CS3350B Computer Architecture Winter 2015

Lecture 5.1: Introduction to Synchronous Digital Systems: Switches, Transistors, Gates

Marc Moreno Maza

www.csd.uwo.ca/Courses/CS3350b

[Adapted from lectures on *Computer Organization and Design*, Patterson & Hennessy, 5th edition, 2013]

New-School Machine Structures (It's a bit more complicated!)

What is Machine Structures?

Coordination of many *levels of abstraction* ISA is an important abstraction level: contract between HW & SW

Levels of Representation/Interpretation

Synchronous Digital Systems

Hardware of a processor, such as the MIPS, is an example of a Synchronous Digital System

Synchronous:

- All operations coordinated by a central clock
 - "Heartbeat" of the system!

Digital:

- All values represented by discrete values
- Electrical signals are treated as 1s and 0s; grouped together to form words

Logic Design

- Next several weeks: we will study how a modern processor is built; starting with basic elements as building blocks
- Why study hardware design?
 - Understand capabilities and limitations of hw in general and processors in particular
 - What processors can do fast and what they can't do fast (avoid slow things if you want your code to run fast!)
 - Background for more in depth hw studies for your interest
 - There is just so much you can do with standard processors: you may need to design own custom hw for extra performance
- **Logism,** an educational tool for designing and simulating digital logic circuits
 - http://www.cburch.com/logisim/

Switches: Basic Element of Physical Implementations

 Implementing a simple circuit (arrow shows action if wire changes to "1"):

Close switch (if A is "1" or asserted) and turn on light bulb (Z)

Open switch (if A is "0" or unasserted) and turn off light bulb (Z)

 $Z \equiv A$

Switches (cont'd)

 Compose switches into more complex ones (Boolean functions):

 $Z \equiv A \text{ or } B$

Transistor Networks

- Modern digital systems designed in CMOS
 - MOS: Metal-Oxide on Semiconductor
 - C for complementary: normally-open and normally-closed switches
- MOS transistors act as voltage-controlled switches

http://youtu.be/ZaBLiciesOU

MOS Transistors

• Three terminals: drain, gate, and source

– Switch action:

if voltage on gate terminal is (some amount) higher/lower than source terminal then conducting path established between drain and source terminals

n-channel open when voltage at G is low closes when: voltage(G) > voltage (S) + ε

p-channel closed when voltage at G is low opens when: voltage(G) < voltage (S) – ε

MOS Networks

Transistor Circuit Rep. vs. Block diagram

- Chips are composed of nothing but transistors and wires.
- Small groups of transistors form useful building blocks.

 Block are organized in a hierarchy to build higherlevel blocks: ex: adders.

(You can build AND, OR, NOT out of NAND!)

Signals and Waveforms: Clocks

Signals

- When digital is only treated as 1 or 0
- Is transmitted over wires continuously
- Transmission is effectively instant
 - Implies that any wire only contains 1 value at a time

Signals and Waveforms

Signals and Waveforms: Grouping

Signals and Waveforms: Circuit Delay

16

Sample Debugging Waveform

<mark>++</mark> iwave – default File Edit <u>O</u> ursor Zoom Bookm →>> ITT (T i N D> C T i N											_ 8
 /tb/DBG_00[10] /tb/DBG_00[9] /tb/DBG_00[8] /tb/DBG_00[8] /tb/DBG_00[7] /tb/DBG_00[6] /tb/DBG_00[5] /tb/DBG_00[4] /tb/DBG_00[3] 	St0 St0 St1 St1 St0 St0 St0 St0										
 /tb/DBG_00[2] /tb/DBG_00[1] /tb/DBG_00[0] /tb/A /tb/IB /tb/ROMAD /tb/D /tb/D /tb/TState 	0000 ff 0		Ifef 0035 0038 0038 0038	∬ 0036\0038 \3e	0037 0038		fee		fee (003	ed (39	
 /tb/OE_n /tb/RAMCS_n /tb/ROMCS_n /tb/WE_n /tb/X_OE_n /tb/X_RAMCS_n /tb/X_ROMCS_n /tb/X_ROMCS_n /tb/X_ROMCS_n /tb/ReadVRAM 	St0 St1 St0 St1 St0 St1 St0 St0 St0										
 /tb/CSyncX /b/CSyncX /b/06986540 ps to 111169300 		98 us	100 us	102		104 us	106	108		110	

Type of Circuits

- Synchronous Digital Systems are made up of two basic types of circuits:
- Combinational Logic (CL) circuits
 - Our previous adder circuit is an example.
 - Output is a function of the inputs only.
 - Similar to a pure function in mathematics, y = f(x). (No way to store information from one invocation to the next. No side effects)

State Elements: circuits that store information.

Circuits with STATE (e.g., register)

And in conclusion...

- ISA is very important abstraction layer
 Contract between HW and SW
- Clocks control pulse of our circuits
- Voltages are analog, quantized to 0/1
- Circuit delays are fact of life
- Two types of circuits:
 - Stateless Combinational Logic (&,|,~)
 - State circuits (e.g., registers)