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Computer Vision Concepts
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Outline

e Some Concepts in Image Processing/Vision
e Filtering
e Edge Detection
* |[mage Features
e Measures for Template matching

e Correlation
e SSD
e Normalized Cross Correlation

e Motion and Optical Flow Field



The Raster Image (Pixel Matrix)
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Slide Credit: D. Hoeim



Color Image

Slide Credit: D. Hoeim



Basic Image Processing: Filtering

e Example: Box Filter
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Slide credit: David Lowe (UBC)



Image Filtering SHE
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Image Filtering A
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Image Filtering A
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Image Filtering A
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Image Filtering A
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Image Filtering
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Image Filtering
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Image Filtering al- -1 PR
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Convolution

= Convolution is the operation of applying a filter or a “kernel” to
each pixel of an image
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= Result of convolution has the same dimension as the image

= For example:
Oy = Igp K1+ Ko+ I5g K g+ Lor Koy +Lgg K a9+ Jgg Koy
= Convolution is frequently denoted by *, for example I*K



Box Filter

What does it do? al- ]
« Replaces each pixel with !

an average of its T,
neighborhood 1
— 1111
« Achieve smoothing effect O
(remove sharp features) 1] 1|1

Slide credit: David Lowe (UBC)



Image filtering

e Image filtering: compute function of local
neighborhood at each position

e Linear filtering: function is a weighted
sum/difference of pixel values

e \WWhat does it do?

e Enhance images
e Denoise, resize, increase contrast, etc.

e Extract features from images
e edges, distinctive points, texture, etc.

e Detect patterns
e Template matching

Slide Credit: D. Hoeim



Smoothing with box filter -

Slide Credit: D. Hoeim



Gaussian Filtering

= Gaussian smoothing (blurring) removes small detail and noise from
an image
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Gaussian Smoothing vs. Averaging

smoothing by box filter Gaussian Smoothing
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Image Gradient

e |mage gradient: points in the direction of the most rapid increase in
intensity of image f
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e Gradient is useful for edge detection



Sobel Filter for Vertical Gradient Component
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Slide Credit: D. Hoeim



Sobel Filter for Horizontal Gradient Component

Horizontal Edge
(absolute value)

Slide Credit: D. Hoeim



Edge Detection

_ canny edge detector
Smooth image

e gets rid of noise and small detail
Compute Image gradient (with Sobel filter, etc)
Pixels with large gradient magnitude are marked as edges

Can also apply non-maximum suppression to “thin” the
edges and other post-processing



Image Features

e Edge features capture places where something interesting
is happening
e large change in image intensity
e Edges is just one type of image features or “interest
points”
e Various type of corner features, etc. are popular in vision

e QOther features:
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Template matching

e Goal: find @ in image

e Main challenge: What
IS a good similarity or
distance measure
between two patches?

e Correlation
e Zero-mean correlation
e Sum Square Difference

e Normalized Cross
Correlation

Slide Credit: D. Hoeim



Method O: Correlation

e Goal: find@® inimage
e Filter the image with eye patch

h[m,n]=> g[k,1] f[m+k,n+1]
$ \ f = image

- § | g = filter

What went wrong?

Input Filtered Image
Slide Credit: D. Hoeim



Method 1: zero-mean Correlation

e Goal: find ® inimage

e Filter the image with zero-mean eye

h[m n] Z(g[k 1]-g) (f[m+k,n+1])

mean of template g

Inpt Filtered Image (scaled) Thresholded Image
Slide Credit: D. Hoeim



Method 3: Sum of Squared Differences

e Goal: find ® in image
h[m,n]=Z(g[k,|]— f[m+k,n+1])?

1- sqrt(SSD) Thresholded Image
Slide Credit: D. Hoeim



Problem with SSD

e SSD is sensitive to changes in brightness

el
oy

Input 1- sqrt(SSD)

(Bo5- M)’ = large
(FS- @)2 = medium

Slide Credit: D. Hoeim



Method 3: Normalized Cross-Correlation

e Goal: find @ in image

mean template mean image patch

i :
> (glk.1-g)(f[m+k.n+1]-f, )

h[m,n] = <

(Z(g[k,ll—g)ZZ(f[m+k,n+|]— fm,n)zj

Slide Credit: D. Hoeim



Method 3: Normalized Cross-Correlation

Thresholded Image

Normalized X-Correlation Slide Credit: D. Hoeim



Comparison

e Zero-mean filter: fastest but not a great
matcher

e SSD: next fastest, sensitive to overall
intensity

e Normalized cross-correlation: slowest,
but invariant to local average intensity
and contrast

Slide Credit: D. Hoeim



Optical flow

o
O/ .\ .
o—r o o
v o
firstimage |, second image |,

e How to estimate pixel motion from image I, to image [, ?

e Solve pixel correspondence problem
e given a pixel in I,, find pixels with similar colorin I,

e Key assumptions
e color constancy: a pointin I, looks the samein |,
e For grayscale images, this is brightness constancy
e small motion: points do not move very far
e This is called the optical flow problem



Optical Flow Field
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Optical Flow and Motion Field

e Optical flow field is the apparent motion of brightness
patterns between 2 (or several) frames in an image
sequence

e Why does brightness change between frames?

e Assuming that illumination does not change:

e changes are due to the RELATIVE MOTION between the scene
and the camera

e There are 3 possibilities:
e Camera still, moving scene
e Moving camera, still scene
e Moving camera, moving scene



Motion Field (MF)

e The MF assigns a velocity vector to each pixel in the
Image

e These velocities are INDUCED by the RELATIVE
MOTION between the camera and the 3D scene

e The MF is the projection of the 3D velocities on the
image plane




Examples of Motion Fields
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(a) Translation perpendicular to a surface. (b) Rotation about axis
perpendicular to image plane. (c) Translation parallel to a surface at a
constant distance. (d) Translation parallel to an obstacle in front of a more
distant background.



Optical Flow vs. Motion Field

= Recall that Optical Flow is the apparent motion of
brightness patterns

= We equate Optical Flow Field with Motion Field
" Frequently works, but now always:

(a) A smooth sphere is rotating
under constant illumination.
Thus the optical flow field is
zero, but the motion field is
not

(b) A fixed sphere is illuminated
by a moving source—the
shading of the image changes.

(b) Thus the motion field is zero,

but the optical flow field is not




Optical Flow vs. Motion Field

= Often (but not always) optical flow corresponds to the true
motion of the scene
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from Gary Bradski and Sebastian Thrun



Computing Optical Flow: Brightness
Constancy Equation

e Let P be a moving point in 3D:
e At time t, P has coordinates (X(t),Y(t),Z(t))

e Let p=(x(t),y(t)) be the coordinates of its image at
time t

e Let E(x(t),y(t),t) be the brightness at p at time t.
e Brightness Constancy Assumption:

e As P moves over time, E(x(t),y(t),t) remains
constant



Computing Optical Flow: Brightness Constancy
Equation

E(x(t),y(t),t) = Constant

Taking derivative wrt time:

dE(x(t),y(t),t)
dt o

O

OFEdx A OFEdy A OF

| | — 0
Ox dt = Oy dt = Ot




Computing Optical Flow: Brightness Constancy
Equation

1 equation with 2 unknowns

OEdx ~OEdy OF

| — O
Ox dt = Oy dt = Ot
Let _
j oL (Frame spatial gradient)
| Oy
_ _ d—f _ (optical flow)
V=
L dt -
and E = OF (derivative across frames)

ot



Computing Optical Flow: Brightness Constancy
Equation

e How to get more equations for a pixel?

e |dea: impose additional constraints
e assume that the flow field is smooth locally

e j.e. pretend the pixel’s neighbors have the same (u,v)
e |f we use a 5x5 window, that gives us 25 equations per pixel!

E(pi)+VE(p,)-[u v]=0

,(p,)” _Et§p1§_

Ey(pz) [U]_ _| E(p,

Ex(bZS Ey (bzs) _Et(bZS )_

matrix E vector d vector b
25x2 2x1 25x1




Video Sequence
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* Picture from Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Optical Flow Results

Lucas-Kanade
without pyramids

Fails in areas of large
OO

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Revisiting the small motion assumption

) R
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e |s this motion small enough?
e Probably not—it’s much larger than one pixel
e How might we solve this problem?



Reduce the resolution!
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Coarse-to-fine optical flow estimation
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u=1.25 pixels

u=2.5 pixels

u=>5 pixels

Gaussian pyramid of image |

Gaussian pyramid of image H



Iterative Refinement

e [terative Lukas-Kanade Algorithm

1. Estimate velocity at each pixel by solving Lucas-
Kanade equations

2. Warp H towards | using the estimated flow field

- use image warping techniques

3. Repeat until convergence



Coarse-to-fine optical flow estimation
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Gaussian pyramid of image |

Gaussian pyramid of image H



Optical Flow Results

[.ucas-kKanade with Pvramids
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* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Modern OF Algorithms

e Alot of development in the past 10 years
e See Middlebury Optical Flow Evaluation

e Dataset with ground truth



