
CS3350B
 Computer Architecture

Winter 2015

Lecture 7.2: Multicore TLP (1)

Marc Moreno Maza

www.csd.uwo.ca/Courses/CS3350b

[Adapted from lectures on

Computer Organization and Design,

Patterson & Hennessy, 4th or 5th edition, 2011]

0

http://www.cse.psu.edu/~

Review: Multiprocessor Systems (MIMD)

 Multiprocessor (Multiple Instruction Multiple Data):
a computer system with at least 2 processors

 Deliver high throughput for independent jobs via job-level parallelism
on top of ILP

 Improve the run time of a single program that has been specially
crafted to run on a multiprocessor - a parallel processing program

Now Use term core for processor (“Multicore”)

because “Multiprocessor Microprocessor” too redundant

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

Review

 Sequential software is slow software

 SIMD and MIMD only path to higher performance

 Multiprocessor (Multicore) uses Shared Memory (single
address space) (SMP)

 Cache coherency implements shared memory even with
multiple copies in multiple caches

 False sharing a concern

 MESI Protocol ensures cache consistency and has
optimizations for common cases.

2

Multiprocessors and You

 Only path to performance is parallelism

 Clock rates flat or declining

 SIMD: 2X width every 3-4 years

- 128b wide now, 256b 2011, 512b in 2014?, 1024b in
2018?

- Advanced Vector Extensions are 256-bits wide!

 MIMD: Add 2 cores every 2 years: 2, 4, 6, 8, 10, …

 A key challenge is to craft parallel programs that have
high performance on multiprocessors as the number of
processors increase – i.e., that scale

 Scheduling, load balancing, time for synchronization,
overhead for communication

Example: Sum Reduction

Sum 100,000 numbers on 100 processor SMP

 Each processor has ID: 0 ≤ Pn ≤ 99

 Phase I:
Partition 1000 numbers per processor;
Initial summation on each processor

 sum[Pn] = 0; // 0 ≤ Pn ≤ 99
 for (i = 1000*Pn;
 i < 1000*(Pn+1); i = i + 1)
 sum[Pn] = sum[Pn] + A[i];

Phase II: Add these partial sums

 Reduction: divide and conquer

 Half the processors add pairs, then quarter, …

 Need to synchronize between reduction steps

4

Example: Sum Reduction

5

Second Phase:

After each processor has

computed its “local” sum

This code runs simultaneously

on each core

half = 100;

repeat

 synch();

 /*Proc 0 sums extra element if there is one */

 if (half%2 != 0 && Pn == 0)

 sum[0] = sum[0] + sum[half-1];

 half = half/2; /* dividing line on who sums */

 if (Pn < half)

 sum[Pn] = sum[Pn] + sum[Pn+half];

until (half == 1);

An Example with 10 Processors

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

sum[P0] sum[P1] sum[P2] sum[P3] sum[P4] sum[P5] sum[P6] sum[P7] sum[P8] sum[P9]

P0

P0 P1 P2 P3 P4

half = 10

half = 5

P1 half = 2

P0
half = 1

6

Threads

 thread of execution: smallest unit of processing scheduled
by operating system

 Threads have their own state or context:

 Program counter, Register file, Stack pointer,

 Threads share a memory address space

 Note: A “process” is a heavier-weight construct, which has
its own address space. A process typically contains one or
more threads.

 Not to be confused with a processor, which is a physical device
(i.e., a core)

7

Memory Model for Multi-threading

8

CAN BE SPECIFIED IN A LANGUAGE WITH MIMD SUPPORT –

such as OpenMP and CilkPlus

Process

Multithreading

 On a single processor, multithreading occurs by time-
division multiplexing:

 Processor switched between different threads

- may be “pre-emptive” or “non pre-emptive”

 Context switching happens frequently enough that user
perceives threads as running at the same time

 On a multiprocessor, threads run at the same time, with
each processor running a thread

9

Multithreading vs. Multicore

 Basic idea: Processor resources are expensive and
should not be left idle

 For example: Long latency to memory on cache miss?

 Hardware switches threads to bring in other useful work
while waiting for cache miss

 Cost of thread context switch must be much less than
cache miss latency

 Put in redundant hardware so don’t have to save context
on every thread switch:

 PC, Registers, …

 Attractive for applications with abundant TLP

10

Data Races and Synchronization

 Two memory accesses form a data race if from different
threads, to same location, and at least one is a write, and
they occur one after another

 If there is a data race, result of program can vary
depending on chance (which thread ran first?)

 Avoid data races by synchronizing writing and reading
to get deterministic behavior

 Synchronization done by user-level routines that rely on
hardware synchronization instructions

11

12

Question: Consider the following code

when executed concurrently by two threads.

What possible values can result in *($s0)?

 # *($s0) = 100

 lw $t0,0($s0)

 addi $t0,$t0,1

 sw $t0,0($s0)

101 or 102 ☐

100, 101, or 102 ☐

100 or 101 ☐

☐

Lock and Unlock Synchronization

 Lock used to create region
(critical section) where only
one thread can operate

 Given shared memory, use
memory location as
synchronization point: lock,
semaphore or mutex

 Thread reads lock to see if it
must wait, or OK to go into
critical section (and set to
locked)

0 => lock is free / open /
unlocked / lock off

1 => lock is set / closed /
locked / lock on

Set the lock

Critical section
(only one thread
gets to execute
this section of
code at a time)

e.g., change
shared variables

Unset the lock

13

Possible Lock Implementation

 Lock (a.k.a. busy wait)

Get_lock: # $s0 -> addr of lock

 addiu $t1,$zero,1 # t1 = Locked value

Loop: lw $t0,0($s0) # load lock

 bne $t0,$zero,Loop # loop if locked

Lock: sw $t1,0($s0) # Unlocked, so lock

 Unlock

Unlock:

 sw $zero,0($s0)

 Any problems with this?

14

Possible Lock Problem

Thread 1

 addiu $t1,$zero,1

Loop: lw $t0,0($s0)

 bne $t0,$zero,Loop

Lock: sw $t1,0($s0)

Thread 2

 addiu $t1,$zero,1

Loop: lw $t0,0($s0)

 bne $t0,$zero,Loop

Lock: sw $t1,0($s0)

15

Time

Both threads think they have set the lock!
Exclusive access not guaranteed!

Hardware-supported Synchronization

 Hardware support required to prevent interloper (either
thread on other core or thread on same core) from
changing the value

 Atomic read/write memory operation

 No other access to the location allowed between the read
and write

 Could be a single instruction

 e.g., atomic swap of register ↔ memory

 or an atomic pair of instructions

16

Synchronization in MIPS

 Load linked: ll rt, off(rs)

 Load rt with the contents at Mem(off+rs) and reserves the
memory address off+rs by storing it in a special link register
(Rlink)

 Store conditional: sc rt, off(rs)

 Check if the reservation of the memory address is valid in the
link register. If so, the contents of rt is written to
Mem(off+rs) and rt is set to 1; otherwise no memory store
is performed and 0 is written into rt.

 Returns 1 (success) if location has not changed since the ll
 Returns 0 (failure) if location has changed

 Note that sc clobbers the register value being stored (rt) !

 Need to have a copy elsewhere if you plan on repeating on failure or
using value later

17

Synchronization in MIPS Example

Atomic swap (to test/set lock variable)

 Exchange contents of register and memory:
$s4 ↔ Mem($s1)

try: add $t0,$zero,$s4 #copy value

 ll $t1,0($s1) #load linked

 sc $t0,0($s1) #store conditional

 beq $t0,$zero,try #loop if sc fails

 add $s4,$zero,$t1 #load value in $s4

18

sc would fail if another thread executes sc here

Test-and-Set

 In a single atomic operation:

 Test to see if a memory location is
set (contains a 1)

 Set it (to 1) if it isn’t (it contained a
zero when tested)

 Otherwise indicate that the Set failed,
so the program can try again

 While accessing, no other instruction
can modify the memory location,
including other Test-and-Set
instructions

 Useful for implementing lock operations

19

Test-and-Set in MIPS

 Single atomic operation

 Example: MIPS sequence for
implementing a T&S at ($s1)

Try: addiu $t0,$zero,1

 ll $t1,0($s1)

 bne $t1,$zero,Try

 sc $t0,0($s1)

 beq $t0,$zero,Try

Locked:

 critical section

 sw $zero,0($s1)

20

Summary

 Sequential software is slow software

 SIMD and MIMD only path to higher performance

 Multiprocessor (Multicore) uses Shared Memory
(single address space)

 Cache coherency implements shared memory even
with multiple copies in multiple caches

 False sharing a concern

 Synchronization via hardware primitives:

 MIPS does it with Load Linked + Store Conditional

21

