
CS3350BCS3350B
Computer Architecture 

Winter 2015Winter 2015

Lecture 4.2: MIPS ISA --
Instruction Representation

Marc Moreno Maza
www.csd.uwo.ca/Courses/CS3350b 

[Adapted from lectures on 
Computer Organization and Design, 

Patterson & Hennessy 5th edition 2013]Patterson & Hennessy, 5th edition, 2013]



Representing Instructions
Instructions are encoded in binary

Called machine codeCalled machine code
MIPS instructions

Encoded as 32-bit instruction words
Small number of formats encoding operation code 
(opcode), register numbers, …
Regularity!

Register numbers
$ 0 $ ’ 8 1$t0 – $t7 are reg’s 8 – 15
$t8 – $t9 are reg’s 24 – 25
$s0 $s7 are reg’s 16 23$s0 – $s7 are reg s 16 – 23

2



Overview: MIPS R3000 ISA
Instruction Categories

Computational 
Load/Store R0 - R31

Registers

Load/Store
Jump and Branch
Floating Point

coprocessor
Memory Management
Special

PC
HI
LO

3 Basic Instruction Formats: all 32 bits wide

OP

OP

rs rt rd sha funct

rs rt immediate

R-format

I-format

OP jump target J-format

3



MIPS ISA Selected Instruction Set
Category Instr OP/funct Example Meaningg y p g

Arithmetic add R 0/32 add  $s1, $s2, $s3 $s1 = $s2 + $s3
subtract R 0/34 sub  $s1, $s2, $s3 $s1 = $s2 - $s3
add immediate I 8 addi $s1, $s2, 6 $s1 = $s2 + 6
or immediate I 13 ori    $s1, $s2, 6 $s1 = $s2 v 6

Data 
Transfer

load word I 35 lw    $s1, 24($s2) $s1 = Memory($s2+24)
store word I 43 sw   $s1, 24($s2) Memory($s2+24) = $s1
load byte I 32 lb     $s1, 25($s2) $s1 = Memory($s2+25)
store byte I 40 sb    $s1, 25($s2) Memory($s2+25) = $s1
load upper imm I 15 lui    $s1, 6 $s1 = 6 * 216

Cond. 
Branch

br on equal I 4 beq  $s1, $s2, L   if ($s1==$s2)   go to L 
br on not equal I 5 bne  $s1, $s2, L if ($s1 != $s2)  go to L
set on less than R 0/42 slt    $s1, $s2, $s3 if ($s2<$s3)  $s1=1  else  

$s1=0$s1 0
set on less than 
immediate

I 10 slti   $s1, $s2, 6 if ($s2<6)  $s1=1  else  
$s1=0

Uncond. 
Jump

jump J 2 j       250 go to 1000
Jump  jump register R 0/8 jr     $t1 go to $t1

jump and link J 3 jal    250 go to 1000; $ra=PC+4
4



MIPS R-format Instructions

op rs rt rd shamt funct
6 bit 6 bit5 bit 5 bit 5 bit 5 bit

Instruction fields
6 bits 6 bits5 bits 5 bits 5 bits 5 bits

op: operation code (opcode)
rs: first source register number
rt: second source register number
rd: destination register number
shamt: shift amount (00000 for now)
funct: function code (extends opcode)( )

5



R-format Example

op rs rt rd shamt funct
6 bit 6 bit5 bit 5 bit 5 bit 5 bit

add $t0, $s1, $s2

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

$ , $ , $

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000000000 10001 10010 01000 00000 100000

0000001000110010010000000010000022

6



MIPS I-format Instructions

op rs rt constant or address
6 bit 5 bit 5 bit 16 bit

Immediate arithmetic and load/store instructions
t d ti ti i t b

6 bits 5 bits 5 bits 16 bits

rt: destination or source register number
Constant: –215 to +215 – 1
Address: offset added to base address in rsdd ess o set added to base add ess s

Design Principle 4: Good design demands 
good compromises

Different formats complicate decoding, but allow 32-bit 
instructions uniformly
Keep formats as similar as possibleKeep formats as similar as possible

7



Stored Program Computers
Instructions represented in 
binary, just like data
Instructions and data stored 
in memory
P tPrograms can operate on 
programs

e g compilers linkerse.g., compilers, linkers, …
Binary compatibility allows 
compiled programs to work g
on different computers

Standardized ISAs

8



Logical Operations
Instructions for bitwise manipulation

Operation C Java MIPS
Shift left << << sll

Shift right >> >>> srl

Bitwise AND & & and, andi

iBitwise OR | | or, ori

Bitwise NOT ~ ~ nor

Useful for extracting and inserting 
groups of bits in a wordgroups of bits in a word

9



Shift Operations

op rs rt rd shamt funct
6 bit 6 bit5 bit 5 bit 5 bit 5 bit

shamt: how many positions to shift 

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Shift left logical
Shift left and fill with 0 bits
sll by i bits multiplies by 2i

Shift right logicalg g
Shift right and fill with 0 bits
srl by i bits divides by 2i (unsigned only)

10



AND Operations
Useful to mask bits in a word

Select some bits clear others to 0Select some bits, clear others to 0

and $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000$t2

0000 0000 0000 0000 0011 1100 0000 0000$t1

0000 0000 0000 0000 0000 1100 0000 0000$t0 0000 0000 0000 0000 0000 1100 0000 0000$t0

11



OR Operations
Useful to include bits in a word

Set some bits to 1 leave others unchangedSet some bits to 1, leave others unchanged

or $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000$t2

0000 0000 0000 0000 0011 1100 0000 0000$t1

0000 0000 0000 0000 0011 1101 1100 0000$t0 0000 0000 0000 0000 0011 1101 1100 0000$t0

12



NOT Operations
Useful to invert bits in a word

Change 0 to 1 and 1 to 0Change 0 to 1, and 1 to 0
MIPS has NOR 3-operand instruction

NOR b NOT ( OR b )a NOR b == NOT ( a OR b )

nor $t0, $t1, $zero Register 0: always 

0000 0000 0000 0000 0011 1100 0000 0000$t1

read as zero

$

1111 1111 1111 1111 1100 0011 1111 1111$t0

13



Conditional Operations
Branch to a labeled instruction if a 
condition is trueco d t o s t ue

Otherwise, continue sequentially
beq rs, rt, L1beq rs, rt, L1

if (rs == rt) branch to instruction labeled L1;
bne rs, rt, L1bne rs, rt, L1

if (rs != rt) branch to instruction labeled L1;
j L1j L1

unconditional jump to instruction labeled L1

14



Compiling If Statements
C code:
if (i j) f g+h;if (i==j) f = g+h;
else f = g-h;

f g in $s0 $s1f, g, … in $s0, $s1, …
Compiled MIPS code:

bne $s3, $s4, Else
add $s0, $s1, $s2
j Exitj   Exit

Else: sub $s0, $s1, $s2
Exit: …

Assembler calculates addresses

15



Compiling Loop Statements
C code:
while (save[i] == k) i += 1;while (save[i] == k) i += 1;

i in $s3, k in $s5, address of save in $s6
Compiled MIPS code:Compiled MIPS code:
Loop: sll $t1, $s3, 2

add $t1 $t1 $s6add  $t1, $t1, $s6
lw $t0, 0($t1)
bne $t0, $s5, Exit
addi $s3 $s3 1addi $s3, $s3, 1
j    Loop

Exit: …

16



Basic Blocks
A basic block is a sequence of instructions 
withwith

No embedded branches (except at end)
No branch targets (except at beginning)No branch targets (except at beginning)

A il id tifi b iA compiler identifies basic 
blocks for optimization
An advanced processorAn advanced processor 
can accelerate execution 
of basic blocksof basic blocks

17



More Conditional Operations
Set result to 1 if a condition is true

Otherwise set to 0Otherwise, set to 0
slt rd, rs, rt

if ( ) d 1 l d 0if (rs < rt) rd = 1; else rd = 0;
slti rt, rs, constant

if (rs < constant) rt = 1; else rt = 0;
Use in combination with beq, bneq,

slt $t0, $s1, $s2 # if ($s1 < $s2)
bne $t0, $zero, L  #   branch to L

18



Branch Instruction Design
Why not blt, bge, etc?
Hardware for < ≥ slower than = ≠Hardware for <, ≥, … slower than =, ≠

Combining with branch involves more work 
per instruction requiring a slower clockper instruction, requiring a slower clock
All instructions penalized!

b d b thbeq and bne are the common case
This is a good design compromise

19



Signed vs. Unsigned
Signed comparison: slt, slti
Unsigned comparison: sltu sltuiUnsigned comparison: sltu, sltui
Example

$s0 = 1111 1111 1111 1111 1111 1111 1111 1111

$s1 = 0000 0000 0000 0000 0000 0000 0000 0001
slt  $t0, $s0, $s1  # signed

–1 < +1 ⇒ $t0 = 1
sltu $t0, $s0, $s1  # unsigned

+4,294,967,295 > +1 ⇒ $t0 = 0

20



Byte/Halfword Operations
Could use bitwise operations
MIPS byte/halfword load/storeMIPS byte/halfword load/store

String processing is a common case
lb ff ( ) lh ff ( )lb rt, offset(rs)     lh rt, offset(rs)

Sign extend to 32 bits in rt
lb ff ( ) lh ff ( )lbu rt, offset(rs)    lhu rt, offset(rs)

Zero extend to 32 bits in rt
b ff ( ) h ff ( )sb rt, offset(rs)     sh rt, offset(rs)

Store just rightmost byte/halfword

21



Operand Addressing Modes

(1) Register addressing operand is in a register(1) Register addressing – operand is in a register

op         rs rt rd             funct In register rs
d d

Example:  add  $rd, $rs, $rt # $rd = $rs + $rt

(2) Base (displacement) addressing – operand is at the memory 

word operand

( ) ( p ) g p y
location whose address is the sum of a register and a 16-bit 
constant contained within the instruction

base register

op         rs rt offset At memory $rs+offset
word or byte operand

Example:  lw $rt, offset($rs)    # $rt = Memory($rs+offset)

Register relative (indirect) with 0($a0) (that is, offset = 0 ), or jr

base register

g ( ) ($ ) ( , ), j
Pseudo-direct with addr($zero), that is, $rs = $zero = 0

22



Operand Addressing Modes (ctn’d)
(3) Immediate addressing – operand is a 16-bit constant

contained within the instruction

t d

Example:  addi $rt, $rs, operand    # $rt = $rs + operand

op         rs rt operand

23



Instruction Addressing Modes
(1) PC relative addressing instruction address is the sum of the PC(1) PC-relative addressing –instruction address is the sum of the PC 

and a 16-bit constant contained within the instruction

op         rs       rt           offset Memory

U d f b d b # if t ( ! t) t ff t (PC PC 4 4* ff t)

p

Program Counter (PC)

Memory
branch destination instruction

Used for beq and bne:  # if rs==rt (or rs!=rt), go to offset  (PC=PC+4+4*offset)

(2) Pseudo-direct addressing – instruction address is the 26-bit 
constant contained within the instruction concatenated with theconstant contained within the instruction concatenated with the 
upper 4 bits of the PC

op               jump address Memory

Program Counter (PC)

jump destination instruction||

Used for j (jump):   PC    xxxx jump address 00

24



Addressing Mode Summary

25



Caution: Addressing mode is not Instruction Types
Addressing mode is how an address (memory or 
register) is determined. 
Instruction type is how the instruction is put together.
E l ddi b d l ll I F t i t tiExample: addi, beq, and lw are all I-Format instructions. 
But, 

addi uses immediate addressing mode (and register)addi uses immediate addressing mode (and register) 

beq uses pc-relative addressing (and register) 

lw uses base addressing (and register)lw uses base addressing (and register)

26



Summary of MIPS Addressing Modes

Register: a source or destination operands specified as 
content of one of the registers $0-$31.
I di t i l b dd d i th i t ti iImmediate: a numeric value embedded in the instruction is 
the actual operand.
PC-relative: a data or instruction memory location is specified 
as an offset relative to the incremented PC.
Base: a data or instruction memory location is specified as a 
signed offset from a register.signed offset from a register.
Register-direct: the value of the effective address is in a 
register. 
P d di t th dd i ( tl ) b dd d iPseudo-direct: the memory address is (mostly) embedded in 
the instruction. 

27



MIPS Organization So Far
Processor Memory

1…1100
Register File

src1 addr src1
d t5

230

read/write
addr

src2 addr

dst addr

write data

data

src2
data

32
registers

($zero - $ra)

32

32

5

5

5

230

words

read data

write data

32 bits

data

32
3232

Add32
branch offset

write data

0 0100
0…1000
0…1100

32

32PC32 32

7654

Fetch
PC = PC+4

Add
32

32
4

Add
32

32 bits word address
(binary)

0…0000
0…0100

ALU
32

32

32

0 1 2 3
7654

byte address

DecodeExec

(big Endian)

28



Concluding Remarks
Design principles
1 Simplicity favors regularity1. Simplicity favors regularity
2. Smaller is faster
3. Make the common case fast3 a e t e co o case ast
4. Good design demands good compromises

Layers of software/hardwareLayers of software/hardware
Compiler, assembler, hardware

MIPS: typical of RISC ISAsMIPS: typical of RISC ISAs
c.f. x86

29



Aside: Byte Addresses
Since 8-bit bytes are so useful, most architectures address 
individual bytes in memory: byte-addressable

it means that a byte is the smallest unit with its addressy

Naturally aligned data: doublewords that lie on addresses 
that are multiples of eight, words that lie on addresses that are 
multiples of four, halfwords that lie on addresses that are 
multiples of two, and single bytes that lie at any byte address. 
Such data is located on its natural size boundary, to maximize 
storage potential and to provide for fast efficient memory accessstorage potential and to provide for fast, efficient memory access.
Little Endian: rightmost byte is word address

Intel 80x86, DEC Vax, DEC Alpha (Windows NT)
Big Endian: leftmost byte is word address

IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA
MIPS memory is byte-addressable; supports 32-bit address (anMIPS memory is byte addressable; supports 32 bit address (an 
address is given as a 32-bit unsigned integer)

30



Aside: Compiler storage of data 
objects by byte alignment

T B t Ali tType Bytes Alignment

char, bool 1 Located at any byte address.

Located at any address that isshort 2 Located at any address that is 
evenly divisible by 2.

float, int, long, pointer 4 Located at an address that is 
l di i ibl b 4, , g, p evenly divisible by 4.

long long, double, long double 8 Located at an address that is 
evenly divisible by 8.

31


