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Recap: Pipelining for Performance 

 All modern day processors use pipelining 

 Pipelining doesn’t help latency of single task, it helps 

throughput of entire workload 

 Potential speedup:  CPI=?, and a faster CC 

 Recall CPU time = CPI * CC * IC 

 Pipeline rate limited by slowest pipeline stage 

 Unbalanced pipe stages make for inefficiencies 

 The time to “fill” pipeline and time to “drain” it can impact 

speedup for deep pipelines and short code runs 

 Must detect and resolve hazards 

 Can always resolve hazards by waiting (Stalling) 

 Stalling negatively affects CPI (makes CPI more than the 

ideal of 1) 
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Three Types of Pipeline Hazards 

 Structural hazards 

 Attempt to use the same resource by two different instructions 

at the same time 

 Data hazards     (from what types of instructions?) 

 Attempt to use data before it is ready in instructions involving 

arithmetic and data transfers 

- An instruction’s source operand(s) are produced by a prior 

instruction still in the pipeline 

 Control hazards 

 Attempt to make a decision about program control flow before 

the condition has been evaluated and the new PC target 

address calculated; branch instructions 

 Can always resolve hazards by waiting (makes CPI > 1) 

 Better to have pipeline control to detect the hazards 

 and take action to resolve hazards more efficiently 
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Structural Hazard #1: in case of Single Memory 

Reading data from 

memory 

Reading instruction 

from memory 

Read same memory twice in same clock cycle 3 
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Structural Hazard #2: Registers (1/2) 

Can we read and write to registers simultaneously? 
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Structural Hazard #2: Registers (2/2) 

 Two different solutions have been used: 

(1) RegFile access is very fast: takes less than half the time of  
ALU stage 

- Write to Registers during first half of each clock cycle 

- Read from Registers during second half of each clock cycle 

(2) Build RegFile with independent read and write ports 

 Result:  

 can perform register Read and Write during same clock cycle 
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Data Hazard Type 1 (1/2) 

 Consider the following sequence of instructions 

 

 

 

 
 

 Q1:  What are the dependences ?  
    $t0 of  sub  depends on  $t0 of  add;  Read After Write (RAW) 

    $t0 of  and  depends on  $t0 of  add;  RAW 

    $t0 of  or    depends on  $t0 of  add;  RAW 

    $t0 of  xor  depends on  $t0 of  add;  RAW 

 Q2: Are there any hazards?  
    We use pipeline diagram to analyze it. 

add $t0, $t1, $t2 

sub $t4, $t0, $t3 

and $t5, $t0, $t6 

or  $t7, $t0, $t8 

xor $t9, $t0, $t10 
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Data Hazard Type 1 (2/2) 

 Data-flow backward in time are hazards.  
This case is a read before write data hazard. 
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Data Hazard Solution 1: Stall (Waiting) 

 Stall, or bubble, or nop; no backward data flow anymore 
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Data Hazard Solution 2: Forwarding (aka Bypassing) 

  Hardware forwards result to the stage needed as soon as it is 
available (bypassing the register)  
- ALU-ALU forwarding in this case 
- Hardware: hazard detection unit; forward unit 

 “or” hazard solved by register hardware 
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Yet Another Complication! 

I 

n 

s 

t 

r. 

 

O 

r 

d 

e 

r 

add $1,$1,$2 

A
L

U
 

IM Reg DM Reg 

add $1,$1,$3 

add $1,$1,$4 

A
L

U
 

IM Reg DM Reg 

A
L

U
 

IM Reg DM Reg 

 Another potential data hazard can occur when there is a 

conflict between the result of the WB stage instruction 

and the MEM stage instruction – which should be 

forwarded? 



Data Hazard Type 2: Load/Use (1/2) 

Dataflow backwards in time are hazards 
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Data Hazard Type 2: Load/Use (2/2) 

 Is it feasible to fix it by just forwarding? i.e. when the data is 
loaded from D$ before writing to the register, forward it to ALU 
for sub. 
 

 

 

 

 

 

 Oops! Still a backward data flow! Can we go back in time?  

 Must stall instruction dependent on load, then forward (more 
hardware) 
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Load/Use Data Hazard: Solution Option 1 

Hardware detects hazard, stalls pipeline  (Called “interlock”),  and 
forward (MEM-ALU forwarding). CPI = ? 9/4 
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Load/Use Data Hazard Solution Option 2 

 Insert nop (equivalent to stall) and forward 
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Remarks on Load/Use Data Hazard 

 Instruction slot after a load is called “load delay slot” 

 If that instruction uses the result of the load, then the 
hardware interlock will stall it for one cycle. 

 Alternative: If the compiler puts an unrelated instruction in 
that slot, then no stall 

 Letting the hardware stall the instruction in the delay slot is 
equivalent to putting a nop in the slot  (except the latter 
uses more code space) 
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Load/Use Data Hazards:  Code Scheduling to Avoid Stalls 

 Reorder code to avoid use of load result in the next 
instruction (load delay slot) 

 C code for A = B + E;  /* $t3 = $t1 + $t2 */   
        C = B + F;  /* $t5 = $t1 + $t4 */ 

lw $t1, 0($t0) 

lw $t2, 4($t0) 

add $t3, $t1, $t2 

sw $t3, 12($t0) 

lw $t4, 8($t0) 

add $t5, $t1, $t4 

sw $t5, 16($t0) 

  stall 

  stall 

lw $t1, 0($t0) 

lw $t2, 4($t0) 

lw $t4, 8($t0) 

add $t3, $t1, $t2 

sw $t3, 12($t0) 

add $t5, $t1, $t4 

sw $t5, 16($t0) 

11 cycles 13 cycles 
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Memory-to-Memory Copies 
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memory copies) can avoid a stall by adding forwarding 

hardware from the MEM/WB register to the data memory 

input (MEM-MEM forwarding) 

 Would need to add a Forward Unit and a mux to the memory 

access stage 



Control Hazards 

 Branch determines flow of control 

 Fetching next instruction depends on branch outcome 

 The delay in determining the proper instruction to fetch is called a 
control hazard or branch hazard. 

 Pipeline can’t always fetch correct instruction 

- Still working on ID stage of branch 

 beq, bne in MIPS pipeline  
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Control Hazards Simple Solution Option 1: two Stalls 

Where do we do the compare for the branch? 
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Control Hazard: Branching 

Optimization #1: 

 Insert special branch comparator in Stage 2 (Dec) 

 As soon as instruction is decoded (i.e. Opcode 
identifies it as a branch), immediately make a 
decision and set the new value of the PC 

 Benefit:  since branch is complete in Stage 2, only 
one unnecessary instruction is fetched, so only one 
no-op is needed 

 Side Note:  means that branches are idle in Stages 3, 
4 and 5 

21 



Special Branch Comparator with One Clock Cycle Stall 

Branch comparator moved to Decode stage 
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Performance of Stall on Branch 

 Assume branches are 17% of the instructions executed in 
SPECint2006. Since the other instructions run have a CPI of 
1, and branches took one extra clock cycle for the stall, then 
we would see a CPI of 1.17 and hence a slowdown of 1.17 
versus the ideal case. 
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Control Hazards: Branch Delay Slot 

 Optimization #2: Redefine branches 

 Old definition:  if we take the branch, none of the instructions 
after the branch get executed by accident 

 New definition:  whether or not we take the branch, the single 
instruction immediately following the branch gets executed (the 
branch-delay slot) 

 Delayed Branch means we always execute the 
instruction after branch 

 This optimization is used with MIPS. 
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Example: Nondelayed vs. Delayed Branch 

add $1, $2, $3 

sub $4, $5, $6 

beq $1, $4, Exit 

or  $8, $9, $10 

xor $10, $1, $11 

Nondelayed Branch 

add $1, $2,$3 

sub $4, $5, $6 

beq $1, $4, Exit 

or  $8, $9, $10 

xor $10, $1, $11 

Delayed Branch 

Exit: Exit: 
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Notes on Branch-Delay Slot 
 

 Worst-Case Scenario: put a no-op in the branch-delay slot 

 Better Case: place some instruction preceding the branch in the 
branch-delay slot—as long as the changed doesn’t affect the logic 
of program 

- Re-ordering instructions is  common way to speed up programs 

- Compiler usually finds such an instruction 50% of time 

- Jumps also have a delay slot … 

 Since delayed branches are useful when the branches are short, 
no processor uses a delayed branch of more than one cycle. For 
longer branch delays, hardware-based branch prediction is usually 
used. 

 The delayed branch always executes the next sequential 
instruction, with the branch taking place after that one instruction 
delay. It is hidden from the MIPS assembly language programmer 
because the assembler can automatically arrange the instructions 
to get the branch behavior desired by the programmer. MIPS 
software will place an instruction immediately after the delayed 
branch instruction that is not affected by the branch, and a taken 
branch changes the address of the instruction that follows this safe 
instruction. 
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Control Hazards: Branch Prediction 

 Opt #3: Predict outcome of a branch, fix up if guess 
wrong  

 Must cancel all instructions in pipeline that depended on wrong-
guess  

 This is called “flushing” the pipeline 

 Opt 3.1: Assume branches are NOT taken, 
continue execution down the sequential instruction stream. If 
the branch is taken, the instructions that are being fetched and 
decoded must be discarded. Execution continues at the branch 
target.  

 If branches are untaken half the time, and if it costs little to discard 
the instructions, this optimization halves the cost of control 
hazards. 

 Opt3.2: Dynamic branch prediction: Prediction of 
branches at runtime using runtime information. 

 branch prediction buffer or branch history table 
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In Summary: Hazards and Resolutions 
 Structural Hazards 

 Memory:  I$ and D$ are separated 

 Register:  read and write can be done in same clock cycle 

 Data Hazards 

 load followed by store: MEM-MEM forwarding 

 load/use 

- Hardware interlock (stall pipeline) and MEM-ALU forwarding 

- load delay slot:  put  a nop or a valid instruction after load (MIPS) 

 other cases: one stall (nop) plus ALU-ALU forwarding 

 Hardware support: hazard detection unit and forward unit 

 Control hazards 

 stall two cycles if branch execution done in EX stage  

 stall one cycle if branch execution done in ID stage 

 branch delay slot:  put a nop (one cycle waste) or a valid instruction 

after branch (MIPS) (branch  execution in ID) 

 branch predication: branch not taken or dynamic predication 

 How does a hazard solution impact the pipeline performance? 28 



Exercise 1 

 For the following code sequence in MIPS, 

 Indicate the dependences 

 Indicate the potential hazards and types 

 Provide your hazard resolution methods and show how many 
extra clock cycles you have to pay. 
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sub $2, $1,$3   # Register $2 written by sub 

and $12,$2,$5   # 1st operand($2) depends on sub 

or  $13,$6,$2   # 2nd operand($2) depends on sub 

add $14,$2,$2   # 1st($2) & 2nd($2) depend on sub 

sw  $15,100($2) # Base ($2) depends on sub 



Exercise 2 

 Show what happens when the branch is taken in this 
instruction sequence, assuming the pipeline is optimized for 
branches that are not taken and that we moved the branch 
execution to the ID stage. The numbers to the left of the 
instruction (40, 44, . . . ) are the addresses of the instructions. 
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36  sub $10, $4, $8 

40  beq $1,  $3, 7  # PC-relative branch to 40 + 4 + 7 * 4 = 72 

44  and $12, $2, $5 

48  or  $13, $2, $6 

52  add $14, $4, $2 

56  slt $15, $6, $7 

… …  

72  lw  $4, 50($7) 


