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Greater Instruction-Level Parallelism 

 Deeper pipeline (more #stages: 5 => 10 => 15 stages) 

 Less work per stage  shorter clock cycle 

 Multiple issue “superscalar” 

 Replicate pipeline stages  multiple pipelines 

- e.g., have two ALUs or a register file with 4 read ports and 2 write ports 

- have logic to issue several instructions concurrently 

 Execute more than one instruction at a clock cycle, producing an 
effective CPI < 1, so use Instructions Per Cycle (IPC) 

 e.g., 4GHz 4-way multiple-issue 

- 16 BIPS, peak CPI = 0.25, peak IPC = 4 

 If a datapath has a 5-stage pipeline, how many instructions are active 
in the pipeline at any given time? 

 But dependencies reduce this in practice 
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Pipeline Depth and Issue Width 

 Intel Processors over Time 

Microprocessor Year Clock 

Rate 

Pipeline 

Stages 

Issue 

width 

Cores Power 

i486 1989 25 MHz 5 1 1 5W 

Pentium 1993 66 MHz 5 2 1 10W 

Pentium Pro 1997 200 MHz 10 3 1 29W 

P4 Willamette 2001 2000 MHz 22 3 1 75W 

P4 Prescott 2004 3600 MHz 31 3 1 103W 

Core 2 Conroe 2006 2930 MHz 14 4 2 75W 

Core 2 Yorkfield 2008 2930 MHz 16 4 4 95W 

Core i7 Gulftown 2010 3460 MHz 16 4 6 130W 
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Multiple-Issue Processor Styles 

 Static multiple-issue processors, aka VLIW (very-long 
instruction word) 

 Decisions on which instructions to execute simultaneously are 
being made statically (at compile time by the compiler) 

 e.g. Intel Itanium and Itanium 2  

- 128-bit “bundles” containing three instructions 

- Five functional units (IntALU, Mmedia, Dmem, FPALU, 
Branch) 

- Extensive support for speculation and predication 

 Dynamic multiple-issue processors (aka SuperScalar) 

 Decisions on which instructions to execute simultaneously (in 
the range of 2 to 8)  are being made dynamically (at run time 
by the hardware)  

- e.g., IBM power series, Pentium 4, MIPS R10K, AMD Barcelona 
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Multiple-Issue Datapath Responsibilities 

 Must handle, with a combination of hardware and software 
fixes, the fundamental limitations of  

 How many instructions to issue in one clock cycle – issue slots 

 Storage (data) dependencies – aka data hazards 

- Limitation more severe in a SS/VLIW processor due to (usually) low 
ILP 

 Procedural dependencies – aka control hazards 

- Ditto, but even more severe 

- Use dynamic branch prediction to help resolve the ILP issue 

 Resource conflicts – aka structural hazards 

- A SS/VLIW processor has a much larger number of potential 
resource conflicts 

- Functional units may have to arbitrate for result buses and register-
file write ports 

- Resource conflicts can be eliminated by duplicating the resource or 
by pipelining the resource 

4 



Static Multiple Issue Machines (VLIW) 

 Static multiple-issue processors (aka VLIW) use the 
compiler (at compile-time) to statically decide which 
instructions to issue and execute simultaneously 

 Issue packet – the set of instructions that are bundled together 
and issued in one clock cycle – think of it as one large instruction 
with multiple operations 

 The mix of instructions in the packet (bundle) is usually restricted 
– a single “instruction” with several predefined fields 

 The compiler does static branch prediction and code 
scheduling to reduce (control) or eliminate (data) hazards 

 VLIW’s have 

 Multiple functional units 

 Multi-ported register files 

 Wide program bus 
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An Example: A VLIW MIPS 

 Consider a 2-issue MIPS with a 2 instr bundle 

ALU Op (R format) 

or 

Branch (I format) 

Load or Store (I format) 

64 bits 

 Instructions are always fetched, decoded, and issued in 

pairs 

 If one instr of the pair can not be used, it is replaced with a nop 

 Need 4 read ports and 2 write ports and a separate 

memory address adder 
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Code Scheduling Example 

 Consider the following loop code 

lp: lw $t0,0($s1)  # $t0=array element 

  addu $t0,$t0,$s2  # add scalar in $s2 

  sw $t0,0($s1)   # store result 

  addi $s1,$s1,-4   # decrement pointer 

  bne $s1,$0,lp    # branch if $s1 != 0 

 Must “schedule” the instructions to avoid pipeline stalls 

 Instructions in one bundle must be independent 

 Must separate load/use instructions from their loads by one cycle 

 Notice that the first two instructions have a load/use 

dependency, the next two and last two have data dependencies  

 Assume branches are perfectly predicted by the hardware 

/* increment  each element (unsigned integer) in array A by n    */ 
for (i=m; i>=0; --i)    /* m is the initial value of $s1    */ 

       A[i] += n;           /* n is the value in register $s2 */ 
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The Scheduled Code (Not Unrolled) 

 Four clock cycles to execute 5 instructions for a 

 CPI of 0.8 (versus the best case of 0.5?) 

 IPC of 1.25 (versus the best case of 2.0?) 

 noops don’t count towards performance !! 

ALU or branch Data transfer CC 

lp: nop lw  $t0,0($s1) 1 

addi  $s1,$s1,-4 nop 2 

addu  $t0,$t0,$s2 nop 3 

bne   $s1,$0,lp sw  $t0,4($s1) 4 

lp: lw $t0,0($s1)  # $t0=array element 

  addu $t0,$t0,$s2  # add scalar in $s2 

  sw $t0,0($s1)   # store result 

  addi $s1,$s1,-4   # decrement pointer 

  bne $s1,$0,lp    # branch if $s1 != 0 



Loop Unrolling 

 Loop unrolling – multiple copies of the loop body are 
made and instructions from different iterations are 
scheduled together as a way to increase ILP 

 

 Apply loop unrolling (4 times for our example) and then 
schedule the resulting code 

 Eliminate unnecessary loop overhead instructions 

 Schedule so as to avoid load use hazards 

 

 During unrolling the compiler applies register renaming to 
eliminate all data dependencies that are not true data 
dependencies 
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Loop Unrolling in C 
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for (i=m; i>=0; --i)     

       A[i] += n;       

/* unrolled 4 times */  

for (i=m; i>=0; i-=4){  

   A[i]   += n;  

   A[i-1] += n; 

   A[i-2] += n;     

   A[i-3] += n; } 

Assume size of A is 8, i.e. m=7. 

Execute unrolled code: 

Iteration #1, i=7: 

   { A[7] += n;  

     A[6] += n; 

     A[5] += n;     

     A[4] += n; } 

 

Iteration #2, i=3: 

   { A[3] += n;  

     A[2] += n; 

     A[1] += n;     

     A[0] += n; } 

Iteration #  i  Instruction 

          1  7  A[7] += n  

          2  6  A[6] += n 

          3  5  A[5] += n     

          4  4  A[4] += n  

          5  3  A[3] += n  

          6  2  A[2] += n 

          7  1  A[1] += n  

          8  0  A[0] += n  

Execute not-unrolled code: 



Apply Loop Unrolling for 4 times 
lp: lw    $t0,0($s1)  # $t0=array element 

   lw    $t1,-4($s1) # $t1=array element 

   lw    $t2,-8($s1) # $t2=array element 

   lw    $t3,-12($s1)# $t3=array element 

   addu  $t0,$t0,$s2 # add scalar in $s2 

   addu  $t1,$t1,$s2 # add scalar in $s2 

   addu  $t2,$t2,$s2 # add scalar in $s2 

   addu  $t3,$t3,$s2 # add scalar in $s2 

   sw    $t0,0($s1)  # store result 

   sw    $t1,-4($s1) # store result 

   sw    $t2,-8($s1) # store result 

   sw    $t3,-12($s1)# store result 

   addi  $s1,$s1,-16 # decrement pointer 

   bne   $s1,$0,lp   # branch if $s1 != 0 
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lp: lw   $t0,0($s1) # $t0=array element 

   addu $t0,$t0,$s2# add scalar in $s2 

   sw    $t0,0($s1) # store result 

   addi $s1,$s1,-4 # decrement pointer 

   bne  $s1,$0,lp  # branch if $s1!=0 

/* code in c */  

for(i=m;i>=0;i-=4) 

{  

   A[i]   += n;  

   A[i-1] += n; 

   A[i-2] += n;     

   A[i-3] += n; 

} 

• Why not reuse $t0 

but use $t1, $t2, 

$t3? 

 

• Why -4,-8,-12 and 

$s1=$s1-16? 

 

• How many times 

can a loop be 

unrolled?  



The Scheduled Code (Unrolled) 

 Eight clock cycles to execute 
14 instructions for a 

 CPI of 0.57  
(versus the best case of 0.5) 

 IPC of 1.8  
(versus the best case of 2.0) 

ALU or branch Data transfer CC 

lp: addi  $s1,$s1,-16 lw  $t0,0($s1) 1 

nop lw  $t1,12($s1) #-4 2 

addu  $t0,$t0,$s2 lw  $t2,8($s1)  #-8 3 

addu  $t1,$t1,$s2 lw  $t3,4($s1)  #-12 4 

addu  $t2,$t2,$s2 sw  $t0,16($s1) #0 5 

addu  $t3,$t3,$s2 sw  $t1,12($s1) #-4 6 

nop sw  $t2,8($s1)  #-8 7 

bne   $s1,$0,lp sw  $t3,4($s1)  #-12 8 

/* code in c */  

for(i=m;i>=0;i-=4) 

{  

   A[i]   += n;  

   A[i-1] += n; 

   A[i-2] += n;     

   A[i-3] += n; 

} 



Summary of Compiler Support for VLIW Processors 

 The compiler packs groups of independent instructions 
into the bundle 

 Done by code re-ordering (trace scheduling) 

 The compiler uses loop unrolling to expose more ILP  

 The compiler uses register renaming to solve name 
dependencies and ensures no load use hazards occur 

 While superscalars use dynamic prediction, VLIW’s 
primarily depend on the compiler for branch prediction 

 Loop unrolling reduces the number of conditional branches 

 Predication eliminates if-then-else branch structures by replacing 
them with predicated instructions 

 The compiler predicts memory bank references to help 
minimize memory bank conflicts 
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VLIW Advantages & Disadvantages 

 Advantages 

 Simpler hardware (potentially less power hungry) 

 Potentially more scalable 

- Allow more instr’s per VLIW bundle and add more FUs 

 Disadvantages 

 Programmer/compiler complexity and longer compilation times 

- Deep pipelines and long latencies can be confusing (making peak 
performance elusive) 

 Lock step operation, i.e., on hazard all future issues stall until 
hazard is resolved (hence need for predication) 

 Object (binary) code incompatibility 

 Needs lots of program memory bandwidth 

 Code bloat 

- Noops are a waste of program memory space  

- Loop unrolling to expose more ILP uses more program memory 
space 
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Dynamic Multiple Issue Machines (SS) 

 Dynamic multiple-issue processors (aka SuperScalar) use 
hardware at run-time to dynamically decide which 
instructions to issue and execute simultaneously 

 Instruction-fetch and issue – fetch instructions, decode 
them, and issue them to a FU to await execution 

 Instruction-execution – as soon as the source operands 
and the FU are ready, the result can be calculated 

 Instruction-commit – when it is safe to, write back results 
to the RegFile or D$ (i.e., change the machine state) 
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Dynamic Multiple Issue Machines (SS) 



Dynamic Pipeline Scheduling 

 Allow the CPU to execute instructions out of order to 
avoid stalls 

 But commit result to registers in order 

 Example 

 lw    $t0, 20($s2) 

addu  $t1, $t0, $t2 

subu  $s4, $s4, $t3 

slti  $t5, $s4, 20 

 Can start subu while addu is waiting for lw 
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Why Do Dynamic Scheduling? 

 Why not just let the compiler schedule code? 

 Disadvantages of complier scheduling code 

 Not all stalls are predicable 

 e.g., cache misses 

 Can’t always schedule around branches 

 Branch outcome is dynamically determined 

 Different implementations of an ISA have different 
latencies and hazards 

19 



Speculation 

 “Guess” what to do with an instruction 

 Start operation as soon as possible 

 Check whether guess was right 

- If so, complete the operation 

- If not, roll-back and do the right thing 

Common to static and dynamic multiple issue 

 Examples 

 Speculate on branch outcome (Branch Prediction) 

- Roll back if path taken is different 

 Speculate on load 

- Roll back if location is updated 
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Out Of Order Intel 

 All use OOO since 2001 

Microprocessor Year Clock Rate Pipeline 

Stages 

Issue 

width 

Out-of-order/ 

Speculation 

Cores Power 

i486 1989 25MHz 5 1 No 1 5W 

Pentium 1993 66MHz 5 2 No 1 10W 

Pentium Pro 1997 200MHz 10 3 Yes 1 29W 

P4 Willamette 2001 2000MHz 22 3 Yes 1 75W 

P4 Prescott 2004 3600MHz 31 3 Yes 1 103W 

Core 2006 2930MHz 14 4 Yes 2 75W 

Core 2 Yorkfield 2008 2930MHz 16 4 Yes 4 95W 

Core i7 Gulftown 2010 3460MHz 16 4 Yes 6 130W 
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Streaming SIMD Extensions (SSE) 

 SIMD: Single Instruction Multiple Data 

 A data parallel architecture 

 Both current AMD and Intel’s x86 processors have ISA 
and micro-architecture support SIMD operations 

 MMX, 3DNow!, SSE, SSE2, SSE3, SSE4, AVX 

 Many functional units 

 8 128‐bit vector registers: XMM0, XMM1, …, XMM7 

 See the flag field in /proc/cpuinfo 

 SSE (Streaming SIMD extensions): a SIMD instruction 
set extension to the x86 architecture 

 Instructions for operating on multiple data simultaneously (vector 
operations): for  (i=0; i<n; ++i)  Z[i]=X[i]+Y[i]; 

 Programming SSE in C++: intrinsics 
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Does Multiple Issue Work? 

 Yes, but not as much as we’d like 

 Programs have real dependencies that limit ILP 

 Some dependencies are hard to eliminate 
 e.g., pointer aliasing 

 Some parallelism is hard to expose 
 Limited window size during instruction issue 

Memory delays and limited bandwidth 
 Hard to keep pipelines full 

 Speculation can help if done well 
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Takeaway 

 Pipelining is an important form of ILP 

 Challenge is hazards 

 Forwarding helps with many data hazards 

 Delayed branch helps with control hazard in 5 stage pipeline 

 Load delay slot / interlock necessary 

 More aggressive performance:  

 Longer pipelines 

 VLIW 

 Superscalar 

 Out-of-order execution 

 Speculation 

 

 SSE?  
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