
CS3350B
 Computer Architecture

Winter 2015

Lecture 6.3: Instructional Level Parallelism:

Advanced Techniques

Marc Moreno Maza

www.csd.uwo.ca/Courses/CS3350b

[Adapted from lectures on Computer Organization and Design,

Patterson & Hennessy, 5th edition, 2011]

0

http://www.cse.psu.edu/~

Greater Instruction-Level Parallelism

 Deeper pipeline (more #stages: 5 => 10 => 15 stages)

 Less work per stage  shorter clock cycle

 Multiple issue “superscalar”

 Replicate pipeline stages  multiple pipelines

- e.g., have two ALUs or a register file with 4 read ports and 2 write ports

- have logic to issue several instructions concurrently

 Execute more than one instruction at a clock cycle, producing an
effective CPI < 1, so use Instructions Per Cycle (IPC)

 e.g., 4GHz 4-way multiple-issue

- 16 BIPS, peak CPI = 0.25, peak IPC = 4

 If a datapath has a 5-stage pipeline, how many instructions are active
in the pipeline at any given time?

 But dependencies reduce this in practice

1

Pipeline Depth and Issue Width

 Intel Processors over Time

Microprocessor Year Clock

Rate

Pipeline

Stages

Issue

width

Cores Power

i486 1989 25 MHz 5 1 1 5W

Pentium 1993 66 MHz 5 2 1 10W

Pentium Pro 1997 200 MHz 10 3 1 29W

P4 Willamette 2001 2000 MHz 22 3 1 75W

P4 Prescott 2004 3600 MHz 31 3 1 103W

Core 2 Conroe 2006 2930 MHz 14 4 2 75W

Core 2 Yorkfield 2008 2930 MHz 16 4 4 95W

Core i7 Gulftown 2010 3460 MHz 16 4 6 130W

2

Multiple-Issue Processor Styles

 Static multiple-issue processors, aka VLIW (very-long
instruction word)

 Decisions on which instructions to execute simultaneously are
being made statically (at compile time by the compiler)

 e.g. Intel Itanium and Itanium 2

- 128-bit “bundles” containing three instructions

- Five functional units (IntALU, Mmedia, Dmem, FPALU,
Branch)

- Extensive support for speculation and predication

 Dynamic multiple-issue processors (aka SuperScalar)

 Decisions on which instructions to execute simultaneously (in
the range of 2 to 8) are being made dynamically (at run time
by the hardware)

- e.g., IBM power series, Pentium 4, MIPS R10K, AMD Barcelona

3

Multiple-Issue Datapath Responsibilities

 Must handle, with a combination of hardware and software
fixes, the fundamental limitations of

 How many instructions to issue in one clock cycle – issue slots

 Storage (data) dependencies – aka data hazards

- Limitation more severe in a SS/VLIW processor due to (usually) low
ILP

 Procedural dependencies – aka control hazards

- Ditto, but even more severe

- Use dynamic branch prediction to help resolve the ILP issue

 Resource conflicts – aka structural hazards

- A SS/VLIW processor has a much larger number of potential
resource conflicts

- Functional units may have to arbitrate for result buses and register-
file write ports

- Resource conflicts can be eliminated by duplicating the resource or
by pipelining the resource

4

Static Multiple Issue Machines (VLIW)

 Static multiple-issue processors (aka VLIW) use the
compiler (at compile-time) to statically decide which
instructions to issue and execute simultaneously

 Issue packet – the set of instructions that are bundled together
and issued in one clock cycle – think of it as one large instruction
with multiple operations

 The mix of instructions in the packet (bundle) is usually restricted
– a single “instruction” with several predefined fields

 The compiler does static branch prediction and code
scheduling to reduce (control) or eliminate (data) hazards

 VLIW’s have

 Multiple functional units

 Multi-ported register files

 Wide program bus

5

An Example: A VLIW MIPS

 Consider a 2-issue MIPS with a 2 instr bundle

ALU Op (R format)

or

Branch (I format)

Load or Store (I format)

64 bits

 Instructions are always fetched, decoded, and issued in

pairs

 If one instr of the pair can not be used, it is replaced with a nop

 Need 4 read ports and 2 write ports and a separate

memory address adder

6

Code Scheduling Example

 Consider the following loop code

lp: lw $t0,0($s1) # $t0=array element

 addu $t0,$t0,$s2 # add scalar in $s2

 sw $t0,0($s1) # store result

 addi $s1,$s1,-4 # decrement pointer

 bne $s1,$0,lp # branch if $s1 != 0

 Must “schedule” the instructions to avoid pipeline stalls

 Instructions in one bundle must be independent

 Must separate load/use instructions from their loads by one cycle

 Notice that the first two instructions have a load/use

dependency, the next two and last two have data dependencies

 Assume branches are perfectly predicted by the hardware

/* increment each element (unsigned integer) in array A by n */
for (i=m; i>=0; --i) /* m is the initial value of $s1 */

 A[i] += n; /* n is the value in register $s2 */

7

The Scheduled Code (Not Unrolled)

 Four clock cycles to execute 5 instructions for a

 CPI of 0.8 (versus the best case of 0.5?)

 IPC of 1.25 (versus the best case of 2.0?)

 noops don’t count towards performance !!

ALU or branch Data transfer CC

lp: nop lw $t0,0($s1) 1

addi $s1,$s1,-4 nop 2

addu $t0,$t0,$s2 nop 3

bne $s1,$0,lp sw $t0,4($s1) 4

lp: lw $t0,0($s1) # $t0=array element

 addu $t0,$t0,$s2 # add scalar in $s2

 sw $t0,0($s1) # store result

 addi $s1,$s1,-4 # decrement pointer

 bne $s1,$0,lp # branch if $s1 != 0

Loop Unrolling

 Loop unrolling – multiple copies of the loop body are
made and instructions from different iterations are
scheduled together as a way to increase ILP

 Apply loop unrolling (4 times for our example) and then
schedule the resulting code

 Eliminate unnecessary loop overhead instructions

 Schedule so as to avoid load use hazards

 During unrolling the compiler applies register renaming to
eliminate all data dependencies that are not true data
dependencies

9

Loop Unrolling in C

10

for (i=m; i>=0; --i)

 A[i] += n;

/* unrolled 4 times */

for (i=m; i>=0; i-=4){

 A[i] += n;

 A[i-1] += n;

 A[i-2] += n;

 A[i-3] += n; }

Assume size of A is 8, i.e. m=7.

Execute unrolled code:

Iteration #1, i=7:

 { A[7] += n;

 A[6] += n;

 A[5] += n;

 A[4] += n; }

Iteration #2, i=3:

 { A[3] += n;

 A[2] += n;

 A[1] += n;

 A[0] += n; }

Iteration # i Instruction

 1 7 A[7] += n

 2 6 A[6] += n

 3 5 A[5] += n

 4 4 A[4] += n

 5 3 A[3] += n

 6 2 A[2] += n

 7 1 A[1] += n

 8 0 A[0] += n

Execute not-unrolled code:

Apply Loop Unrolling for 4 times
lp: lw $t0,0($s1) # $t0=array element

 lw $t1,-4($s1) # $t1=array element

 lw $t2,-8($s1) # $t2=array element

 lw $t3,-12($s1)# $t3=array element

 addu $t0,$t0,$s2 # add scalar in $s2

 addu $t1,$t1,$s2 # add scalar in $s2

 addu $t2,$t2,$s2 # add scalar in $s2

 addu $t3,$t3,$s2 # add scalar in $s2

 sw $t0,0($s1) # store result

 sw $t1,-4($s1) # store result

 sw $t2,-8($s1) # store result

 sw $t3,-12($s1)# store result

 addi $s1,$s1,-16 # decrement pointer

 bne $s1,$0,lp # branch if $s1 != 0

11

lp: lw $t0,0($s1) # $t0=array element

 addu $t0,$t0,$s2# add scalar in $s2

 sw $t0,0($s1) # store result

 addi $s1,$s1,-4 # decrement pointer

 bne $s1,$0,lp # branch if $s1!=0

/* code in c */

for(i=m;i>=0;i-=4)

{

 A[i] += n;

 A[i-1] += n;

 A[i-2] += n;

 A[i-3] += n;

}

• Why not reuse $t0

but use $t1, $t2,

$t3?

• Why -4,-8,-12 and

$s1=$s1-16?

• How many times

can a loop be

unrolled?

The Scheduled Code (Unrolled)

 Eight clock cycles to execute
14 instructions for a

 CPI of 0.57
(versus the best case of 0.5)

 IPC of 1.8
(versus the best case of 2.0)

ALU or branch Data transfer CC

lp: addi $s1,$s1,-16 lw $t0,0($s1) 1

nop lw $t1,12($s1) #-4 2

addu $t0,$t0,$s2 lw $t2,8($s1) #-8 3

addu $t1,$t1,$s2 lw $t3,4($s1) #-12 4

addu $t2,$t2,$s2 sw $t0,16($s1) #0 5

addu $t3,$t3,$s2 sw $t1,12($s1) #-4 6

nop sw $t2,8($s1) #-8 7

bne $s1,$0,lp sw $t3,4($s1) #-12 8

/* code in c */

for(i=m;i>=0;i-=4)

{

 A[i] += n;

 A[i-1] += n;

 A[i-2] += n;

 A[i-3] += n;

}

Summary of Compiler Support for VLIW Processors

 The compiler packs groups of independent instructions
into the bundle

 Done by code re-ordering (trace scheduling)

 The compiler uses loop unrolling to expose more ILP

 The compiler uses register renaming to solve name
dependencies and ensures no load use hazards occur

 While superscalars use dynamic prediction, VLIW’s
primarily depend on the compiler for branch prediction

 Loop unrolling reduces the number of conditional branches

 Predication eliminates if-then-else branch structures by replacing
them with predicated instructions

 The compiler predicts memory bank references to help
minimize memory bank conflicts

14

VLIW Advantages & Disadvantages

 Advantages

 Simpler hardware (potentially less power hungry)

 Potentially more scalable

- Allow more instr’s per VLIW bundle and add more FUs

 Disadvantages

 Programmer/compiler complexity and longer compilation times

- Deep pipelines and long latencies can be confusing (making peak
performance elusive)

 Lock step operation, i.e., on hazard all future issues stall until
hazard is resolved (hence need for predication)

 Object (binary) code incompatibility

 Needs lots of program memory bandwidth

 Code bloat

- Noops are a waste of program memory space

- Loop unrolling to expose more ILP uses more program memory
space

15

Dynamic Multiple Issue Machines (SS)

 Dynamic multiple-issue processors (aka SuperScalar) use
hardware at run-time to dynamically decide which
instructions to issue and execute simultaneously

 Instruction-fetch and issue – fetch instructions, decode
them, and issue them to a FU to await execution

 Instruction-execution – as soon as the source operands
and the FU are ready, the result can be calculated

 Instruction-commit – when it is safe to, write back results
to the RegFile or D$ (i.e., change the machine state)

16

17

Dynamic Multiple Issue Machines (SS)

Dynamic Pipeline Scheduling

 Allow the CPU to execute instructions out of order to
avoid stalls

 But commit result to registers in order

 Example

 lw $t0, 20($s2)

addu $t1, $t0, $t2

subu $s4, $s4, $t3

slti $t5, $s4, 20

 Can start subu while addu is waiting for lw

18

Why Do Dynamic Scheduling?

 Why not just let the compiler schedule code?

 Disadvantages of complier scheduling code

 Not all stalls are predicable

 e.g., cache misses

 Can’t always schedule around branches

 Branch outcome is dynamically determined

 Different implementations of an ISA have different
latencies and hazards

19

Speculation

 “Guess” what to do with an instruction

 Start operation as soon as possible

 Check whether guess was right

- If so, complete the operation

- If not, roll-back and do the right thing

Common to static and dynamic multiple issue

 Examples

 Speculate on branch outcome (Branch Prediction)

- Roll back if path taken is different

 Speculate on load

- Roll back if location is updated

20

Out Of Order Intel

 All use OOO since 2001

Microprocessor Year Clock Rate Pipeline

Stages

Issue

width

Out-of-order/

Speculation

Cores Power

i486 1989 25MHz 5 1 No 1 5W

Pentium 1993 66MHz 5 2 No 1 10W

Pentium Pro 1997 200MHz 10 3 Yes 1 29W

P4 Willamette 2001 2000MHz 22 3 Yes 1 75W

P4 Prescott 2004 3600MHz 31 3 Yes 1 103W

Core 2006 2930MHz 14 4 Yes 2 75W

Core 2 Yorkfield 2008 2930MHz 16 4 Yes 4 95W

Core i7 Gulftown 2010 3460MHz 16 4 Yes 6 130W

21

Streaming SIMD Extensions (SSE)

 SIMD: Single Instruction Multiple Data

 A data parallel architecture

 Both current AMD and Intel’s x86 processors have ISA
and micro-architecture support SIMD operations

 MMX, 3DNow!, SSE, SSE2, SSE3, SSE4, AVX

 Many functional units

 8 128‐bit vector registers: XMM0, XMM1, …, XMM7

 See the flag field in /proc/cpuinfo

 SSE (Streaming SIMD extensions): a SIMD instruction
set extension to the x86 architecture

 Instructions for operating on multiple data simultaneously (vector
operations): for (i=0; i<n; ++i) Z[i]=X[i]+Y[i];

 Programming SSE in C++: intrinsics
22

Does Multiple Issue Work?

 Yes, but not as much as we’d like

 Programs have real dependencies that limit ILP

 Some dependencies are hard to eliminate
 e.g., pointer aliasing

 Some parallelism is hard to expose
 Limited window size during instruction issue

Memory delays and limited bandwidth
 Hard to keep pipelines full

 Speculation can help if done well

23

Takeaway

 Pipelining is an important form of ILP

 Challenge is hazards

 Forwarding helps with many data hazards

 Delayed branch helps with control hazard in 5 stage pipeline

 Load delay slot / interlock necessary

 More aggressive performance:

 Longer pipelines

 VLIW

 Superscalar

 Out-of-order execution

 Speculation

 SSE?

24

