CS3350B

Computer Architecture
Winter 2015

Lecture 6.1: Fundamentals of
Instructional Level Parallelism

Marc Moreno Maza

[Adapted from lectures on Computer Organization and Design,
Patterson & Hennessy, 5% edition, 2011]

Analogy: Gotta Do Laundry

0 Ann, Brian, Cathy, Dave
each have one load of clothes to wash, 5&5@
dry, fold, and put away

e \Washer takes 30 minutes '

e Dryer takes 30 minutes

e “Folder” takes 30 minutes

e “Stasher” takes 30 minutes to put
clothes into drawers

Sequential Laundry

6PM 7 8 9 10 11 12 1 2AM
Y ey i P e prapny Dy P e propny Py Py e propny Dy prgey

T 3030 30303030 30 303030 30 30 3030 30 30
a 5.@ A Time

S S — A

‘| & 85 A ..

r

d

e

r

0 Sequential laundry takes 8 hours for 4 loads

Pipelined Laundry

6PM 7 8 9 10 11 12 1 2AM
|]|

T, 3030 30 30 30 30 30 Time
a| D @S]4

S| @)K

(& @5LA

s "5 a

I

d

e

I

a Pipelined laundry takes 3.5 hours for 4 loads!

Pipelining Lessons (1/2)

6 PM 7 o) 9 0 Pipelining doesn’t help
| — latency of single task, it
T — | T'”Ine helps throughput of entire
al| 303030303030 30 workload
s D = ° A 0 Multiple tasks operating
Kk =] - A simultaneously using
B = different resources

ol ® i a Potential speedup = Number
r & 2 A of pipe stages
d a Time to “fill” pipeline and
€ time to “drain” it reduces
r

speedup:
2.3X VS. 4x In this example

Pipelining Lessons (2/2)

6 PM 7 8 9 0 Suppose new Washer
| e takes 20 minutes, new

T L Stasher takes 20 minutes.
a 3030 30 30 3030 30 How much faster is
s| D B - A pipeline?
K D) SIEPN 0 Pipeline rate limited by
ol B slowest pipeline stage
r ® .@ N 0 Unbalanced lengths of
d pipe stages reduces
e speedup
r

Recap: MIPS Three Instruction Formats

31 25 20 5 O
R-format: | op a “ | ;s' | “ | “ “shamt “ funct
31 —t—t—t e T T T T T T T T T
I-format: op rs rt “ address offset
31 22 0
Jformat: | op [T target address
Examples:

0 R-format: add, sub, jr
0O I-format: 1w, sw, beqg, bne

0 J-format: §, jal

Recap: Five Stages in Executing MIPS

(1) Instruction Fetch (IFetch)

Fetch an instruction; increment PC
(2) Instruction Decode (Dec)

Decode instruction; read registers; sign extend offset
(3) ALU (Arithmetic-Logic Unit) (Exec)

Execute R-format operations; calculate memory address; branch
comparison; branch and jump completion

(4) Memory Access (Mem)

Read data from memory for load or write data to memory
for store

(5) Register Write (WB)

- Write data back to register

Graphical Representation

P
«

V)
- rd CT) >
1o €5 [2 2
> @) ® O
= GE) m | @ f ALU © £
0w £ g > O o
= > &
< _|_4 |mm .
¢1. Instruction " 2. Decode/ " ot 5. Registe:r
) 3. Execute 4. Memor .
Fetch Register Y Write
Read
Short
name: IFetch Dec Exec Mem WB
Graphical 1$ | Reg)E D$ | {Reg
Representation: C

Single Cycle CPU Clocking

Q All stages of an instruction completed within one
long clock cycle

e Clock cycle sufficiently long to allow each instruction to
complete all stages without interruption within one cycle

o a & N A gy o o a
»

1. Instruction 2. Decode/ 5, Reg.
Fetch Register 3. Execute 4. Memory Write

Read

Single Cycle Performance

0 Assume time for actions are
e 100ps for register read or write
e 200ps for other events

0 Clock rate of the single cycle datapath is?

Instr Instr Register | ALUop | Memory |Register | Total time
fetch read access |write

\WY 200ps 100 ps 200ps 200ps 100 ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format | 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

* What can we do to improve clock rate?
« Will this improve performance as well?
Want increased clock rate to mean faster programs

Multiple-cycle CPU Clocking

2 Only one stage of instruction per clock cycle

e Clock is made as long as the slowest stage

N A A a N A o

1. Instruction 2. Decode/ 3. Execute 4. Memory ”5. Register '
Fetch Register Write
Read

e Advantages over single cycle execution:
Unused stages in a particular instruction can be skipped
OR instructions can be pipelined (overlapped)

11

How Can We Make It Faster?

0 Split the multiple instruction cycle into smaller and
smaller steps

e There is a point of diminishing returns where as much time is
spent loading the state registers as doing the work

0 Start fetching and executing the next instruction before
the current one has completed

e Pipelining — (all?) modern processors are pipelined for
performance

e Remember the performance equation:
CPU time =CPI*CC *IC

0 Fetch (and execute) more than one instruction at a time

e Superscalar processing — stay tuned

A Pipelined MIPS Processor

O Start the next instruction before the current one has
completed

e improves throughput - total amount of work done in a given time

e instruction latency (execution time, delay time, response time -
time from the start of an instruction to its completion) is not
reduced

ECycIe 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 ECycle 6 éCycIe 7 ECycIe 8

[S NN [SR I A S [
1w IFetch] Dec | Exec | Mem | ws
sw IFetch] Dec | Exec | Mem | ws
R-type IFetch| Dec [Exec [Mem | ws

- clock cycle (pipeline stage time) is limited by the slowest stage
- for some instructions, some stages are wasted cycles

Why Pipeline? For Performance!

0 Under ideal conditions and with a large number of instructions,
the speed-up from pipelining is approximately equal to the
number of pipe stages.

e Afive-stage pipeline is nearly five times faster.

Time (clock cycles)

Once the

| InstO L2 i pipdline is full,

. Inst 1 i oneinstruction

? i is completed
i everl cycle, so

" | Inst 2 Regf y >(/3PI 0

°| Inst 3 D$ E— Reg?

r e

N Timé to fill'the pipeline® -

14

Pipeline Performance

2 Assume time for stages Is
e 100ps for register read or write
e 200ps for other stages

2 What is pipelined clock rate?

e Compare pipelined datapath with single-cycle datapath

Instr Instr Register | ALUop |[Memory |Register | Total time
fetch read access |write

W 200ps | 100ps |200ps |200ps | 100 ps -

swW 200ps 100 ps 200ps 200ps 700ps

R-format | 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

15

Pipeline Performance

Single-cycle (T.= 800ps)

Program
execution Time 200 400 600 800 1000 1200 1400 1600 1800

order
(in instructions)

Iw $1: 100($0) Instruction Reg| ALU Data Reg

fetch access

Iw $2,200($0) ~ 800 ps "|mstructon pog | gLy | DA | pog

lw $3, 300($0) ‘ 800 ps Instruction
800 ps

Pipelined (T,= 200ps)

Program

execution - 200 400 600 800 1000 1200 1400

order Time ' : : : . : .

(in instructions)

w 1, 100680) " [rea| v | 288, |rus

w $2, 200($0) 200 ps |"™uton |Reg| ALU | DB |Reg

w $3, 300($0) 200 ps | " | |Res| AV | poces |Re@

r

200ps 200ps 200 ps 200 ps 200 ps 16

Pipeline Speedup

0 If all stages are balanced (i.e. all take the same time) and there
are no dependencies between the instructions,

e CPIl = 1 (each instruction takes 5 cycles, but 1 completes each cycle)

e Ideal speedup is:

Time between Instructions,,,,iselined

Number of stages =

Time between instructions ;ejined

0 Speedup due to increased throughput;
Latency (time for each instruction) does not decrease

2 If not balanced, speedup is less
Pipelining the three 1w, speedup: 2400ps/1400ps = 1.7
- Add 1000,000 more instructions, the speedup:
(1076*200+1400)/(1076*800+2400) ~ 800/200 = 4

MIPS Pipeline Datapath Modifications

0 What do we need to add/modify in our MIPS datapath?

e Add State registers between each pipeline stage to isolate them

IF:IFetch ID:Dec

EX:Execute

MEM:
MemAcCcess

e

K:

\ 4

[

4 :/
. »Read Addr 1
Inl\jltructlon é Register Read| |
emory = »Read Addr Data 1
0|l . [Read 3] .

0 1 D 1 . Flle
J Address L >Write Addr Lo
. Data 2

—b[erte Data

Dec/Exec

Sign \
16 Extend \32

»

ol

>ALU

==pAddress

Data
Memory

Read
Data

Write Data

... Exec/Mem

WB:

WriteBack

-...Mem/WB

System Clock

Pipelining the MIPS ISA

0 MIPS Instruction Set designed for pipelining

a All instructions are 32-bits
e Easier to fetch and decode in one cycle
e Xx86: 1- to 17-byte instructions
(x86 HW actually translates to internal RISC instructions!)

0 Few and regular instruction formats, 2 source register
fields always in same place

e Can decode and read registers in one step

0 Memory operands only in Loads and Stores
e Can calculate address at 3 stage, access memory at 4" stage

0 Alignment of memory operands
e Memory access takes only one cycle

Other Sample Pipeline Alternatives

QO ARMY r
IM L[Reg EX
PC update decode ALU op
IM access reg DM access
access shift/rotate
commit result
(write back)
Q0 Intel XScale — e
IM1 |4 IM2 I Re DM1 |-
9 SHF1|_ DM
PC update decode DM write
BTB access reg 1 access ALUop reg write
start IM access _
shift/rotate start DM access

IM access

reg 2 access exception

20

Can Pipelining Get us Into Trouble?

Q Yes: Pipeline Hazards

e structural hazards: attempt to use the same resource by two
different instructions at the same time

e data hazards: attempt to use data before it is ready

- An instruction’s source operand(s) are produced by a prior
instruction still in the pipeline

e control hazards: attemptto make a decision about program
control flow before the condition has been evaluated and the
new PC target address calculated

- branch instructions

0 Can always resolve hazards by waiting
e pipeline control must detect the hazard
e and take action to resolve hazards

21

Takeaway

0 All modern day processors use pipelining

0 Pipelining doesn’t help latency of single task, it helps
throughput of entire workload
0 Potential speedup: a CPI of 1 and a faster CC
e Recall CPU time =CPI*CC *IC

0 Pipeline rate limited by slowest pipeline stage
e Unbalanced pipe stages make for inefficiencies

e The time to “fill” pipeline and time to “drain” it can impact
speedup for deep pipelines and short code runs

0 Must detect and resolve hazards

e Stalling negatively affects CPI (makes CPI more than the
ideal of 1)

e Compiler can arrange code to avoid hazards and stalls:
Requires knowledge of the pipeline structure

