Streaming SIMD Extension (SSE)

SIMD architectures

e A data parallel architecture
* Applying the same instruction to many data
— Save control logic
— Arelated architecture is the vector architecture
— SIMD and vector architectures offer high performance for vector

operations.
| Processing Unit | | Data Memory
Instruction Memory X Control Unit X Processing Unit) X Data Memory
Instruction strearn > u Processing Ut " . Data Memory
- >

(b) SIMD Data Stream

Vector operations

* Vector additionZ=X+Y i -
for (i=0; i<n; i++) z[i] = x[i] + y[i]; AT
X y X, +Y
e Vectorscaling Y=a*X) (AT
X, | [a*X,
for(i=0; i<n; i++) y[i] = a*x][i]; S
X a*x
Dot product . z
for(i=0; i<n; i++) r += x[i]*¥y[i];| - |*| . | & B e
X Ya

SISD and SIMD vector operations

c C=A+8B
— For (i=0;i<n; i++) c[i] = a[i] + b[i]

9.08.0|7.0/6.0/5.0/4.013.02.01.0
\ SISD

/ 10(9.0/8.0{7.06.0/5.0/4.0{3.02.0

1.01.01.01.0/1.01.01.0{1.0[1.0

8.06.04.02.0 SIMD
:i>><§+/////>80604020 :
9.07.0/5.03.0
10101010/////>+////9

1.01.01.01.0

Xx86 architecture SIMD support

Both current AMD and Intel’s x86 processors have ISA
and microarchitecture support SIMD operations.

ISA SIMD support

— MMX, 3DNow!, SSE, SSE2, SSE3, SSE4, AVX
e See the flag field in /proc/cpuinfo

— SSE (Streaming SIMD extensions): a SIMD instruction set
extension to the x86 architecture

* Instructions for operating on multiple data simultaneously (vector
operations).

Micro architecture support

— Many functional units
— 8 128-bit vector registers, XMMO, XMM]1, ..., XMM7

SSE programming

e \ector registers support three data types:
— Integer (16 bytes, 8 shorts, 4 int, 2 long long int, 1 dgword)
— single precision floating point (4 floats)
— double precision float point (2 doubles).

4x floats

D D D G
2x doubles
.
16x bytes

1 J 1 J 1t 1 J 1 J I J I]/

8x words

! 1 ! ! I I 1]
4x dwords

2% qwords

e
1x dgword [K||m0V|tSk| 2001]

Anything that fits into 16 bytes

Figure 1. SSE/SSE2 data types

SSE instructions

Assembly instructions
— Data movement instructions
* moving data in and out of vector registers
— Arithmetic instructions
* Arithmetic operation on multiple data (2 doubles, 4 floats, 16 bytes, etc)
— Logical instructions
* Logical operation on multiple data
— Comparison instructions
e Comparing multiple data
— Shuffle instructions
* move data around SIMD registers
— Miscellaneous
e Data conversion: between x86 and SIMD registers

e Cache control: vector may pollute the caches
* State management:

SSE instructions

e Data Movement Instructions:

MOVUPS - Move 128bits of data to an SIMD register from memory or
SIMD register. Unaligned.

MOVAPS - Move 128bits of data to an SIMD register from memory or
SIMD register. Aligned.

MOVHPS - Move 64bits to upper bits of an SIMD register (high).
MOVLPS - Move 64bits to lower bits of an SIMD register (low).
MOVHLPS - Move upper 64bits of source register to the lower 64bits of
destination register.

MOVLHPS - Move lower 64bits of source register to the upper 64bits of
destination register.

MOVMSKPS = Move sign bits of each of the 4 packed scalars to an x86
integer register.

MOVSS - Move 32bits to an SIMD register from memory or SIMD register.

SSE instructions

e Arithmetic instructions
— pd: two doubles, ps: 4 floats, ss: scalar
— ADD, SUB, MUL, DIV, SQRT, MAX, MIN, RCP, etc
e ADDPS — add four floats, ADDSS: scalar add
e Logical instructions

— AND, OR, XOR, ANDN, etc
e ANDPS — bitwise AND of operands
e ANDNPS — bitwise AND NOT of operands

e Comparison instruction:

— CMPPS, CMPSS — compare operands and return all 1’s
or 0’s

SSE instructions

e Shuffle instructions

— SHUFPS: shuffle number from one operand to another

— UNPCKHPS - Unpack high order numbers to an SIMD
register. Unpckhps [x4,x3,x2,x1][y4,y3,y2,y1] = [y4, x4, y3,
X3]

— UNPCKLPS

e QOther

— Data conversion: CVTPS2PI mm,xmm/mem64

— Cache control

e MOVNTPS stores data from a SIMD floating-point register to
memory, bypass cache.

— State management: LDMXCSR load MXCSR status register.

SEE programming in C/C++

* Map to intrinsics

— An intrinsic is a function known by the compiler
that directly maps to a sequence of one or more
assembly language instructions. Intrinsic functions
are inherently more efficient than called functions
because no calling linkage is required.

— Intrinsics provides a C/C++ interface to use
processor-specific enhancements

— Supported by major compilers such as gcc

SSE intrinsics

Header files to access SEE intrinsics
— #include <mmintrin.h> // MMX
— #include <xmmintrin.h> // SSE
— #include <emmintrin.h> //SSE2
— #include <pmmintrin.h> //SSE3
— #include <tmmintrin.h> //SSSE3
— #include <smmintrin.h> // SSE4

MMX/SSE/SSE2 are mostly supported

SSE4 are not well supported.

When compile, use —msse, -mmmx, -msse2 (machine dependent code)
— Some are default for gcc.

A side note:

— Gcce default include path can be seen by ‘cpp -V’

— On linprog, the SSE header files are in
* Jusr/local/lib/gcc/x86_64-unknown-linux-gnu/4.3.2/include/

SSE intrinsics

e Data types (mapped to an xmm register)
— m128: float
— _m128d: double
— _ _m128i: integer

 Data movement and initialization

— _mm_load _ps, mm_loadu ps, mm_load pd,
~mm_loadu_pd, etc

— _mm_store_ps, ...
— _mm_setzero_ps

SSE intrinsics

e Data types (mapped to an xmm register)
— m128: float
— m128d: double
— __m128i: integer

e Data movement and initialization

— _mm_load ps, _mm_loadu_ps, mm_load pd,
_mm_loadu_pd, etc

— _mm_store_ps, ...

— _mm_setzero_ps

— mm_loadl pd, mm _loadh pd
— _mm_storel _pd, mm_storeh_ pd

SSE intrinsics

e Arithemetic intrinsics:

— _mm_add_ss, mm_add ps, ...

— _mm_add _pd, mm_mul_pd
 More details in the MSDN library at

http://msdn.microsoft.com/en-us/library/y0dh78ez(v=VS.80).aspx

e See exl.c, and sapxy.c

SSE intrinsics

e Data alignment issue

— Some intrinsics may require memory to be aligned to
16 bytes.

 May not work when memory is not aligned.
— See sapxyl.c

 Writing more generic SSE routine

— Check memory alignment

— Slow path may not have any performance benefit with
SSE

— See sapxy2.c

Summary

e Contemporary CPUs have SIMD support for
vector operations

— SSE is its programming interface

e SSE can be accessed at high level languages
through intrinsic functions.

e SSE Programming needs to be very careful
about memory alignments

— Both for correctness and for performance.

References

Intel® 64 and IA-32 Architectures Software Developer's Manuals
(volumes 2A and 2B).
http://www.intel.com/products/processor/manuals/

SSE Performance Programming,
http://developer.apple.com/hardwaredrivers/ve/sse.html

Alex Klimovitski, “Using SSE and SSE2: Misconcepts and Reality.”
Intel Developer update magazine, March 2001.

Intel SSE Tutorial : An Introduction to the SSE Instruction Set,
http://neilkemp.us/src/sse tutorial/sse tutorial.html#D

SSE intrinsics tutorial, http://www.formboss.net/blog/2010/10/sse-
intrinsics-tutorial/

MSDN library, MMX, SSE, and SSE2 intrinsics:
http://msdn.microsoft.com/en-us/library/y0dh78ez(v=VS.80).aspx

