
CS3350B
 Computer Architecture

Winter 2015

Lecture 5.6: Single-Cycle CPU:

Datapath Control (Part 1)

Marc Moreno Maza
www.csd.uwo.ca/Courses/CS3350b

[Adapted from lectures on

Computer Organization and Design,

Patterson & Hennessy, 5th edition, 2013]

http://www.cse.psu.edu/~

Review

• CPU design involves Datapath, Control
– 5 Stages for MIPS Instructions

1. Instruction Fetch

2. Instruction Decode & Register Read

3. ALU (Execute)

4. Memory

5. Register Write

• Datapath timing: single long clock cycle or one
short clock cycle per stage

2

Datapath and Control

• Datapath based on data transfers required to perform
instructions

• Controller causes the right transfers to happen

P
C

in
s
tr

u
c
ti
o
n

m
e

m
o

ry

+4

rt

rs

rd

re
g

is
te

rs

D
a

ta

m
e

m
o

ry

imm

ALU

Controller

opcode, funct

3

CPU Clocking (1/2)

• For each instruction, how do we control the flow of
information though the datapath?

• Single Cycle CPU: All stages of an instruction
completed within one long clock cycle

– Clock cycle sufficiently long to allow each instruction to
complete all stages without interruption within one cycle

1. Instruction

Fetch

2. Decode/

 Register

Read

3. Execute 4. Memory
5. Reg.

 Write

4

CPU Clocking (2/2)

• Alternative multiple-cycle CPU: only one stage of instruction
per clock cycle

– Clock is made as long as the slowest stage

– Several significant advantages over single cycle execution:
Unused stages in a particular instruction can be skipped
OR instructions can be pipelined (overlapped)

1. Instruction

Fetch

2. Decode/

 Register

Read

3. Execute 4. Memory 5. Register

 Write

5

Plan

• Stages of the Datapath

• Datapath Instruction Walkthroughs

• Datapath Design

6

Five Components of a Computer

 Processor

Computer

Control

Datapath

Memory
(passive)

(where

programs,
data live

when
running)

Devices

Input

Output

Keyboard,

Mouse

Display,

Printer

Disk

(where
programs,
data live
when not
running)

7

Processor Design: 5 steps

Step 1: Analyze instruction set to determine datapath
requirements

– Meaning of each instruction is given by register transfers
– Datapath must include storage element for ISA registers
– Datapath must support each register transfer

Step 2: Select set of datapath components & establish
clock methodology

Step 3: Assemble datapath components that meet the
requirements

Step 4: Analyze implementation of each instruction to
determine setting of control points that realizes the
register transfer

Step 5: Assemble the control logic
8

• All MIPS instructions are 32 bits long. 3 formats:

– R-type

– I-type

– J-type

• The different fields are:
– op: operation (“opcode”) of the instruction
– rs, rt, rd: the source and destination register specifiers
– shamt: shift amount
– funct: selects the variant of the operation in the “op” field
– address / immediate: address offset or immediate value
– target address: target address of jump instruction

op target address

0 26 31

6 bits 26 bits

op rs rt rd shamt funct

0 6 11 16 21 26 31

6 bits 6 bits 5 bits 5 bits 5 bits 5 bits

op rs rt address/immediate

0 16 21 26 31

6 bits 16 bits 5 bits 5 bits

The MIPS Instruction Formats

9

• ADDU and SUBU
– addu rd,rs,rt

– subu rd,rs,rt

• OR Immediate:
– ori rt,rs,imm16

• LOAD and
STORE Word
– lw rt,rs,imm16

– sw rt,rs,imm16

• BRANCH:
– beq rs,rt,imm16

op rs rt rd shamt funct

0 6 11 16 21 26 31

6 bits 6 bits 5 bits 5 bits 5 bits 5 bits

op rs rt immediate

0 16 21 26 31

6 bits 16 bits 5 bits 5 bits

op rs rt immediate

0 16 21 26 31

6 bits 16 bits 5 bits 5 bits

op rs rt immediate

0 16 21 26 31

6 bits 16 bits 5 bits 5 bits

The MIPS-lite Subset

10

RTL gives the meaning of the instructions

All start by fetching the instruction

{op , rs , rt , rd , shamt , funct}  MEM[PC]

{op , rs , rt , Imm16}  MEM[PC]

Inst Register Transfers

ADDU R[rd]  R[rs] + R[rt]; PC  PC + 4

SUBU R[rd]  R[rs] – R[rt]; PC  PC + 4

ORI R[rt]  R[rs] | zero_ext(Imm16); PC  PC + 4

LOAD R[rt]  MEM[R[rs] + sign_ext(Imm16)]; PC  PC + 4

STORE MEM[R[rs] + sign_ext(Imm16)]  R[rt]; PC  PC + 4

BEQ if (R[rs] == R[rt])
 then PC  PC + 4 + (sign_ext(Imm16) || 00)
 else PC  PC + 4

Register Transfer Language (RTL)

11

Step 1: Requirements of the Instruction Set

• Memory (MEM)
– Instructions & data (will use one for each)

• Registers (R: 32 x 32)
– Read RS
– Read RT
– Write RT or RD

• PC
• Extender (sign/zero extend)
• Add/Sub/OR unit for operation on register(s) or extended

immediate
• Add 4 (+ maybe extended immediate) to PC
• Compare registers?

12

Step 2: Components of the Datapath

• Combinational Elements

• Storage Elements + Clocking Methodology

• Building Blocks

32

32

A

B

32
Sum

CarryOut

CarryIn

Adder

32
A

B
32

Y
32

Select

M
U

X

Multiplexer

32

32

A

B

32
Result

OP

ALU

A
LU

A
d

d
er

13

ALU Needs for MIPS-lite + Rest of MIPS

• Addition, subtraction, logical OR, ==:
ADDU R[rd] = R[rs] + R[rt]; ...

SUBU R[rd] = R[rs] – R[rt]; ...

ORI R[rt] = R[rs] | zero_ext(Imm16)...

BEQ if (R[rs] == R[rt])...

• Test to see if output == 0 for any ALU
operation gives == test. How?

• P&H also adds AND, Set Less Than (1 if A < B, 0
otherwise)

• ALU follows Chapter 5
14

Storage Element: Idealized Memory

• Memory (idealized)
– One input bus: Data In

– One output bus: Data Out

• Memory word is found by:
– Address selects the word to put on Data Out

– Write Enable = 1: address selects the memory
word to be written via the Data In bus

• Clock input (CLK)
– CLK input is a factor ONLY during write operation

– During read operation, behaves as a combinational logic
block: Address valid  Data Out valid after “access time”

Clk

Data In

Write Enable

32 32

DataOut

Address

15

Storage Element: Register (Building Block)

• Similar to D Flip Flop except

– N-bit input and output

– Write Enable input

• Write Enable:

– Negated (or deasserted) (0): Data Out will not
change

– Asserted (1): Data Out will become Data In on
positive edge of clock

clk

Data In

Write Enable

N N

Data Out

16

Storage Element: Register File

• Register File consists of 32 registers:
– Two 32-bit output busses:
 busA and busB
– One 32-bit input bus: busW

• Register is selected by:
– RA (number) selects the register to put on busA (data)
– RB (number) selects the register to put on busB (data)
– RW (number) selects the register to be written

via busW (data) when Write Enable is 1

• Clock input (clk)
– Clk input is a factor ONLY during write operation
– During read operation, behaves as a combinational logic block:

• RA or RB valid  busA or busB valid after “access time.”

Clk

busW

Write Enable

32
32

busA

32
busB

5 5 5
RW RA RB

32 x 32-bit
Registers

17

Step 3a: Instruction Fetch Unit

• Register Transfer Requirements
 Datapath Assembly

• Instruction Fetch
• Read Operands and Execute

Operation
• Common RTL operations

– Fetch the Instruction:
mem[PC]

– Update the program counter:
• Sequential Code:

PC  PC + 4
• Branch and Jump:

PC  “something else”

32

Instruction Word Address

Instruction
Memory

PC
clk

Next Address
Logic

18

• R[rd] = R[rs] op R[rt] (addu rd,rs,rt)

– Ra, Rb, and Rw come from instruction’s Rs, Rt, and Rd fields

– ALUctr and RegWr: control logic after decoding the instruction

• … Already defined the register file & ALU

Step 3b: Add & Subtract

32

Result

ALUctr

clk

busW

RegWr

32

32

busA

32

busB

5 5 5

Rw Ra Rb

32 x 32-bit
Registers

Rs Rt Rd

A
LU

op rs rt rd shamt funct

0 6 11 16 21 26 31

6 bits 6 bits 5 bits 5 bits 5 bits 5 bits

19

Clocking Methodology

• Storage elements clocked by same edge

• Flip-flops (FFs) and combinational logic have some delays
– Gates: delay from input change to output change

– Signals at FF D input must be stable before active clock edge to allow
signal to travel within the FF (set-up time), and we have the usual
clock-to-Q delay

• “Critical path” (longest path through logic) determines length
of clock period

Clk

.

.

.

.

.

.

.

.

.

.

.

.

20

Register-Register Timing: One Complete Cycle

Clk

PC

Rs, Rt, Rd,
Op, Func

ALUctr

Instruction Memory Access Time

Old Value New Value

RegWr Old Value New Value

Delay through Control Logic

busA, B
Register File Access Time

Old Value New Value

busW
ALU Delay

Old Value New Value

Old Value New Value

New Value Old Value

Register Write
Occurs Here 32

ALUctr

clk

busW

RegWr

32 busA

32

busB

5 5

Rw Ra Rb

RegFile

Rs Rt

A
LU

5
Rd

21

Putting it All Together: A Single Cycle Datapath

imm16

32

ALUctr

clk

busW

RegWr

32

32 busA

32

busB

5 5

Rw Ra Rb

RegFile

Rs

Rt

Rt

Rd

RegDst

E
x
ten

d
er

32 16
imm16

ALUSrc ExtOp

MemtoReg

clk

Data In

32

MemWr
Equal

Instruction<31:0> <
2
1

:2
5

>

<
1
6

:2
0

>

<
1
1
:1

5
>

<
0
:1

5
>

Imm16 Rd Rt Rs

clk

P
C

0
0

4

nPC_sel

P
C

 E
x
t

Adr

Inst

Memory

A
d

d
er

A

d
d

er

M
u

x

0 1

0

1

=

A
L

U
 0

1

WrEn Adr

Data
Memory

5

22

Processor Design: 3 of 5 steps

Step 1: Analyze instruction set to determine datapath
requirements

– Meaning of each instruction is given by register transfers
– Datapath must include storage element for ISA registers
– Datapath must support each register transfer

Step 2: Select set of datapath components & establish
clock methodology

Step 3: Assemble datapath components that meet the
requirements

Step 4: Analyze implementation of each instruction to
determine setting of control points that realizes the
register transfer

Step 5: Assemble the control logic
23

