
CS3350B
 Computer Architecture

Winter 2015

Lecture 5.4: Combinational Logic Blocks

Marc Moreno Maza

www.csd.uwo.ca/Courses/CS3350b

[Adapted from lectures on

Computer Organization and Design,

Patterson & Hennessy, 5th edition, 2013]

http://www.cse.psu.edu/~

Review

•Use this table and techniques we
learned to transform from 1 to another

2

Plan

•Data Multiplexors

•Arithmetic and Logic Unit

•Adder/Subtractor

3

Data Multiplexor (here 2-to-1, n-bit-wide)

“mux”

4

N instances of 1-bit-wide mux

How many rows in TT?

5

How do we build a 1-bit-wide mux?

6

4-to-1 Multiplexor?

How many rows in TT?

7

Is there any other way to do it?

Hint: NCAA tourney!

Ans: Hierarchically!
8

Arithmetic and Logic Unit

•Most processors contain a special
logic block called “Arithmetic and
Logic Unit” (ALU)

•We’ll show you an easy one that does
ADD, SUB, bitwise AND, bitwise OR

9

Our simple ALU

10

Adder/Subtracter Design -- how?

• Truth-table, then
determine canonical
form, then minimize
and implement as
we’ve seen before

• Look at breaking the
problem down into
smaller pieces that
we can cascade or
hierarchically layer

11

Adder/Subtracter – One-bit adder LSB…

12

Adder/Subtracter – One-bit adder (1/2)…

13

Adder/Subtracter – One-bit adder (2/2)…

14

N 1-bit adders  1 N-bit adder

What about overflow?

Overflow = cn?

+ + +

b0

15

What about overflow?
•Consider a 2-bit signed # & overflow:
•10 = -2 + -2 or -1
•11 = -1 + -2 only
•00 = 0 NOTHING!
•01 = 1 + 1 only

•Highest adder

• C1 = Carry-in = Cin, C2 = Carry-out = Cout

• No Cout or Cin  NO overflow!

• Cin, and Cout  NO overflow!

• Cin, but no Cout  A,B both > 0, overflow!

• Cout, but no Cin  A,B both < 0, overflow!

± #

What

op?

16

What about overflow?

•Consider a 2-bit signed # & overflow:

 10 = -2 + -2 or -1
11 = -1 + -2 only
00 = 0 NOTHING!
01 = 1 + 1 only

•Overflows when…

• Cin, but no Cout  A,B both > 0, overflow!

• Cout, but no Cin  A,B both < 0, overflow!

± #

17

Extremely Clever Subtractor

x y XOR(x,y)

0 0 0

0 1 1

1 0 1

1 1 0

+ + +

XOR serves as

conditional inverter!
18

“And In conclusion…”

•Use muxes to select among input

• S input bits selects 2S inputs

• Each input can be n-bits wide, indep of S

•Can implement muxes hierarchically

•ALU can be implemented using a mux

• Coupled with basic block elements

•N-bit adder-subtractor done using N 1-
bit adders with XOR gates on input

• XOR serves as conditional inverter

19

