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Review 

• CPU design involves Datapath, Control 
– 5 Stages for MIPS Instructions 

1. Instruction Fetch 

2. Instruction Decode & Register Read 

3. ALU (Execute) 

4. Memory 

5. Register Write 

• Datapath timing: single long clock cycle or one 
short clock cycle per stage 
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Datapath and Control 

• Datapath based on data transfers required to perform 
instructions 

• Controller causes the right transfers to happen  
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CPU Clocking (1/2) 

• For each instruction, how do we control the flow of 
information though the datapath? 

• Single Cycle CPU: All stages of an instruction 
completed within one long clock cycle 

– Clock cycle sufficiently long to allow each instruction to 
complete all stages without interruption within one cycle 

1. Instruction 

Fetch 

 

2. Decode/ 

    Register 

Read 

3. Execute 4. Memory 
5. Reg. 

     Write 
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CPU Clocking (2/2) 

• Alternative multiple-cycle CPU: only one stage of instruction 
per clock cycle 

– Clock is made as long as the slowest stage 

 

 

 

 

– Several significant advantages over single cycle execution: 
Unused stages in a particular instruction can be skipped 
OR instructions can be pipelined (overlapped) 

1. Instruction 

Fetch 

 

2. Decode/ 

    Register 

Read 

3. Execute 4. Memory 5. Register 

     Write 
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Plan 

• Stages of the Datapath 

• Datapath Instruction Walkthroughs 

• Datapath Design 
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Five Components of a Computer 
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Processor Design: 5 steps 

Step 1: Analyze instruction set to determine datapath 
requirements 

– Meaning of each instruction is given by register transfers 
– Datapath must include storage element for ISA registers 
– Datapath must support each register transfer 

Step 2: Select set of datapath components & establish  
clock methodology 

Step 3: Assemble datapath components that meet the 
requirements 

Step 4: Analyze implementation of each instruction to 
determine setting of control points that realizes the 
register transfer 

Step 5: Assemble the control logic 
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• All MIPS instructions are 32 bits long.  3 formats: 
 
– R-type 

 

 
– I-type 

 

 
– J-type 

 
• The different fields are: 
– op:            operation (“opcode”) of the instruction 
– rs, rt, rd:  the source and destination register specifiers 
– shamt:     shift amount 
– funct:       selects the variant of the operation in the “op” field 
– address / immediate:  address offset or immediate value 
– target address:             target address of jump instruction  

op target address 

0 26 31 

6 bits 26 bits 

op rs rt rd shamt funct 

0 6 11 16 21 26 31 

6 bits 6 bits 5 bits 5 bits 5 bits 5 bits 

op rs rt address/immediate 

0 16 21 26 31 

6 bits 16 bits 5 bits 5 bits 

The MIPS Instruction Formats 
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• ADDU and SUBU 
– addu rd,rs,rt 

– subu rd,rs,rt  

• OR Immediate: 
– ori rt,rs,imm16  

• LOAD and  
STORE Word 
– lw rt,rs,imm16 

– sw rt,rs,imm16  

• BRANCH: 
– beq rs,rt,imm16  

op rs rt rd shamt funct 

0 6 11 16 21 26 31 

6 bits 6 bits 5 bits 5 bits 5 bits 5 bits 

op rs rt immediate 

0 16 21 26 31 

6 bits 16 bits 5 bits 5 bits 

op rs rt immediate 

0 16 21 26 31 

6 bits 16 bits 5 bits 5 bits 

op rs rt immediate 

0 16 21 26 31 

6 bits 16 bits 5 bits 5 bits 

The MIPS-lite Subset 
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RTL gives the meaning of the instructions 

All start by fetching the instruction 

{op , rs , rt , rd , shamt , funct}  MEM[ PC ] 

{op , rs , rt ,   Imm16}  MEM[ PC ] 

Inst  Register Transfers 

ADDU   R[rd]  R[rs] + R[rt]; PC  PC + 4 

SUBU   R[rd]  R[rs] – R[rt]; PC  PC + 4 

ORI    R[rt]  R[rs] | zero_ext(Imm16); PC  PC + 4 

LOAD   R[rt]  MEM[ R[rs] + sign_ext(Imm16)]; PC  PC + 4 

STORE  MEM[ R[rs] + sign_ext(Imm16) ]  R[rt]; PC  PC + 4 

BEQ    if ( R[rs] == R[rt] ) 
           then PC  PC + 4 + (sign_ext(Imm16) || 00) 
           else PC  PC + 4 

Register Transfer Language (RTL) 
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Step 1: Requirements of the Instruction Set 

• Memory (MEM) 
– Instructions & data (will use one for each) 

• Registers (R: 32 x 32) 
– Read RS 
– Read RT 
– Write RT or RD 

• PC 
• Extender (sign/zero extend) 
• Add/Sub/OR unit for operation on register(s) or extended 

immediate 
• Add 4 (+ maybe extended immediate) to PC 
• Compare registers? 
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Step 2: Components of the Datapath 

• Combinational Elements 

• Storage Elements + Clocking Methodology 

• Building Blocks 
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ALU Needs for MIPS-lite + Rest of MIPS 

• Addition, subtraction, logical OR, ==: 
ADDU  R[rd] = R[rs] + R[rt]; ... 

SUBU  R[rd] = R[rs] – R[rt]; ...   

ORI  R[rt] = R[rs] | zero_ext(Imm16)...  

BEQ  if ( R[rs] == R[rt] )...   

• Test to see if output == 0 for any ALU 
operation gives == test. How? 

• P&H also adds AND, Set Less Than (1 if A < B, 0 
otherwise)  

• ALU follows Chapter 5 
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Storage Element: Idealized Memory 

• Memory (idealized) 
– One input bus: Data In 

– One output bus: Data Out 

• Memory word is found by: 
– Address selects the word to put on Data Out 

– Write Enable = 1: address selects the memory 
word to be written via the Data In bus 

• Clock input (CLK)  
– CLK input is a factor ONLY during write operation 

– During read operation, behaves as a combinational logic 
block: Address valid  Data Out valid after “access time” 

Clk 

Data In 

Write Enable 

32 32 

DataOut 

Address 
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Storage Element: Register (Building Block) 

• Similar to D Flip Flop except 

– N-bit input and output 

– Write Enable input 

• Write Enable: 

– Negated (or deasserted) (0): Data Out will not 
change 

– Asserted (1): Data Out will become Data In on 
positive edge of clock 

clk 

Data In 

Write Enable 

N N 

Data Out 
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Storage Element: Register File 

• Register File consists of 32 registers: 
– Two 32-bit output busses: 
 busA and busB 
– One 32-bit input bus: busW 

• Register is selected by: 
– RA (number) selects the register to put on busA (data) 
– RB (number) selects the register to put on busB (data) 
– RW (number) selects the register to be  written 

via busW (data) when Write Enable is 1 

• Clock input (clk)  
– Clk input is a factor ONLY during write operation 
– During read operation, behaves as a combinational logic block: 

• RA or RB valid  busA or busB valid after “access time.” 

Clk 

busW 

Write Enable 

32 
32 

busA 

32 
busB 

5 5 5 
RW RA RB 

32 x 32-bit 
Registers 
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Step 3a: Instruction Fetch Unit 

• Register Transfer Requirements 
  Datapath Assembly 

• Instruction Fetch 
• Read Operands and Execute 

Operation 
• Common RTL operations 

– Fetch the Instruction:  
mem[PC] 

– Update the program counter: 
• Sequential Code:  

PC  PC + 4  
• Branch and Jump:  

PC  “something else” 

32 

Instruction Word Address 

Instruction 
Memory 

PC 
clk 

Next Address 
Logic 
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• R[rd] = R[rs] op R[rt] (addu rd,rs,rt) 

– Ra, Rb, and Rw come from instruction’s Rs, Rt, and Rd fields 

 
 

– ALUctr and RegWr: control logic after decoding the instruction 
 
 

 

 

 

• … Already defined the register file & ALU              

Step 3b: Add & Subtract 
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Clocking Methodology 

• Storage elements clocked by same edge 

• Flip-flops (FFs) and combinational logic have some delays  
– Gates: delay from input change to output change  

– Signals at FF D input must be stable before active clock edge to allow 
signal to travel within the FF (set-up time), and we have the usual 
clock-to-Q delay 

• “Critical path” (longest path through logic) determines length 
of clock period 
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Register-Register Timing: One Complete Cycle 
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Putting it All Together: A Single Cycle Datapath 
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Processor Design: 3 of 5 steps 

Step 1: Analyze instruction set to determine datapath 
requirements 

– Meaning of each instruction is given by register transfers 
– Datapath must include storage element for ISA registers 
– Datapath must support each register transfer 

Step 2: Select set of datapath components & establish  
clock methodology 

Step 3: Assemble datapath components that meet the 
requirements 

Step 4: Analyze implementation of each instruction to 
determine setting of control points that realizes the 
register transfer 

Step 5: Assemble the control logic 
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