CS33508B

Computer Architecture
Winter 2015

Lecture 5.6: Single-Cycle CPU:
Datapath Control (Part 1)

Marc Moreno Maza

www.csd.uwo.ca/Courses/CS3350b

[Adapted from lectures on
Computer Organization and Design,
Patterson & Hennessy, 5t edition, 2013]

http://www.cse.psu.edu/~

Review

* CPU design involves Datapath, Control

— 5 Stages for MIPS Instructions
1. Instruction Fetch
2. Instruction Decode & Register Read
3. ALU (Execute)
4. Memory
5. Register Write

e Datapath timing: single long clock cycle or one
short clock cycle per stage

Datapath and Control

* Datapath based on data transfers required to perform
instructions
e Controller causes the right transfers to happen

- rd &
O c > o 3
g lot = o |rs 0 -
S g | D > ALU S O
) Ly - § 5
_|+4 imm]

| opcode, funct

CPU Clocking (1/2)

* For each instruction, how do we control the flow of
information though the datapath?

e Single Cycle CPU: All stages of an instruction
completed within one long clock cycle

— Clock cycle sufficiently long to allow each instruction to
complete all stages without interruption within one cycle

1. Instruction 2. Decode/ 3. Execute 4. Memory 5. Reg.

Fetch Register Write
Read

CPU Clocking (2/2)

* Alternative multiple-cycle CPU: only one stage of instruction
per clock cycle

— Clock is made as long as the slowest stage

1. Instruction 2. Decode/ 3. Execute 4. Memory 5. Register
Fetch Register Write
Read

_ |

— Several significant advantages over single cycle execution:
Unused stages in a particular instruction can be skipped
OR instructions can be pipelined (overlapped)

Plan

e Stages of the Datapath
e Datapath Instruction Walkthroughs

* Datapath Design

Five Components of a Computer

{, —————— . Computer Keyboard,
! Devices }[Mouse

| Processor! Memory | Disk

: : (passive) Input where

|| Control | | (where || programs,

| '| programs, {| Output data live

1| () 4| datalive || when not

: Datapath| 1] when running)

.* /11 running) Display.

Se-—m-=- Printer

Processor Design: 5 steps

Step 1: Analyze instruction set to determine datapath
requirements

— Meaning of each instruction is given by register transfers
— Datapath must include storage element for ISA registers
— Datapath must support each register transfer

Step 2: Select set of datapath components & establish
clock methodology

Step 3: Assemble datapath components that meet the
requirements

The MIPS Instruction Formats

e All MIPS instructions are 32 bits long. 3 formats:

31 26 21 16 11 6 0
— R-type op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
31 26 21 16 0
|-type op rs rt
6 bits 5 bits 5 bits 16 bits
31 26 0
— Jtype op target address
6 bits 26 bits

The different fields are:

op: operation (“opcode”) of the instruction

rs, rt, rd: the source and destination register specifiers
shamt: shift amount

funct: selects the variant of the operation in the “op” field
: address offset or immediate value

target address:

target address of jump instruction

The MIPS-lite Subset

ADDU and SUBU

— addu rd,rs,rt
— subu rd,rs,rt

OR Immediate:
—or1 rt,rs,imml6
LOAD and

STORE Word

— lw rt,rs,1mml6
— sw rt,rs,imml6

BRANCH:

— beq rs,rt,imml6

31 26 21 16 11 6 0
op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

31 26 21 16 0
op rs rt immediate
6 bits 5 bits 5 bits 16 bits

31 26 21 16 0
op rs rt immediate
6 bits 5 bits 5 bits 16 bits

31 26 21 16 0
op rs rt immediate
6 bits 5 bits 5 bits 16 bits

10

Register Transfer Language (RTL)

RTL gives the meaning of the instructions
All start by fetching the instruction

{op , rs , rt , rd , shamt , funct} « MEM[PC]

{op, rs , rt , Imml6} « MEM[PC]

Inst Register Transfers

ADDU R[rd] « R[rs] + R[rt]; PC « PC + 4

SUBU R[rd] « R[rs] - R[rt]; PC « PC + 4

ORI Rlrt] « Rlrs] | zero_ext(Imml6); PC « PC + 4

LOAD RIrt] « MEM[R[rs] + sign_ext(Imml6)]; PC « PC + 4
STORE MEM[Rl[rs] + sign_ext(Imml6)] « R[rt]; PC « PC + 4

BEQ if (R[rs] == R[rt])
then PC « PC + 4 + (sign_ext(Imml1l6) || 00)
else PC « PC + 4

11

Step 1: Requirements of the Instruction Set

e Memory (MEM)
— Instructions & data (will use one for each)

e Registers (R: 32 x 32)
— Read RS
— Read RT
— Write RT or RD

« PC
* Extender (sign/zero extend)

* Add/Sub/OR unit for operation on register(s) or extended
immediate

 Add 4 (+ maybe extended immediate) to PC
* Compare registers?

12

Step 2: Components of the Datapath

e Combinational Elements

* Storage Elements + Clocking Methodology

e Building Blocks

lca”’\"n Select

327

A
Sum

‘ 32

327 |z
C
x

19ppv

32’

— » CarryOut B

32

Adder Multiplexer

ot Y
32

32’

ny /«——™©

\'4

Result

32’

ALU

13

ALU Needs for MIPS-lite + Rest of MIPS

* Addition, subtraction, logical OR, ==:
ADDU Rlrd] = Rlrs] + Rlrt]; ...

SUBU Rlrd] = Rlrs] - Rlrt]; ...
ORI R[rt] = Rlrs] | zero_ext(Imml6). ..

BEQ if (Rlrs] == RIlrt])...

* Test to see if output == 0 for any ALU
operation gives == test. How?

 P&H also adds AND, Set Less Than (1ifA<B, 0
otherwise)

* ALU follows Chapter 5

14

Storage Element: Idealized Memory

Write Enable | Address
|

 Memory (idealized)
— One input bus: Data In Data In DataOut
32 32
— One output bus: Data Out
Clk —>

e Memory word is found by:
— Address selects the word to put on Data Out

— Write Enable = 1: address selects the memory
word to be written via the Data In bus

e Clock input (CLK)
— CLK input is a factor ONLY during write operation

— During read operation, behaves as a combinational logic
block: Address valid = Data Out valid after “access time”

15

Storage Element: Register (Building Block)

Write Enable
* Similar to D Flip Flop except
— N-bit input and output bataln | |Reow
— Write Enable input " "
* Write Enable: clk
— Negated (or deasserted) (0): Data Out will not

change

— Asserted (1): Data Out will become Data In on
positive edge of clock

16

Storage Element: Register File

RW RA RB

Write Enable ¢|, 5| 5
* Register File consists of 32 registers: Jf Jf Jf

— Two 32-bit output busses: .y |
busA and busB | 32 x32-bit

32 -
— One 32-bit input bus: busW Registers

Clk
* Register is selected by:

— RA (number) selects the register to put on busA (data)
— RB (number) selects the register to put on busB (data)

— RW (number) selects the register to be written
via busW (data) when Write Enable is 1

* Clock input (clk)
— Clk input is a factor ONLY during write operation

— During read operation, behaves as a combinational logic block:
« RA or RB valid = busA or busB valid after “access time.”

17

Step 3a: Instruction Fetch Unit

* Register Transfer Requirements
—> Datapath Assembly

 |nstruction Fetch

* Read Operands and Execute ¢k —"
Operation =

* Common RTL operations =

— Fetch the Instruction:
mem|[PC]

Address Instruction Word

_ : /
Update the program counter: Instruction —
* Sequential Code: Memory 32

PC<« PC+4

. Brancb‘andjump:)
PC « "something else

18

Step 3b: Add & Subtract

e R[rd] = Rlrs] op RIrt] (addu rd,rs,rt)

— Ra, Rb, and Rw come from instruction’ s Rs, Rt, and Rd fields

31 26 21 16 11 6 0
op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
— ALUctr and RegWr: control logic after decoding the instruction

Rd Rs Rt
RegWIr 5)(5)(5)(ALUctr
busA y X
busV\// Rw Ra Rb /32 resul
. > / esult
Z 32X32-b|t —
3 - <] 37
—~ Registers busB , \
clk /32

e ... Already defined the register file & ALU

19

Clocking Methodology

Clk f

—>

JAN

\ 4

\ 4

T

>

»
»

e Storage elements clocked by same edge

* Flip-flops (FFs) and combinational logic have some delays

— Gates: delay from input change to output change

— Signals at FF D input must be stable before active clock edge to allow
signal to travel within the FF (set-up time), and we have the usual

clock-to-Q delay

« “Critical path” (longest path through logic) determines length
of clock period

\ 4

JAN

20

Register-Register Timing: One Complete Cycle

Clk I I I
| ! |
PC Old Value | X New Value | X
Rs, Rt, Rd, | < »I Instruction Memory Access Time |
Op, Func | Old Value X__New Value |
| e »I Delay through Control Logic |
ALUctr . OId Value :)'(New Value i
L ! ! A
RegWr " Old Value : A New Value Y\
: I+ > Register File Access Time
busA, B ""OId Value™ | X New Value ™
! - I« » ALU Delay
busW I0OId Value X New Value!
| RegWr Rd Rs Rt AlUctr ' ! I
| X % S
v ra Rro | busA 32 l Register Write
busW W re 4 :\ 37 Occurs Here
1 RegFile busB ? 7

32

FAN
clk |
21

Putting it All Together: A Single Cycle Datapath

Inst » Instruction<31:0>
Memory
A.dr
Imml6
nPC sel |RegDst
o Equa] ALUctr MemtoReg
MemWr
4 —»| RegWr L
>
= v
>§.-/ N 3 |peew| R¥ Ra RO|busA 32 [W
> 7 R '] > 3/2
§ S ERE? RegFile busB N >E 7 =;\
> e a /\ / "0 > /
2 A clk! 32 l -
p 2 4 - 32 WrEn Adr
- . w4
5 > clk 1mm1676—> § 3,2 1J DataIn Data :l/
- e Memory
= clk —>
1immlé6

22

ExtOp ALUSrc

Processor Design: 3 of 5 steps

Step 1: Analyze instruction set to determine datapath
requirements

— Meaning of each instruction is given by register transfers
— Datapath must include storage element for ISA registers
— Datapath must support each register transfer

Step 2: Select set of datapath components & establish
clock methodology

Step 3: Assemble datapath components that meet the
requirements

23

