CS3350B

Computer Architecture
Winter 2015

Lecture 7.3: Multicore TLP (2)

Marc Moreno Maza

[Adapted from lectures on
Computer Organization and Design,
Patterson & Hennessy, 4% or 5t edition, 2011]

http://www.cse.psu.edu/~

Plan

0 Hardware multithreading

0 CilkPlus and OpenMP: simple parallel
extensions to C/C++ for high-level parallel
programming on multicores

0 Parallel performance metrics and profiling tool
cilkview

Multithreading on A Chip

0 Find a way to “hide” true data dependency stalls, cache
miss stalls, and branch stalls by finding instructions (from
other process threads) that are independent of those
stalling instructions

0 Hardware multithreading — increase the utilization of
resources on a chip by allowing multiple processes
(threads) to share the functional units of a single
processor

e Processor must duplicate the state hardware for each thread — a
separate register file, PC, instruction buffer, and store buffer for
each thread

e The caches, TLBs, BHT, BTB, RUU can be shared (although the
miss rates may increase if they are not sized accordingly)

e The memory can be shared through virtual memory mechanisms
e Hardware must support efficient thread context switching

Types of Hardware Multithreading

0 Fine-grain — switch threads on every instruction issue
e Round-robin thread interleaving (skipping stalled threads)
e Processor must be able to switch threads on every clock cycle

e Advantage — can hide throughput losses that come from both
short and long stalls

e Disadvantage — slows down the execution of an individual
thread since a thread that is ready to execute without stalls is
delayed by instructions from other threads

0 Coarse-grain — switches threads only on costly stalls
(e.g., L2 cache misses)

e Advantage — thread switching doesn’t have to be essentially
free and much less likely to slow down the execution of an
individual thread

e Disadvantage — limited, due to pipeline start-up costs, in its
ability to overcome throughput loss

- Pipeline must be flushed and refilled on thread switches

Multithreaded Example: Sun’s Niagara (UltraSparc T2)

0 Eight fine grain multithreaded single-issue, in-order
cores (no speculation, no dynamic branch prediction)

Niagara 2 A R-AR-AR-A R-A R-A B-1 §-1
) ojlojoflalal al o) o
Data width | 64-b A EHEEEHEE
Clock rate 1.4 GHz é é é é § § % E;)
SHBEEEHEBEE
Cache 16K/8K/4M S s s g) sl g et
(I/D/L2) HHHEHEHHEE
(coly Ieoly ool Reoly Neoly ook Nooly Neo)
Issue rate 1 issue /0
Pi Crossbar shared
pe stages |6 stages 1O funet's

BHT entries | None

TLB entries | 641/64D
Memory BW | 60+ GB/s
Transistors | ??? million

- 8-way banked; L2$

Nj/lerr‘;oryiconitroll;érs i

Power (max) | <95 W

Niagara Integer Pipeline

0 Cores are simple (single-issue, 6 stages, no branch
prediction), small, and power-efficient

»

I:Il Fetch [Thrd Sel [Decode [Execute J 1 Memory] WB

L L L L] L] g
. RegFile <_¢
> 8
" Thrd X ALU 05—
IS Inst | Sel Mul > Crossbar
> > bufx8 || | Mux Decode J shit e DTLB Interface
ITLB . Div Stbufx8
I Thread «— Instr type
Select «——Cache misses
l Loai <« Traps & interrupts
O9€ l«— Resource conflicts
Thrd P_C
Sel logicx8

Mux

A A A A A A A A

Simultaneous Multithreading (SMT)

0 A variation on multithreading that uses the resources of a
multiple-issue, dynamically scheduled processor
(superscalar) to exploit both ILP and TLP

e Most SS processors have more functional unit parallelism than a
single thread can effectively use

e With register renaming and dynamic scheduling, multiple
Instructions from independent threads can be issued without
regard to dependencies among them

- Need separate rename tables (RUUSs) for each thread or need to be
able to indicate which thread the entry belongs to

- Need the capability to commit from multiple threads in one cycle

a Intel’'s Pentium 4 SMT is called hyperthreading
e Supports just two threads (doubles the architecture state)

Threading on a 4-way SS Processor Example

S

Thread A Thread B Thread C
112 1123 1123
3 415
4156 6
71| 8 7 415
9101112 8 6
7
9 (10]11]12 819110
13| 14
13 15| 16
141 15| 16
Coarse-grain Fine Grain
- 112 112
= 3 1|23
4|15] 6 11213
7| 8 1
9 [10]11]12 3
! 415
11 2|3 415
415 23] 4
6 415]6
7 6

Thread D
1
21 31| 4
516
7] 8
9110|1112
SMT
112111 2
31123
113|145
41566
21 314|7
718]13]|5
51686
911011 12
71817
91101112

Microprocessor Comparison

Processor SUNT1 Opteron Pentium D IBM Power 5
Cores 8 2 2 2
| .

amdensses g
Peak instr. i

e/aChirl)nStr ISSuUes 8 6 6 8
MUItithreading Fine-grained No SMT SMT
L1 I/D in KB per core 16/8 64/64 12K uops/16 64/32
L2 per core/shared 3 MB shared 1MB/core 1MB/ core 1.9 MB shared
Clock rate (GHz) 1.2 2.4 3.2 1.9
Transistor count (M) 300 233 230 276
Die size (mm?2) 379 199 206 389

Power (W) /9 110 130 125

8

Summary of Hardware Multithreading

O Benefit:

e All multithreading techniques improve the utilisation of processor
resources and, hence, the performance

e If the different threads are accessing the same input data they
may be using the same regions of memory

- Cache efficiency improves in these cases

0 Disadvantage:

e The perceived performance may be degraded when comparing
with a single-thread CPU

- Multiple threads interfering with each other

e The cache has to be shared among several threads so
effectively they would use a smaller cache

e Thread scheduling at hardware level adds high complexity to
processor design

- Thread state, managing priorities, OS-level information, ...

Shared Memory Model with Explicit Thread-based Parallelism

0 Shared memory process consists of multiple threads,
explicit programming model with full programmer
control over parallelization

a Pros:

e Takes advantage of shared memory, programmer need not
worry (that much) about data placement

e Programming model is “serial-like” and thus conceptually
simpler than alternatives

e Compiler directives are generally simple and easy to use
e Legacy serial code does not need to be rewritten

a Cons:
e Codes can only be run in shared memory environments!

e Compiler must support
(e.g., CilkPlus and OpenMP in gcc 4.xx)
(both are available on the machines in MC10)

10

Introduction to CilkPlus

11

Introduction to OpenMP

0 APl used for multi-threaded, shared memory parallelism
e Compiler Directives
e Runtime Library Routines
e Environment Variables

QO Portable
0 Standardized

O See
http://www.openmp.ora/mp documents/OpenMP4.0.0.pdf
http://computing.linl.gov/tutorials/openMP/

12

http://www.openmp.org/mp documents/OpenMP4.0.0.pdf
http://computing.llnl.gov/tutorials/openMP/

OpenMP Programming Model

a Fork - Join Model:

—

master
thread

{ parallel region } { parallel region }

0 OpenMP programs begin as single process: master
thread; Executes sequentially until the first parallel region

construct Is encountered
e FORK: the master thread then creates a team of parallel threads
e Statements in program that are enclosed by the parallel region
construct are executed in parallel among the various team

threads _
e JOIN: When the team threads complete the statements in the

parallel region construct, they synchronize and terminate, leaving
only the master thread

13

OpenMP Directives

|

master thread l master thread

4§ | wom

I master thread

FORK

e - |

JOIN JOIN
l master thread l master thread l master thread
shares iterations of a each section executed serializes the execution

loop across the team by a separate thread of a thread

14

OpenMP Specification

OpenMP language
extensions

T T 1

runtime
parallel control : data L .
work sharing : synchronization functions, env.
structures environment .
variables
governs flow of distributes work SCopes coordinates thread runtime environment
control in the among threads variables execution
program
omp_set_num_threads()
do/parallel do shared and critical and omp_get_thread_num()
parallel directive and private atomic directives OMP_NUM_THREADS
section directives clauses barrier directive OMP_SCHEDULE

15

OpenMP Extends C with Pragmas

0 Pragmas are a mechanism C provides for language
extensions

0 Commonly implemented pragmas: structure packing,
symbol aliasing, floating point exception modes

0 Good mechanism for OpenMP because compilers that don't
recognize a pragma are supposed to ignore them

e Runs on sequential computer even with embedded pragmas

Matrix Multiply in OpenMP

#pragma omp parallel for private(tmp, i, j, k)

for (i=0; i<Ndim; i++) { Note: Outer loop spread
across N threads; inner

for (j=0; J<Mdim; J++) { loops inside a thread

tmp = 0.0;
for(k=0; k<Pdim; k++) {
tmp += A[i*Ndim+k] * B[k*Pdim+j];
}
C[i*Ndim+j]

tmp;

17

Amdahl’s Law: theoretically how much speed up
you can get by parallelization

S+P
S + (P/N)

Speed up =

S = Fraction of the code which is serial
P = Fraction of the code which can be parallel
S+P=1

N = Number of processor

18

Amdahl’s Law

1024
P values /
512
—05 /
256 —0.75 /
128 0.95
—099

y /
o —_—1
3
B . //
Y]
a
1p]

1 2 4 8 16 32 64 128 256 512 1024
Cores

19

Exercise: Parallelize Sum of Squares

1=0; 1<100; ++1)
s += X[1]**2; //two instructions per loop

0 Each iteration depends on the result of the iteration before.
a As written, unparalleizable
e P=0

0 How would you create parallelism here?

20

