
CS3350B
 Computer Architecture

Winter 2015

Lecture 6.2: Instructional Level Parallelism:

Hazards and Resolutions

Marc Moreno Maza

www.csd.uwo.ca/Courses/CS3350b

[Adapted from lectures on Computer Organization and Design,

Patterson & Hennessy, 5th edition, 2011]

0

http://www.cse.psu.edu/~

Recap: Pipelining for Performance

 All modern day processors use pipelining

 Pipelining doesn’t help latency of single task, it helps

throughput of entire workload

 Potential speedup: CPI=?, and a faster CC

 Recall CPU time = CPI * CC * IC

 Pipeline rate limited by slowest pipeline stage

 Unbalanced pipe stages make for inefficiencies

 The time to “fill” pipeline and time to “drain” it can impact

speedup for deep pipelines and short code runs

 Must detect and resolve hazards

 Can always resolve hazards by waiting (Stalling)

 Stalling negatively affects CPI (makes CPI more than the

ideal of 1)

1

Three Types of Pipeline Hazards

 Structural hazards

 Attempt to use the same resource by two different instructions

at the same time

 Data hazards (from what types of instructions?)

 Attempt to use data before it is ready in instructions involving

arithmetic and data transfers

- An instruction’s source operand(s) are produced by a prior

instruction still in the pipeline

 Control hazards

 Attempt to make a decision about program control flow before

the condition has been evaluated and the new PC target

address calculated; branch instructions

 Can always resolve hazards by waiting (makes CPI > 1)

 Better to have pipeline control to detect the hazards

 and take action to resolve hazards more efficiently
2

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

lw

Inst 1

Inst 2

Inst 4

Inst 3

A
L

U

Mem Reg Mem Reg

A
L

U

Mem Reg Mem Reg

A
L

U
 Mem Reg Mem Reg

A
L

U

Mem Reg Mem Reg

A
L

U

Mem Reg Mem Reg

Structural Hazard #1: in case of Single Memory

Reading data from

memory

Reading instruction

from memory

Read same memory twice in same clock cycle 3

 I$

lw

Instr 1

Instr 2

Instr 3

Instr 4
A

L
U

 I$ Reg D$ Reg

A
L

U

 I$ Reg D$ Reg

A
L

U

 I$ Reg D$ Reg

A
L

U

Reg D$ Reg

A
L

U

 I$ Reg D$ Reg

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

Structural Hazard #1: Fix with separate instruction and
data memories (I$ and D$)

4

Structural Hazard #2: Registers (1/2)

Can we read and write to registers simultaneously?

 I$

lw

Instr 1

Instr 2

Instr 3

Instr 4
A

L
U

 I$ Reg D$ Reg

A
L

U

 I$ Reg D$ Reg

A
L

U

 I$ Reg D$ Reg

A
L

U

Reg D$ Reg

A
L

U

 I$ Reg D$ Reg

I

n

s

t

r

.

O

r

d

e

r

Time (clock cycles)

5

Structural Hazard #2: Registers (2/2)

 Two different solutions have been used:

(1) RegFile access is very fast: takes less than half the time of
ALU stage

- Write to Registers during first half of each clock cycle

- Read from Registers during second half of each clock cycle

(2) Build RegFile with independent read and write ports

 Result:

 can perform register Read and Write during same clock cycle

6

Data Hazard Type 1 (1/2)

 Consider the following sequence of instructions

 Q1: What are the dependences ?
 $t0 of sub depends on $t0 of add; Read After Write (RAW)

 $t0 of and depends on $t0 of add; RAW

 $t0 of or depends on $t0 of add; RAW

 $t0 of xor depends on $t0 of add; RAW

 Q2: Are there any hazards?
 We use pipeline diagram to analyze it.

add $t0, $t1, $t2

sub $t4, $t0, $t3

and $t5, $t0, $t6

or $t7, $t0, $t8

xor $t9, $t0, $t10

7

Data Hazard Type 1 (2/2)

 Data-flow backward in time are hazards.
This case is a read before write data hazard.

sub $t4,$t0,$t3
A

L
U

I$ Reg D$ Reg

and $t5,$t0,$t6

A
L

U

I$ Reg D$ Reg

or $t7,$t0,$t8 I$

A
L

U

Reg D$ Reg

xor $t9,$t0,$t10

A
L

U

I$ Reg D$ Reg

add $t0,$t1,$t2

IF ID/RF EX MEM WB

A
L

U

I$ Reg D$ Reg

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

8

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9

Data Hazard Solution 1: Stall (Waiting)

 Stall, or bubble, or nop; no backward data flow anymore

9

xor $t9,$t0,$t10

A
L

U

I$ Reg D$ Reg

sub $t4,$t0,$t3

A
L

U

I$ Reg D$ Reg

and $t5,$t0,$t6

A
L

U

I$ Reg D$ Reg

or $t7,$t0,$t8 I$

A
L

U

Reg D$ Reg

add $t0,$t1,$t2

IF ID/RF EX MEM WB

A
L

U

I$ Reg D$ Reg

I

n

s

t

r.

O

r

d

e

r

CC1 CC2 CC3 CC4 CC5 CC6

bubble bubble bubble bubble bubble

bubble bubble bubble bubble bubble

stall

stall

How many cycles? What’s the CPI now? 11/5

CC7 CC8 CC9 CC10 CC11

Data Hazard Solution 2: Forwarding (aka Bypassing)

 Hardware forwards result to the stage needed as soon as it is
available (bypassing the register)
- ALU-ALU forwarding in this case
- Hardware: hazard detection unit; forward unit

 “or” hazard solved by register hardware

10

sub $t4,$t0,$t3
A

L
U

I$ Reg D$ Reg

and $t5,$t0,$t6

A
L

U

I$ Reg D$ Reg

or $t7,$t0,$t8 I$

A
L

U

Reg D$ Reg

xor $t9,$t0,$t10

A
L

U

I$ Reg D$ Reg

add $t0,$t1,$t2

IF ID/RF EX MEM WB A
L

U

I$ Reg D$ Reg

CC1 CC2 CC3 CC4 CC5 CC6

How many cycles? What is the CPI now? 9/5

CC7 CC8 CC9

Yet Another Complication!

I

n

s

t

r.

O

r

d

e

r

add $1,$1,$2

A
L

U

IM Reg DM Reg

add $1,$1,$3

add $1,$1,$4

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

 Another potential data hazard can occur when there is a

conflict between the result of the WB stage instruction

and the MEM stage instruction – which should be

forwarded?

Data Hazard Type 2: Load/Use (1/2)

Dataflow backwards in time are hazards

sub $t3,$t0,$t2
A

L
U

I$ Reg D$ Reg

lw $t0,0($t1)

IF ID/RF EX MEM WB A
L

U

I$ Reg D$ Reg

12

CC1 CC2 CC3 CC4 CC5 CC6 CC7

Data Hazard Type 2: Load/Use (2/2)

 Is it feasible to fix it by just forwarding? i.e. when the data is
loaded from D$ before writing to the register, forward it to ALU
for sub.

 Oops! Still a backward data flow! Can we go back in time?

 Must stall instruction dependent on load, then forward (more
hardware)

13

sub $t3,$t0,$t2
A

L
U

I$ Reg D$ Reg

lw $t0,0($t1)

IF ID/RF EX MEM WB A
L

U

I$ Reg D$ Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7

Load/Use Data Hazard: Solution Option 1

Hardware detects hazard, stalls pipeline (Called “interlock”), and
forward (MEM-ALU forwarding). CPI = ? 9/4

sub $t3,$t0,$t2

A
L

U

I$ Reg D$ Reg
bub

ble

and $t5,$t0,$t4

A
L

U

I$ Reg D$ Reg bub

ble

or $t7,$t0,$t6 I$

A
L

U

Reg D$
bub

ble

lw $t0, 0($t1)

IF ID/RF EX MEM WB

A
L

U

I$ Reg D$ Reg

Not in MIPS: (MIPS = Microprocessor without Interlocked Pipeline Stages) 14

Reg

CC9

Load/Use Data Hazard Solution Option 2

 Insert nop (equivalent to stall) and forward

sub $t3,$t0,$t2

and $t5,$t0,$t4

or $t7,$t0,$t6 I$

A
L

U

Reg D$

lw $t0, 0($t1)

A
L

U

I$ Reg D$ Reg

bub

ble

bub

ble

bub

ble

bub

ble

bub

ble

A
L

U

I$ Reg D$ Reg

A
L

U

I$ Reg D$ Reg

nop

15

Remarks on Load/Use Data Hazard

 Instruction slot after a load is called “load delay slot”

 If that instruction uses the result of the load, then the
hardware interlock will stall it for one cycle.

 Alternative: If the compiler puts an unrelated instruction in
that slot, then no stall

 Letting the hardware stall the instruction in the delay slot is
equivalent to putting a nop in the slot (except the latter
uses more code space)

16

Load/Use Data Hazards: Code Scheduling to Avoid Stalls

 Reorder code to avoid use of load result in the next
instruction (load delay slot)

 C code for A = B + E; /* $t3 = $t1 + $t2 */
 C = B + F; /* $t5 = $t1 + $t4 */

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

 stall

 stall

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

11 cycles 13 cycles

17

Memory-to-Memory Copies

I
n
s
t
r.

O
r
d
e
r

lw $1,4($2)
A

L
U

I$ Reg D$ Reg

sw $1,4($3)

A
L

U

I$ Reg D$ Reg

 For loads immediately followed by stores (memory-to-

memory copies) can avoid a stall by adding forwarding

hardware from the MEM/WB register to the data memory

input (MEM-MEM forwarding)

 Would need to add a Forward Unit and a mux to the memory

access stage

Control Hazards

 Branch determines flow of control

 Fetching next instruction depends on branch outcome

 The delay in determining the proper instruction to fetch is called a
control hazard or branch hazard.

 Pipeline can’t always fetch correct instruction

- Still working on ID stage of branch

 beq, bne in MIPS pipeline

19

Control Hazards Simple Solution Option 1: two Stalls

Where do we do the compare for the branch?
20

 I$

beq

nop

nop

Instr

 Instr
A

L
U

 I$ Reg D$ Reg
A

L
U

Reg D$ Reg

A
L

U

 I$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

bubble bubble bubble bubble bubble

bubble bubble bubble bubble bubble

Stall on every branch until have new PC value;
Would add 2 bubbles/clock cycles for every Branch!

EX

Control Hazard: Branching

Optimization #1:

 Insert special branch comparator in Stage 2 (Dec)

 As soon as instruction is decoded (i.e. Opcode
identifies it as a branch), immediately make a
decision and set the new value of the PC

 Benefit: since branch is complete in Stage 2, only
one unnecessary instruction is fetched, so only one
no-op is needed

 Side Note: means that branches are idle in Stages 3,
4 and 5

21

Special Branch Comparator with One Clock Cycle Stall

Branch comparator moved to Decode stage

 I$

beq

nop

Instr

Instr

Instr
A

L
U

 I$ Reg D$ Reg

A
L

U

 I$ Reg D$ Reg

A
L

U

Reg D$ Reg

A
L

U

 I$ Reg D$ Reg

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

22

bubble bubble bubble bubble bubble

ID/RF

Performance of Stall on Branch

 Assume branches are 17% of the instructions executed in
SPECint2006. Since the other instructions run have a CPI of
1, and branches took one extra clock cycle for the stall, then
we would see a CPI of 1.17 and hence a slowdown of 1.17
versus the ideal case.

23

Control Hazards: Branch Delay Slot

 Optimization #2: Redefine branches

 Old definition: if we take the branch, none of the instructions
after the branch get executed by accident

 New definition: whether or not we take the branch, the single
instruction immediately following the branch gets executed (the
branch-delay slot)

 Delayed Branch means we always execute the
instruction after branch

 This optimization is used with MIPS.

24

Example: Nondelayed vs. Delayed Branch

add $1, $2, $3

sub $4, $5, $6

beq $1, $4, Exit

or $8, $9, $10

xor $10, $1, $11

Nondelayed Branch

add $1, $2,$3

sub $4, $5, $6

beq $1, $4, Exit

or $8, $9, $10

xor $10, $1, $11

Delayed Branch

Exit: Exit:
25

Notes on Branch-Delay Slot

 Worst-Case Scenario: put a no-op in the branch-delay slot

 Better Case: place some instruction preceding the branch in the
branch-delay slot—as long as the changed doesn’t affect the logic
of program

- Re-ordering instructions is common way to speed up programs

- Compiler usually finds such an instruction 50% of time

- Jumps also have a delay slot …

 Since delayed branches are useful when the branches are short,
no processor uses a delayed branch of more than one cycle. For
longer branch delays, hardware-based branch prediction is usually
used.

 The delayed branch always executes the next sequential
instruction, with the branch taking place after that one instruction
delay. It is hidden from the MIPS assembly language programmer
because the assembler can automatically arrange the instructions
to get the branch behavior desired by the programmer. MIPS
software will place an instruction immediately after the delayed
branch instruction that is not affected by the branch, and a taken
branch changes the address of the instruction that follows this safe
instruction.

26

Control Hazards: Branch Prediction

 Opt #3: Predict outcome of a branch, fix up if guess
wrong

 Must cancel all instructions in pipeline that depended on wrong-
guess

 This is called “flushing” the pipeline

 Opt 3.1: Assume branches are NOT taken,
continue execution down the sequential instruction stream. If
the branch is taken, the instructions that are being fetched and
decoded must be discarded. Execution continues at the branch
target.

 If branches are untaken half the time, and if it costs little to discard
the instructions, this optimization halves the cost of control
hazards.

 Opt3.2: Dynamic branch prediction: Prediction of
branches at runtime using runtime information.

 branch prediction buffer or branch history table
27

In Summary: Hazards and Resolutions
 Structural Hazards

 Memory: I$ and D$ are separated

 Register: read and write can be done in same clock cycle

 Data Hazards

 load followed by store: MEM-MEM forwarding

 load/use

- Hardware interlock (stall pipeline) and MEM-ALU forwarding

- load delay slot: put a nop or a valid instruction after load (MIPS)

 other cases: one stall (nop) plus ALU-ALU forwarding

 Hardware support: hazard detection unit and forward unit

 Control hazards

 stall two cycles if branch execution done in EX stage

 stall one cycle if branch execution done in ID stage

 branch delay slot: put a nop (one cycle waste) or a valid instruction

after branch (MIPS) (branch execution in ID)

 branch predication: branch not taken or dynamic predication

 How does a hazard solution impact the pipeline performance? 28

Exercise 1

 For the following code sequence in MIPS,

 Indicate the dependences

 Indicate the potential hazards and types

 Provide your hazard resolution methods and show how many
extra clock cycles you have to pay.

29

sub $2, $1,$3 # Register $2 written by sub

and $12,$2,$5 # 1st operand($2) depends on sub

or $13,$6,$2 # 2nd operand($2) depends on sub

add $14,$2,$2 # 1st($2) & 2nd($2) depend on sub

sw $15,100($2) # Base ($2) depends on sub

Exercise 2

 Show what happens when the branch is taken in this
instruction sequence, assuming the pipeline is optimized for
branches that are not taken and that we moved the branch
execution to the ID stage. The numbers to the left of the
instruction (40, 44, . . .) are the addresses of the instructions.

30

36 sub $10, $4, $8

40 beq $1, $3, 7 # PC-relative branch to 40 + 4 + 7 * 4 = 72

44 and $12, $2, $5

48 or $13, $2, $6

52 add $14, $4, $2

56 slt $15, $6, $7

… …

72 lw $4, 50($7)

