
Lecture 10

Neural Networks

Many slides are from Andrew NG, Yann LeCun, Geoffry Hinton, Abin - Roozgard

CS9840
Learning and Computer Vision

Prof. Olga Veksler

Outline

• Short Intro
• Perceptron (1 layer NN)
• Multilayer Perceptron (MLP)
• Deep Networks

• Convolutional Network

Neural Networks

x1

x2• Neural Networks correspond to some
discriminant function gNN(x)

• Can carve out arbitrarily complex
decision boundaries without requiring so
many terms as polynomial functions

• Neural Nets were inspired by research in
how human brain works

• But also proved to be quite successful in
practice

• Are used nowadays successfully for a
wide variety of applications

• took some time to get them to work
• now used by US post for postal code

recognition

Neuron: Basic Brain Processor
• Neurons (or nerve cells) are special cells that

process and transmit information by
electrical signaling
• in brain and also spinal cord

• Human brain has around 1011 neurons
• A neuron connects to other neurons to form

a network
• Each neuron cell communicates to anywhere

from 1000 to 10,000 other neurons

Neuron: Main Components

5

dendrites

nucleus

cell
body

axon

axon
terminals

• cell body
• computational unit

• dendrites
• “input wires”, receive inputs from other neurons
• a neuron may have thousands of dendrites, usually short

• axon
• “output wire”, sends signal to other neurons
• single long structure (up to 1 meter)
• splits in possibly thousands branches at the end, “axon terminals”

ANN History: First Successes
• 1958, F. Rosenblatt, Cornell University

• perceptron, oldest neural network still in use today
• that’s what we studied in lecture on linear classifiers

• Algorithm to train the perceptron network
• Built in hardware
• Proved convergence in linearly separable case
• initially seemed promising, but too many claims were made

ANN History: Stagnation
• Early success lead to a lot of claims which were not

fulfilled
• 1969, M. Minsky and S. Pappert

• Book “Perceptrons”
• Proved that perceptrons can learn only linearly separable

classes
• In particular cannot learn very simple XOR function
• Conjectured that multilayer neural networks also limited by

linearly separable functions

• No funding and almost no research (at least in North
America) in 1970’s as the result of 2 things above

ANN History: Revival
• Revival of ANN in 1980’s
• 1982, J. Hopfield

• New kind of networks (Hopfield’s networks)
• Not just model of how human brain might work, but also how

to create useful devices
• Implements associative memory

• 1982 joint US-Japanese conference on ANN
• US worries that it will stay behind

• Many examples of mulitlayer Neural Networks appear
• 1986, re-discovery of backpropagation algorithm

by Werbos, Rumelhart, Hinton and Ronald Williams
• Allows a network to learn not linearly separable classes

• Lots of successes in the past 5 years due to better training

Artificial Neural Nets (ANN): Perceptron

• Linear classifier f(x) = sign(wtx+w0) is a single neuron “net”

x1

x2

x3

w1

w2

w3

sign(wtx+w0)

1 w0

layer 2
output layer

layer 1
input layer

bias unit

• Input layer units output features, except bias outputs “1”
• Output layer unit applies sign() or some other function h()
• h() is also called an activation function

h()=sign()

Multilayer Neural Network (MLP)

x1

x2

x3

1

layer 3
output layer

layer 1
Input layer

layer 2
hidden layer

• First hidden unit outputs: h(…) = h(w0+w1x1 +w2x2 +w3x3)

w

w

h(w∙h(…)+w∙h(…))

• Network corresponds to classifier f(x) = h(w∙h(…)+w∙h(…))
• More complex than Perceptron, more complex boundaries

• Second hidden unit outputs: h(…) = h(w0+w1x1 +w2x2 +w3x3)

MLP Small Example

x1

x2

1
layer 3: output layer 1: input layer 2: hidden

• Let activation function h() = sign()
• MLP Corresponds to classifier

f(x) = sign(4⋅h(…)+2⋅h(…) + 7)
= sign(4⋅sign(3x1+5x2)+2⋅sign(6+3x2) + 7)

• MLP terminology: computing f(x) is called feed forward operation
• graphically, function is computed from left to right

• Edge weights are learned through training

7
6

3
5

3

4

2

MLP: Multiple Classes

x1

x2

1

layer 1
Input layer

layer 2
hidden layer

• 3 classes, 2 features, 1 hidden layer
• 3 input units, one for each feature
• 3 output units, one for each class
• 2 hidden units
• 1 bias unit, usually drawn in layer 1

layer 3
output layer

MLP: General Structure

x1

x2

1

layer 1
Input layer

layer 2
hidden layer

• Classification:

layer 3
output layer

h(...)

h(...)

h(...)

• If f1(x) is largest, decide class 1
• If f2(x) is largest, decide class 2
• If f3(x) is largest, decide class 3

= f1(x)

• f(x) = [f1(x), f2(x), f3(x)] is multi-dimensional

= f2(x)

= f3(x)

MLP: General Structure

x1

x2

1

layer 1
Input layer

layer 2
hidden layer

• Input layer: d features, d input units
• Output layer: m classes, m output units
• Hidden layer: how many units?

layer 3
output layer

MLP: General Structure

x1

x2

1

layer 1
Input layer

layer 2
hidden layer

• Can have more than 1 hidden layer
• ith layer connects to (i+1)th layer

• except bias unit can connect to any layer

• can have different number of units in each hidden layer

layer 4
output layer

layer 3
hidden layer

• First output unit outputs:
h(...) = h(w⋅h(…) + w)

h(...)w
ww

w

= h(w⋅h(w⋅h(…) + w⋅h(…)) + w)

MLP: Activation Function

• h() = sign() is discontinuous, not good
for gradient descent

• Instead can use continuous
sigmoid function

• Or another differentiable function
• Can even use different activation functions at different

layers/units
• From now, assume h() is a differentiable function

• Rectified Linear is gaining
popularity recently (ReLu)

MLP: Overview
• A neural network corresponds to a classifier f(x,w) that

can be rather complex
• complexity depends on the number of hidden layers/units
• f(x,w) is a composition of many functions

• easier to visualize as a network
• notation gets ugly

• To train neural network, just as before
• formulate an objective function J(w)
• optimize it with gradient descent
• That’s all!
• Except we need quite a few slides to write down details due

to complexity of f(x,w)

Expressive Power of MLP
• Every continuous function from input to output can be

implemented with enough hidden units, 1 hidden layer,
and proper nonlinear activation functions
• easy to show that with linear activation function, multilayer

neural network is equivalent to perceptron
• This is more of theoretical than practical interest

• Proof is not constructive (does not tell how construct MLP)
• Even if constructive, would be of no use, we do not know the

desired function, our goal is to learn it through the samples
• But this result gives confidence that we are on the right track

• MLP is general (expressive) enough to construct any required decision
boundaries, unlike the Perceptron

Decision Boundaries

• Perceptron (single
layer neural net)

• Arbitrarily complex
decision regions

• Even not contiguous

Nonlinear Decision Boundary: Example
• Start with two Perceptrons, h() = sign()

x1

x2

1 -1
-1
1

– x1 + x2 – 1 > 0 ⇒class 1

x1

x2

1 -3
1

-1

x1 - x2 – 3 > 0 ⇒class 1

x1

x2

-1

1
x1

x2

-3

3

Nonlinear Decision Boundary: Example

x1

x2

1 -1
-1
1

-3
1

-1

• Now combine them into a 3 layer NN

1.5

1
1

x1

x2

-1

1 x1

x2

-3

3+ x1

x2

-3

3

1

-1

• For Neural Networks, due to historical reasons, training
and testing stages have special names
• Backpropagation (or training)

Minimize objective function with gradient descent

• Feedforward (or testing)

MLP: Modes of Operation

MLP: Notation for Edge Weights

• wk
pj is edge weight from unit p in layer k-1 to unit j in layer k

1

x1

xd

…
.

layer 1
input

…
.

layer 2
hidden

…
.

layer k-1
hidden

bias unit
or unit 0

unit 1

unit d

wk
1m

• wk
0j is edge weight from bias unit to unit j in layer k

wk
0m

• wk
j is all weights to unit j in layer k, i.e. wk

0j , wk
1j , …, wk

N(k-1)j
• N(k) is the number of units in layer k, excluding the bias unit

…
.

layer k
output

MLP: More Notation

x1

x2

1

layer 1 layer 2 layer 3

• For the input layer (k=1), z1
0 = 1 and z1

j = xj, j ≠ 0
• Denote the output of unit j in layer k as zk

j

• Convenient to set zk
0 = 1 for all k

• Set zk = [zk
0 , zk

1,…, zk
N(k)]

z3
2 = h(…)

z1
0 = 1

z1
2 = x2

• For all other layers, (k > 1), zk
j = h(…)

z2
2 = h(…)

MLP: More Notation

x1

x2

1

layer 1 layer 2 layer 3

• Net activation at unit j in layer k > 1 is the sum of inputs

∑
−

=

− +=
1

1
0

1
kN

p

k
j

k
pj

k
p

k
j wwza

• For k > 1, zk
j = h(ak

j)

kk
jwz ⋅= −1∑

−

=

−=
1

0

1
kN

p

k
pj

k
p wz

2
21

1
2

2
11

1
1

2
01

1
0

2
1 wzwzwza ++=

MLP: Class Representation
• m class problem, let Neural Net have t layers
• Let xi be a example of class c

• It is convenient to denote its label as yi= row c





















0

1

0





• Recall that zt
c is the output of unit c

in layer t (output layer)

• f(x)= zt= . If xi is of class c, want zt =


















t
m

t
c

t

z

z

z




1





















0

1

0




row c

• Want to minimize difference between yi and f(xi)
• Use squared difference
• Let w be all edge weights in MLP collected in one vector

Training MLP: Objective Function

() ()()∑∑
= =

−=
n

i

m

c

i
c

i
c yxfwJ

1 1

2

2
1• Error on all examples:

• Gradient descent:

() ()()∑
=

−=
m

c

i
c

i
ci yxfwJ

1

2

2
1• Error on one example xi :

initialize w to random
choose ε, α
while α||∇J(w)|| > ε

w = w - α∇J(w)

• For simplicity, first consider error for one example xi

Training MLP: Single Sample

• Compute partial derivatives w.r.t. wk
pj for all k, p, j

• Suppose have t layers

() () ()()∑
=

−=−=
m

c

i
c

i
c

ii
i yxfxfywJ

1

22

2
1

2
1

• fc(xi) depends on w
• yi is independent of w

() () ()t
c

tt
c

t
c

i
c wzhahzxf ⋅=== −1

Training MLP: Single Sample

• For weights wt
pj to the output layer t:

() ()() ()()i
j

i
jt

pj

i
j

i
jt

pj

yxf
w

yxfwJ
w

−
∂
∂

−=
∂
∂

() ()()∑
=

−=
m

c

i
c

i
ci yxfwJ

1

2

2
1

() ()() () 1−−=
∂
∂ t

p
t
j

i
j

i
jit

pj

za'hyxfwJ
w

• ()() () 1−=−
∂
∂ t

p
t
j

i
j

i
jt

pj

za'hyxf
w

• Therefore,

• For derivation, we use:

() () ()t
c

tt
c

i
c wzhahxf ⋅== −1

• both and depend on xi. For simpler notation,
we don’t make this dependence explicit.

()t
ja'h 1−t

pz

Training MLP: Single Sample
• For a layer k, compute partial derivatives w.r.t. wk

pj

• Gets complex, since have lots of function compositions

• Will give the rest of derivatives

• First define ek
j, the error attributed to unit j in layer k:

• For layer t (output):

() () 1−=
∂
∂ k

p
k
j

k
jik

pj

za'hewJ
w

()()i
j

i
j

t
j yxfe −=

• For layers k < t:

• Thus for 2 ≤ k ≤ t:

()
() 11

1

1

1 ++
+

=

+∑= k
jc

k
c

kN

c

k
c

k
j wa'hee

MLP Training: Multiple Samples

() ()()∑∑
= =

−=
n

i

m

c

i
c

i
c yxfwJ

1 1

2

2
1

• Error on all examples:

() ()()∑
=

−=
m

c

i
c

i
ci yxfwJ

1

2

2
1• Error on one example xi :

() () 1−=
∂
∂ k

p
k
j

k
jik

pj

za'hewJ
w

() ()∑
=

−=
∂
∂ n

i

k
p

k
j

k
jk

pj

za'hewJ
w 1

1

Training Protocols
• Batch Protocol

• true gradient descent
• weights are updated only after all examples are processed
• might be very slow to train

• Single Sample Protocol
• examples are chosen randomly from the training set
• weights are updated after every example
• weighs get changed faster than batch, less stable

• Mini Batch
• Update weights after processing a ‘batch’ of examples
• Middle ground between single sample and batch protocols
• Helps to prevent over-fitting in practice

• think of it as “noisy” gradient
• allows CPU/GPU memory hierarchy to be exploited so that it trains much

faster than single-sample in terms of wall-clock time

MLP Training: Single Sample
initialize w to small random numbers
choose ε, α
while α||∇J(w)|| > ε

for i = 1 to n
r = random index from {1,2,…,n}
deltapjk = 0 ∀ p,j,k

for k = t to 2

wk
pj = wk

pj + deltapjk ∀ p,j,k

()() jyxfe r
j

r
j

t
j ∀−=

() 1−−= k
p

k
j

k
jpjkpjk za'hedeltadelta

()
() jwa'hee k

jc
k
c

kN

c

k
c

k
j ∀=∑

=

−

1

1

MLP Training: Batch
initialize w to small random numbers
choose ε, α
while α||∇J(w)|| > ε

for i = 1 to n
deltapjk = 0 ∀ p,j,k

for k = t to 2

wk
pj = wk

pj + deltapjk ∀ p,j,k

()() jyxfe i
j

i
j

t
j ∀−=

() 1−−= k
p

k
j

k
jpjkpjk za'hedeltadelta

()
() jwa'hee k

jc
k
c

kN

c

k
c

k
j ∀=∑

=

−

1

1

BackPropagation of Errors
• In MLP terminology, training is called backpropagation
• errors computed (propagated) backwards from the

output to the input layer

first last layer errors computed

then errors computed backwards

while α||∇J(w)|| > ε
for i = 1 to n

deltapjk = 0 ∀ p,j,k

for k = t to 2

wk
pj = wk

pj + deltapjk ∀ p,j,k

()() jxfye r
j

r
j

t
j ∀−=

() 1−−= k
p

k
j

k
jpjkpjk za'hedeltadelta

()
() jwa'hee k

jc
k
c

kN

c

k
c

k
j ∀=∑

=

−

1

1

MLP Training

• Important: weights should be initialized to random
nonzero numbers

• if wk
jc = 0, errors ek

j are zero for layers k < t
• weights in layers k < t will not be updated

() () 1−−=
∂
∂ k

p
k
j

k
jik

pj

za'hewJ
w

()
() 11

1

1

1 ++
+

=

+∑= k
jc

k
c

kN

c

k
c

k
j wa'hee

• To avoid overfitting, it is recommended to keep
weights small

• Implement weight decay after each weight update:
wnew = wnew(1-β), 0 < β < 1

• Additional benefit is that “unused” weights grow small
and may be eliminated altogether

• a weight is “unused” if it is left almost unchanged by the
backpropagation algorithm

Practical tips for BP: Weight Decay

• Gradient descent finds only a local minima
• Momentum: popular method to avoid local minima and

speed up descent in flat (plateau) regions
• Add temporal average direction in which weights have

been moving recently
• Previous direction: ∆wt=wt-wt-1

• Weight update rule with momentum:

Practical Tips for BP: Momentum

previous
direction

steepest descent
direction

() 11 1 −+ ∆β+





∂
∂

αβ−+= ttt w
w
Jww

• Features should be normalized for faster convergence
• Suppose we measure fish length in meters and weight

in grams
• Typical sample [length = 0.5, weight = 3000]
• Feature length will be almost ignored
• If length is in fact important, learning will be very slow

• Any normalization we looked at before (lecture on
kNN) will do

• Test samples should be normalized exactly as the training
samples

Practical Tips for BP: Normalization

• As any gradient descent algorithm, backpropagation
depends on the learning rate α

• Rule of thumb α = 0.1
• However can adjust α at the training time
• The objective function J(w) should decrease during

gradient descent
• If J(w) oscillates, α is too large, decrease it
• If J(w) goes down but very slowly, α is too small,

increase it

Practical Tips: Learning Rate

training time

Large training error:
random decision
regions in the
beginning - underfit

Small training error:
decision regions
improve with time

Zero training error:
decision regions fit
training data
perfectly - overfit

MLP Training: How long to Train?

can learn when to stop training through validation

MLP as Non-Linear Feature Mapping

x1

x2

1

• MLP can be interpreted as first mapping input
features to new features

• Then applying Perceptron (linear classifier) to the
new features

MLP as Non-Linear Feature Mapping

x1

x2

1

this part implements
Perceptron (liner classifier)

y1

y2

y3

MLP as Non-Linear Feature Mapping

x1

x2

1

this part implements
mapping to new features y

y1

y2

y3

MLP as Nonlinear Feature Mapping

x1

x2

1 -1
-1
1

-3
1

-1

1.5

1
1

• Consider 3 layer NN example we saw previously:

x1

x2

non linearly separable in
the original feature space

+

y1

y2

linearly separable in the
new feature space

• How many layers should we choose?
Shallow network

Shallow vs. Deep Architecture

Deep network

• Deep network lead to many successful
applications recently

• 2 layer networks can represent any function
• But deep architectures are more efficient for representing some

classes of functions
• problems which can be represented with a polynomial number of nodes with

k layers, may require an exponential number of nodes with k-1 layers
• thus with deep architecture, less units might be needed overall

• less weights, less parameter updates
• maybe especially in image processing, with structure being mainly local

Why Deep Networks

• Sub-features created in deep
architecture can potentially be shared
between multiple tasks

• Deep architecture works well for hierarchical feature extraction
• hierarchies are natural, especially in vision

• Each stage is a trainable feature transform
• Level of abstraction increases with the level

Why Deep Networks: Hierarchical Feature Extraction

Input layer:
pixels

First layer:
edges

Second layer:
object parts
(combination
of edges)

Third layer:
objects
(combinations of
object parts)

• Another example (from M. Zeiler’2013)

Why Deep Networks: Hierarchical Feature Extraction

Visualization of
learned features

Patches that result in
high response

Layer 1

Layer 2

Why Deep Networks: Hierarchical Feature Extraction
Visualization of

learned features
Patches that result in

high response

Layer 3

Layer 4

Early Work
• Fukushima (1980) – Neo-Cognitron
• LeCun (1998) – Convolutional Neural Networks

• Similarities to Neo-Cognitron

• Many layered Networks trained with
backpropagation
• Tried early but without much success

• Very slow
• Diffusion of gradient

• recent work has shown significant training
improvements with various tricks (drop-out,
unsupervised learning of early layers, etc.)

Prior Knowledge for Network Architecture

• We can put our prior knowledge about the task into
the network by designing appropriate
• connectivity structure
• weight constraints
• neuron activation functions

• This is less intrusive than hand-designing the features
• but it still prejudices the network towards the particular way

of solving the problem that we had in mind

Convolutional Nets
• Neural Networks with special type of architecture that is

particularly good for image processing

Convolution layer: feature extraction

Subsampling layer: shift and distortion invariance

C S

feature
maps

input image feature
maps

subsample subsample final layer

SC

w13w12w11

w23w22w21

w33w32w31

convolve with threshold

w13w12w11

w23w22w21

w33w32w31

Feature extraction or Convolution layer

w13w12w11

w23w22w21

w33w32w31

• Recall how convolution works:

input image

convolved thresholded image = feature map

• Use convolution (and thresholding) to detect the same feature at
different image positions

neuron

Feature extraction
• Convolution masks are learned

• tunable parameters of the network

• Shared weights: all neurons in a
feature share the same weights
• but not the biases

• Thus all neurons detect the same
feature at different positions in the
input image
• if a feature is useful in one image

location, it should be useful in all
other locations

• also greatly reduces the number of
tunable parameters

The red connections all
have the same weight
The red connections all
have the same weight
The red connections all
have the same weight

Weight Sharing Constraints
• It is easy to modify

backpropagation algorithm to
incorporate weight sharing

• We compute the gradients as
usual, and then modify the
gradients so that they satisfy the
constraints.
• so if the weights started off

satisfying the constraints,
they will continue to satisfy
them

Feature extraction or Convolution layer

features

• Use several different
feature types, each with its
own mask, and the
resulting map of replicated
detectors

• Allows each patch of image
to be represented in several
ways

feature map 1
(convolve with mask 1)

feature map 2
(convolve with mask 2)

feature map 3
(convolve with mask 3)

feature map 4
(convolve with mask 4)

feature map 5
(convolve with mask 5)

• Subsampling layers reduce spatial resolution of each feature map
• weighted sum

• This achieves certain degree of shift and distortion invariance
• Weight sharing is also applied in subsampling layers

• reduce the effect of noise and shift or distortion

feature map

Subsampling Layer

subsampled

• Subsampling is also called pooling
• Instead of subsampling, sometimes max pooling works betters

• replace weighted sum with max operation

feature map

Subsampling Layer

subsampled

• Subsampling achieves certain degree of shift and distortion
invariance is

Subsampling Layer

Subsampling Layer

62

Convolutional Nets

Problem with Subsampling (Pooling)
• Averaging (or taking a max) of four pixels gets a small

amount of shift invariance
• Problem to be aware of

• After several levels of pooling, we have lost information about
the precise positions of things

• This makes it impossible to use the precise spatial
relationships between high-level parts for recognition.

Le Net
• Yann LeCun and his collaborators developed a

good recognizer for handwritten digits by using
backpropagation in a convoluitonal net

• LeNet uses knowledge about the invariance to
design
• local connectivity
• weight-sharing
• pooling

• This net was used for reading ~10% of the checks
in North America

• Look the impressive demos of LENET at
http://yann.lecun.com

Conv Nets: Character Recognition
• http://yann.lecun.com/exdb/lenet/index.html

http://yann.lecun.com/exdb/lenet/index.html

ConvNet for ImageNet
• Krizhevsky et.al.(NIPS 2012) developed deep

convolutional neural net of the type pioneered by
Yann LeCun

• Architecture:
• 7 hidden layers not counting some max pooling layers.
• the early layers were convolutional.
• the last two layers were globally connected.

• Activation function:
• rectified linear units in every hidden layer
• train much faster and are more expressive than logistic unit

ConvNet on Image Classification

Tricks to Improve Generalization

• To get more data:
• Use left-right reflections of the images
• Train on random 224x224 patches from the 256x256 images

• At test time:
• combine the opinions from ten different patches:

• four 224x224 corner patches plus the central 224x224 patch
• the reflections of those five patches

• Use dropout to regularize weights in the fully connected layers
• half of the hidden units in a layer are randomly removed for each

training example
• This stops hidden units from relying too much on other hidden

units

Training Deep Networks
• Difficulties of supervised training of deep networks

• Early layers of MLN do not get trained well
• Diffusion of Gradient – error attenuates as it propagates to earlier

layers
• Exacerbated since top couple layers can usually learn any task

"pretty well" and thus the error to earlier layers drops quickly as
the top layers "mostly" solve the task– lower layers never get the
opportunity to use their capacity to improve results, they just do a
random feature map

• Need a way for early layers to do effective work
• Often not enough labeled data available while there may

be lots of unlabeled data
• Can we use unsupervised/semi-supervised approaches to take

advantage of the unlabeled data
• Deep networks tend to have more local minima problems

than shallow networks during supervised training

Greedy Layer-Wise Training
• Greedy layer-wise training to insure lower layers learn
1. Train first layer using your data without the labels (unsupervised)

• we do not know targets at this level anyway
• can use the more abundant unlabeled data which is not part of the training set

2. Freeze the first layer parameters and start training the second layer using
the output of the first layer as the unsupervised input to the second layer

3. Repeat this for as many layers as desired
• This builds our set of robust features

4. Use the outputs of the final layer as inputs to a supervised layer/model and
train the last supervised layer(s)

• leave early weights frozen
5. Unfreeze all weights and fine tune the full network by training with a

supervised approach, given the pre-processed weight settings

Greedy Layer-Wise Training
• Greedy layer-wise training avoids many of the problems of trying

to train a deep net in a supervised fashion
• Each layer gets full learning focus in its turn since it is the only

current "top" layer
• Can take advantage of the unlabeled data
• When you finally tune the entire network with supervised

training the network weights have already been adjusted so
that you are in a good error basin and just need fine tuning
This helps with problems of

• Ineffective early layer learning
• Deep network local minima

Unsupervised Learning: Auto-Encoders
• A type of unsupervised learning which tries to discover generic features of the

data
• Input sample = output
• Learn identity function by learning important sub-features, not by just passing

through data

bottleneck

• Advantages
• MLP can learn complex mappings from inputs to

outputs, based only on the training samples
• Easy to incorporate a lot of heuristics
• Many competitions won recently

• Disadvantages
• May be difficult to analyze and predict its behavior
• May take a long time to train
• May get trapped in a bad local minima
• A lot of tricks for successful implementation

Concluding Remarks

	Slide Number 1
	Outline
	Neural Networks
	Neuron: Basic Brain Processor
	Neuron: Main Components
	ANN History: First Successes
	ANN History: Stagnation
	ANN History: Revival
	Artificial Neural Nets (ANN): Perceptron
	Multilayer Neural Network (MLP)
	MLP Small Example
	MLP: Multiple Classes
	MLP: General Structure
	MLP: General Structure
	MLP: General Structure
	MLP: Activation Function
	MLP: Overview
	Expressive Power of MLP
	Decision Boundaries
	Nonlinear Decision Boundary: Example
	Nonlinear Decision Boundary: Example
	MLP: Modes of Operation
	MLP: Notation for Edge Weights
	MLP: More Notation
	MLP: More Notation
	MLP: Class Representation
	Training MLP: Objective Function
	Training MLP: Single Sample
	Training MLP: Single Sample
	Training MLP: Single Sample
	MLP Training: Multiple Samples
	Training Protocols
	MLP Training: Single Sample
	MLP Training: Batch
	BackPropagation of Errors
	MLP Training
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Practical Tips: Learning Rate
	Slide Number 41
	MLP as Non-Linear Feature Mapping
	MLP as Non-Linear Feature Mapping
	MLP as Non-Linear Feature Mapping
	MLP as Nonlinear Feature Mapping
	Shallow vs. Deep Architecture
	Why Deep Networks
	Why Deep Networks: Hierarchical Feature Extraction
	Why Deep Networks: Hierarchical Feature Extraction
	Why Deep Networks: Hierarchical Feature Extraction
	Early Work
	Prior Knowledge for Network Architecture
	Convolutional Nets
	Feature extraction or Convolution layer
	Feature extraction
	Weight Sharing Constraints
	Feature extraction or Convolution layer
	��Subsampling Layer��
	��Subsampling Layer��
	�Subsampling Layer�
	Slide Number 61
	Convolutional Nets
	Problem with Subsampling (Pooling)
	Le Net
	Conv Nets: Character Recognition
	ConvNet for ImageNet
	ConvNet on Image Classification
	Tricks to Improve Generalization
	Training Deep Networks
	Greedy Layer-Wise Training
	Greedy Layer-Wise Training
	Unsupervised Learning: Auto-Encoders
	Concluding Remarks

