CS3350B

Computer Architecture
Winter 2015

Lecture 4.3: MIPS ISA --
Procedures, Compilation

Marc Moreno Maza

[Adapted from lectures on
Computer Organization and Design,
Patterson & Hennessy, 5t edition, 2013]

MIPS Organization So Far

Processor Memory
Register File
src1 addr—-4» src1
) 2 data
src2 addr—#4» 32
o registers .
dst addr 75"’($zero - $ra) Sre read/write
. addr
write datag? 1152 data »; R
T 320bits -
branch offset 73¢—2>>Add ‘read datg
72l Pc 33add L2 32 52
5 ite dat
write data
32 ,’r >
32
e 4 |56 |7
S2\aLU Ow1]213
32 «—
%3 / 32 bits

byte address
(big Endian)

1...1100 |

0...1100
0...1000
0...0100

230
words

0...0000

(binary)

y

> word address

Procedure Calling

Steps required
Place parameters in registers
Transfer control to procedure
Acquire storage for procedure
Perform procedure’s operations
Place result in register for caller
Return to place of call

Register Usage

$a0 — $a3: arguments (reg’'s 4 — 7)
$v0, $v1: result values (reg’s 2 and 3)

$t0 — $t9: temporaries
Can be overwritten by callee

$s0 — $s7: saved
Must be saved/restored by callee

$gp: global pointer for static data (reg 28)
$sp: stack pointer (reg 29)

$fp: frame pointer (reg 30)

$ra: return address (reg 31)

Procedure Call Instructions

Procedure call: jump and link

jal ProcedureLabel
Address of following instruction put in $ra
Jumps to target address

Procedure return: jump register
jr $ra
Copies $ra to program counter

Can also be used for computed jumps
e.g., for case/switch statements

Leaf Procedure Example

C code:
int leaf_example (int g, h, i, j)
{ 1nt f;

f=0@+h) -0+ 3);
return f;

¥
Arguments g, ..., jin $a0, ..., $a3
fin $s0 (hence, need to save $s0 on stack)
Result in $v0

Leaf Procedure Example

MIPS code:

leaf_example:

addi $sp, $sp, -4
sw $s0, 0($sp)

add $t0, $%$a0, $%$al
add $tl, $a2, $%$a3
sub $s0, $tO0, $tl

add $vO0, $s0, $zero

Tw $s0, 0($sp)
addi $sp, $sp, 4

jr $ra

Save $s0 on stack

Procedure body

Result
Restore $s0

Return

Non-Leaf Procedures

Procedures that call other procedures
For nested call, caller needs to save on the
stack:

Its return address

Any arguments and temporaries needed after
the call

Restore from the stack after the call

Non-Leaf Procedure Example

C code:

int fact (int n)

{
1f (n < 1) return f;

else return n * fact(n - 1);
}

Argument n in $a0
Result in $v0

Non-Leaf Procedure Example

MIPS code:

fact:
addi $sp, $sp, -8
sw $ra, 4($sp)
sw $a0, 0($sp)
s1ti $t0, $a0, 1
beq $t0, $zero, L1

adjust stack for 2 items
save return address

save argument

test for n < 1

H | H H H*

addi $vO0, $zero, 1 if so, result is 1
addi $sp, $sp, 8 pop 2 items from stack
jr $ra and return
L1: addi $a0, $a0, -1 else decrement n
jal fact recursive call

Tw $a0, 0($sp)
Tw $ra, 4($sp)
addi $sp, $sp, 8
mul $vO0, $al0, $vO
jr $ra

restore original n

and return address
pop 2 items from stack
multiply to get result
and return

|| H H | H H(HHH

Local Data on the Stack

High address
$fp— $fp—
$sp— $sp—

$fp—| saved argument
registers (if any)

Saved return address

Saved saved
registers (if any)

Local arrays and

$sp— structures (if any)

Low address
a b C.

Local data allocated by callee
e.g., C automatic variables

Procedure frame (activation record)
Used by some compilers to manage stack storage

11

Memory Layout

Text: program code

Static data: global
variables

e.g., static variables in C,
constant arrays and strings

$gp initialized to address
allowing zoffsets into this
segment

Dynamic data: heap

E.g., malloc in C, new in
Java

Stack: automatic storage

$sp— 7fff fffcpey

$gp— 1000 8000,
1000 0000y,

pc— 0040 0000},
0

Stack

l
T

Dynamic data

Static data

Text

Reserved

Character Data

Byte-encoded character sets

ASCII: 128 characters
95 graphic, 33 control

Latin-1: 256 characters
ASCII, +96 more graphic characters
Unicode: 32-bit character set
Used in Java, C++ wide characters, ...
Most of the world’s alphabets, plus symbols
UTF-8, UTF-16: variable-length encodings

String Copy Example

C code (naive):

Null-terminated string
void strcpy (char x[], char y[])
{ 1nt 1;

1 = 0;

while ((x[1]=y[1])!'="\0")

1 += 1;

}

Addresses of x, y in $a0, $a1
i in $s0

14

String Copy Example

MIPS code:
strcpy:
addi $sp, $sp, -4 # adjust stack for 1 1item
sw $s0, 0($sp) # save $s0
add $s0, $zero, $zero # i =0
L1: add $t1, $s0, $al # addr of y[i] in $tl
Tbhu $t2, 0($tl) # $t2 = y[i]
add $t3, $s0, $a0 # addr of x[i] in $t3
sb $t2, 0(%$t3) # x[1] = y[i]
beq $t2, $zero, L2 # exit loop if y[i] ==
addi $s0, $s0O, 1 #1i=1+1
j L1 # next iteration of loop
L2: 1w $s0, 0($sp) # restore saved $sO
addi $sp, $sp, 4 # pop 1 item from stack
jr $%$ra # and return

32-bit Constants

Most constants are small
16-bit immediate is sufficient

For the occasional 32-bit constant

Tul rt, constant
Copies 16-bit constant to left 16 bits of rt

Clears right 16 bits of rt to O

Thi $s0, 61

ori $s0, $s0, 2304

0000 0000 0111 1101

0000 0000 0000 0000

0000 0000 0111 1101

0000 1001 0000 0000

16

Revisit: Branch Addressing

Branch instructions specify
Opcode, two registers, target address

Most branch targets are near branch
Forward or backward

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

PC-relative addressing
Target address = PC + offset x 4
PC already incremented by 4 by this time

Revisit: Jump Addressing

Jump (7 and jal) targets could be
anywhere in text segment

Encode full address in instruction

op address

6 bits 26 bits

(Pseudo)Direct jump addressing
Target address = PC;;, .5 : (address x 4)

Target Addressing Example

Loop code from earlier example

Loop:

Assume Loop at location 80000

s11
add
Tw

bne
addi

]

Exit: ..

$tl,
$tl,
$t0,
$t0,
$s3,
Loop

$s3, 2
$tl, $s6
0($tl)
$s5,
$s3, 1

EXit

80000
80004
80008
80012
80016
80020
80024

0 0 19 | 9 4 0
0 9 122 | 9 0 | 32
35+ 9 8 0

5 8. | 21 2

8 19 |19 1

2 | 20000

19

Branching Far Away

If branch target is too far to encode with
16-bit offset, assembler rewrites the code

Example
beq $s0,%$s1, L1
!
bne $s0,%$s1l, L2
j Ll
L2: ..

20

Synchronization

Two processors sharing an area of memory
P1 writes, then P2 reads

Data race if P1 and P2 don’t synchronize
Result depends of order of accesses

Hardware support required
Atomic read/write memory operation

No other access to the location allowed between the
read and write

Could be a single instruction
E.g., atomic swap of register < memory
Or an atomic pair of instructions

Synchronization in MIPS

Load linked: 11 rt, offset(rs)

Store conditional: sc rt, offset(rs)
Succeeds if location not changed since the 11
Returns 1 in rt

Fails if location is changed
Returns O in rt

Example: atomic swap (to test/set lock variable)
try: add $t0,%$zero,$s4 ;copy exchange value
1T $t1,0($s1) *Toad 1inked
sc $t0,0(%$sD) :store conditional
beg $t0,%$zero,try ;branch store fails
add $s4,%$zero,$tl ;put load value in $s4

22

Translation and Startup

| C program |
Many compilers produce

w object modules directly

Assembly language program

Assembler

Object: Machine language module | | Object: Library routine (machine language)

CLinker > > Static linking

Executable: Machine language program

Memory

23

Assembler Pseudoinstructions

Most assembler instructions represent
machine instructions one-to-one

Pseudoinstructions: figments of the
assembler’s imagination
move $t0, $tl — add $t0, $zero, $tl

blt $t0, $tl, L — slIt $at, $t0, $t1
bne $at, $zero, L

$at (register 1): assembler temporary

24

Producing an Object Module

Assembler (or compiler) translates program into
machine instructions

Provides information for building a complete
program from the pieces
Header: described contents of object module
Text segment: translated instructions

Static data segment: data allocated for the life of the
program

Relocation info: for contents that depend on absolute
location of loaded program

Symbol table: global definitions and external refs
Debug info: for associating with source code

Linking Object Modules

Produces an executable image
Merges segments
Resolve labels (determine their addresses)
Patch location-dependent and external refs

Could leave location dependencies for
fixing by a relocating loader
But with virtual memory, no need to do this

Program can be loaded into absolute location
In virtual memory space

Loading a Program

Load from image file on disk into memory
Read header to determine segment sizes
Create virtual address space

Copy text and initialized data into memory
Or set page table entries so they can be faulted in

Set up arguments on stack
Initialize registers (including $sp, $fp, $gp)

Jump to startup routine
Copies arguments to $a0, ... and calls main
When main returns, do exit syscall

Dynamic Linking

Only link/load library procedure when it is
called
Requires procedure code to be relocatable

Avoids image bloat caused by static linking of
all (transitively) referenced libraries

Automatically picks up new library versions

Lazy Linkage

Text Text
} I‘"] w I-h»'| W
ir. L@ . L®
i ; Dat Data
Indirection table aa L
™ @ @ —
Stub: Loads routine 1D, Text
Jump to linker/loader = 1;‘ m.
\— Text
Linker/loader code Dynamic linker/loader
Remap DLL routine
g ®
D . I L Data/Text Text
ynamlca y DLL routine - DLL routine
mapped code i ® : °
a. First call to DLL routine b. Subsequent calls to DLL routine

29

C Sort Example

lllustrates use of assembly instructions
for a C bubble sort function

Swap procedure (leaf)

vold swap(int v[], 1nt k)
{

1nt temp;

temp = v[k];

vik] = v[k+1];

vik+1l] = temp;
}

v in $a0, k in $a1, temp in $t0

30

The Procedure Swap

$tl = k * 4
$t1l = v+(k*4)
(address of v[k])

swap: sl11 $t1, $al, 2
add $t1, $a0, $til

Tw $t0, 0($tl)
Tw $t2, 4(%$tl)

$t0 (temp) = vI[k]
$t2 = v[k+1]

sw $t2, 0($tl)
sw $t0, 4($tl)

vik] = $t2 (v[k+1])
vik+1l] = $t0 (temp)

H | H H|H H | H HH

jr $ra return to calling routine

The Sort Procedure in C

Non-leaf (calls swap)
voild sort (int v[], 1nt n)
{
int 1, J;
for (1 =0; 1 <n; 1 4+=1) {
for (3 =1 - 1;
j >=0&& v[j] > v[] + 1];
J =1 {
swap(Vv,]);
}
}

}
vin $a0, kin $a1,iin $s0, j in $s1

32

The Procedure Body

Move
params

Outer loop

Inner loop

Pass
params
& call

Inner loop

move $s2, $a0 # save $a0 into $s2
move $s3, $al # save $al into $s3
move $s0, $zero #1 =0
forltst: slt $t0, $s0, $s3 # $t0 = 0 if $s0 > $s3 (i = n)
beq $t0, $zero, exitl # go to exitl if $s0 > $s3 (i > n)
addi $s1, $s0, -1 #j =1 -1
for2tst: slti $t0, $s1, O # $t0 = 1 if $s1 < 0 (< 0)
bne $t0, $zero, exit2 # go to exit2 if $s1 < 0 (G < 0)
s11T $tl1, $s1, 2 # $tl = j * 4
add $t2, $s2, $tl # $t2 =v + (*4)
Tw $t3, 0(%$t2) # $t3 = v[jl
Tw $t4, 4(%$t2) # $t4 = v[j + 1]
st $t0, $t4, $t3 # $t0 = 0 if $t4 > $t3
beq $t0, $zero, exit2 # go to exit2 if $t4 > $t3
move $a0, $s2 # 1st param of swap is v (old $a0)
move $al, $s1 # 2nd param of swap is j
jal swap # call swap procedure
addi $s1, $s1, -1 #3j =1
j for2tst # jump to test of inner Toop
exit2: addi $s0, $s0, 1 #1 +=1
j forltst # jump to test of outer Toop

Outer loop

The Full Procedure

sort: addi $sp, $sp, -20 # make room on stack for 5 registers
sw $ra, 16($sp) # save $ra on stack
sw $s3,12($sp) # save $s3 on stack
sw $s2, 8($sp) # save $s2 on stack
sw $s1, 4($sp) # save $sl1 on stack
sw $s0, 0($sp) # save $sO0 on stack
procedure body
exitl: 1w $s0, 0($sp) # restore $sO from stack
Tw $s1, 4($sp) # restore $sl1 from stack
Tw $s2, 8($sp) # restore $s2 from stack
Tw $s3,12($sp) # restore $s3 from stack
Tw $ra,16($sp) # restore $ra from stack
addi $sp,$sp, 20 # restore stack pointer
jr $ra # return to calling routine

Effect of Compiler Optimization

Compiled with gcc for Pentium 4 under Linux

3 O Relative Performance 140000 O Instruction count
25 120000

5 100000

80000
1.5
60000

1 40000
0.5 20000

O T T T O T T T

none 0o1 02 03 none o1 02 03

180000 O Clock Cycles 2 OcCPI
160000
140000 15
120000
100000 1

80000

60000 —

40000 - 0.5

20000 —

O T T T O T T T

none o1 02 03 none o1 02 03

Effect of Language and Algorithm

3 O Bubblesort Relative Performance

2.5

15

0.5

—
C/none C/01 C/02 C/03 Java/int Java/JIT

25 O Quicksort Relative Performance

15

| -

C/none C/01 C/02 C/03 Java/int Java/JIT

3000 O Quicksort vs. Bubblesort Speedup

2500

2000

1500

1000

500

]

C/none C/01 C/02 C/03 Java/int Java/JIT

. essons Learnt

Instruction count and CPI are not good
performance indicators in isolation

Compiler optimizations are sensitive to the
algorithm

Java/JIT compiled code is significantly faster
than JVM interpreted

Comparable to optimized C in some cases
Nothing can fix a dumb algorithm!

Arrays vs. Pointers

Array indexing involves

Multiplying index by element size

Adding to array base address
Pointers correspond directly to memory
addresses

Can avoid indexing complexity

Example: Clearing and Array

clearl(int array[], int size) {

clear2(int *array, int size) {

int 1; int *p;
for (i =0; 1 < size; 1 += 1) for (p = &array[0];
array[i] = O; &array[size];
} p=p+ 1)
*p = 0;
}
move $t0,%$zero # i = move $t0, $a0 # p = & array[0]
Toopl: s11 $t1,%$t0,2 # %tl =1 * 4 s11T $t1,%al,2 # $tl1 = size * 4
add $t2,%a0,%tl # $t2 = add $t2,%a0,%tl # $t2 =
&array[i] # &array[size]
sw $zero, 0($t2) # array[i] = loop2: sw $zero,0($t0) # Memory[p] =
addi $t0,$t0,1 # i =1 + 1 addi $t0,%$t0,4 #p=p + 4
slt $t3,%t0,%al # $t3 = st $t3,%t0,%t2 # $t3 =
(i < size) #(p<&array[size])

bne $t3,%$zero,loopl # if (.)
goto loopl

bne $t3,%$zero,loop2 # if (.)

goto loop?2

39

Comparison of Array vs. Pointer

Multiply “strength reduced” to shift

Array version requires shift to be inside
loop
Part of index calculation for incremented i
c.f. incrementing pointer
Compiler can achieve same effect as
manual use of pointers
Induction variable elimination
Better to make program clearer and safer

Concluding Remarks

Measure MIPS instruction executions in
benchmark programs

Consider making the common case fast
Consider compromises

Instruction class MIPS examples SPEC2006 Int SPEC2006 FP
Arithmetic add, sub, addi 16% 48%
Data transfer Tw, sw, 1b, Tbu, 35% 36%
Th, Thu, sb, Tui

Logical and, or, nor, andi, 12% 4%
ori, sll1, sri

Cond. Branch beq, bne, slt, 34% 8%
slti, sltiu

Jump j, jr, jal 2% 0%

Takeaway: MIPS (RISC) Design Principles

Simplicity favors regularity
fixed size instructions — 32-bits
small number of instruction formats
opcode always the first 6 bits
Good design demands good compromises
3 basic instruction formats
Smaller is faster
limited instruction set
limited number (32) of registers in register file
limited number (5) of addressing modes
Make the common case fast

arithmetic operands from the register file (load-store
machine)

allow instructions to contain immediate operands

Question: How Can We Make It Even Faster?

42

Aside: ARM & MIPS Similarities

ARM: the most popular embedded core
Similar basic set of instructions to MIPS

ARM MIPS

Date announced 1985 1985
Instruction size 32 bits 32 bits
Address space 32-bit flat 32-bit flat
Data alignment Aligned Aligned
Data addressing modes 9 3
Registers 15 x 32-bit 31 x 32-bit
Input/output Memory Memory

mapped mapped

Aside: The Intel x86 ISA

Evolution with backward compatibility
8080 (1974): 8-bit microprocessor

Accumulator, plus 3 index-register pairs

8086 (1978): 16-bit extension to 8080

Complex instruction set (CISC)

8087 (1980): floating-point coprocessor

Adds FP instructions and register stack

80286 (1982): 24-bit addresses, MMU

Segmented memory mapping and protection

80386 (1985): 32-bit extension (now IA-32)

Additional addressing modes and operations
Paged memory mapping as well as segments

Aside: The Intel x86 ISA

Further evolution...

1486 (1989): pipelined, on-chip caches and FPU
Compatible competitors: AMD, Cyrix, ...

Pentium (1993): superscalar, 64-bit datapath

Later versions added MMX (Multi-Media eXtension)
instructions

The infamous FDIV bug
Pentium Pro (1995), Pentium Il (1997)

New microarchitecture (see Colwell, The Pentium Chronicles)

Pentium [lI (1999)

Added SSE (Streaming SIMD Extensions) and associated
registers

Pentium 4 (2001)

New microarchitecture
Added SSE2 instructions

Aside: The Intel x86 ISA

And further...
AMDG64 (2003): extended architecture to 64 bits

EM64T — Extended Memory 64 Technology (2004)
AMDG64 adopted by Intel (with refinements)
Added SSE3 instructions

Intel Core (2006)

Added SSE4 instructions, virtual machine support

AMDG64 (announced 2007): SSES5 instructions
Intel declined to follow, instead...

Advanced Vector Extension (announced 2008)
Longer SSE registers, more instructions
If Intel didn’t extend with compatibility, its
competitors would!

Technical elegance # market success

