extended with 0s

▸ Examples: 8-bit to 16-bit
▸ +2: 0000 0010 ⇒ 0000 0000 0000 0010
▸ -2: 1111 1110 ⇒ 1111 1111 1111 1110

