
CS3350B
 Computer Architecture

Winter 2015

Lecture 5.1: Introduction to

Synchronous Digital Systems:
Switches, Transistors, Gates

Marc Moreno Maza

www.csd.uwo.ca/Courses/CS3350b

[Adapted from lectures on

Computer Organization and Design,

Patterson & Hennessy, 5th edition, 2013]

http://www.cse.psu.edu/~

New-School Machine Structures
(It’s a bit more complicated!)

• Parallel Requests
Assigned to computer

e.g., Search “Garcia”

• Parallel Threads
Assigned to core

e.g., Lookup, Ads

• Parallel Instructions
>1 instruction @ one time

e.g., 5 pipelined instructions

• Parallel Data
>1 data item @ one time

e.g., Add of 4 pairs of words

• Hardware descriptions
All gates @ one time

Smart
Phone

Warehous
e Scale

Computer

Software Hardware

Harness
Parallelism &
Achieve High
Performance

Logic Gates

Core Core …

 Memory (Cache)

Input/Output

Computer

Main Memory

Cor

e Instruction Unit(s)

 Functional
Unit(s)

A3+B3 A2+B2 A1+B1 A0+B0

Today’s Lecture
2

What is Machine Structures?

Coordination of many levels of abstraction

I/O system Processor

Compiler

Operating

System
(MacOS X)

Application (Chrome)

Digital Design

Circuit Design

Instruction Set
 Architecture

Datapath & Control

transistors

Memory Hardware

Software Assembler

ISA is an important abstraction level:
contract between HW & SW

3

Levels of
Representation/Interpretation

lw $t0, 0($2)
lw $t1, 4($2)
sw $t1, 0($2)
sw $t0, 4($2)

High Level Language
Program (e.g., C)

Assembly Language
Program (e.g., MIPS)

Machine Language
Program (MIPS)

Hardware Architecture Description
(e.g., block diagrams)

Compiler

Assembler

Machine
Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Logic Circuit Description
(Circuit Schematic Diagrams)

Architecture
Implementation

Anything can be represented
as a number,

i.e., data or instructions

4

Synchronous Digital Systems

 Hardware of a processor, such as the MIPS, is
an example of a Synchronous Digital System

Synchronous:

• All operations coordinated by a central clock

 “Heartbeat” of the system!

Digital:

• All values represented by discrete values

• Electrical signals are treated as 1s and 0s;
 grouped together to form words

5

Logic Design
• Next several weeks: we will study how a modern processor is

built; starting with basic elements as building blocks

• Why study hardware design?
– Understand capabilities and limitations of hw in general and

processors in particular

– What processors can do fast and what they can’t do fast
(avoid slow things if you want your code to run fast!)

– Background for more in depth hw studies for your interest

– There is just so much you can do with standard processors:
you may need to design own custom hw for extra
performance

• Logism, an educational tool for designing and simulating
digital logic circuits
– http://www.cburch.com/logisim/

6

Close switch (if A is “1” or asserted)

and turn on light bulb (Z)

A Z

Open switch (if A is “0” or unasserted)

and turn off light bulb (Z)

Switches: Basic Element of
Physical Implementations

• Implementing a simple circuit
(arrow shows action if wire changes to “1”):

Z  A

A
Z

7

AND

OR

Z  A and B

Z  A or B

A B

A

B

Switches (cont’d)

• Compose switches into more complex ones
(Boolean functions):

8

Transistor Networks

• Modern digital systems designed in CMOS

– MOS: Metal-Oxide on Semiconductor

– C for complementary: normally-open and
normally-closed switches

• MOS transistors act as voltage-controlled
switches

9

n-channel

open when voltage at G is low

closes when:

voltage(G) > voltage (S) + 

p-channel

closed when voltage at G is low

opens when:

voltage(G) < voltage (S) – 

MOS Transistors

• Three terminals: drain, gate, and source
– Switch action:

if voltage on gate terminal is (some amount) higher/lower
than source terminal then conducting path established
between drain and source terminals

G

S D

G

S D

http://youtu.be/ZaBLiciesOU

10

3v

X

Y 0 volts

x y

3 volts 0v

what is the
relationship

between x and y?

MOS Networks

“0” (ground)

“1”

(voltage

source)

11

Transistor Circuit Rep. vs. Block diagram

• Chips are composed of nothing but transistors and
wires.

• Small groups of transistors form useful building
blocks.

• Block are organized in a hierarchy to build higher-
level blocks: ex: adders.

a b c

0 0 1

0 1 1

1 0 1

1 1 0

“1” (voltage source)

“0” (ground)

(You can build AND, OR, NOT out of NAND!)
12

Signals and Waveforms: Clocks

•Signals

• When digital is only treated as 1 or 0

• Is transmitted over wires continuously

• Transmission is effectively instant

- Implies that any wire only contains 1 value
at a time

13

Signals and Waveforms

14

Signals and Waveforms: Grouping

15

Signals and Waveforms: Circuit Delay

2

3

3 4 5

10 0 1

5 13 4 6

16

Sample Debugging Waveform

17

Type of Circuits

•Synchronous Digital Systems are made
up of two basic types of circuits:

•Combinational Logic (CL) circuits

• Our previous adder circuit is an example.

• Output is a function of the inputs only.

• Similar to a pure function in mathematics,
y = f(x). (No way to store information from
one invocation to the next. No side
effects)

•State Elements: circuits that store
information.

18

Circuits with STATE (e.g., register)

19

And in conclusion…

• ISA is very important abstraction layer

• Contract between HW and SW

•Clocks control pulse of our circuits

•Voltages are analog, quantized to 0/1

•Circuit delays are fact of life

•Two types of circuits:

• Stateless Combinational Logic (&,|,~)

• State circuits (e.g., registers)

21

