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• Short Intro
• Perceptron (1 layer NN)
• Multilayer Perceptron (MLP)
• Deep Networks 

• Convolutional Network



Neural Networks

x1

x2• Neural Networks correspond to some 
discriminant function gNN(x)

• Can carve out arbitrarily complex 
decision boundaries without requiring so 
many terms as polynomial functions

• Neural Nets were inspired by research in 
how human brain works

• But also proved to be quite successful in 
practice

• Are used nowadays successfully for a 
wide variety of applications

• took some time to get them to work
• now used by US post for postal code 

recognition



Neuron: Basic Brain Processor
• Neurons (or nerve cells) are special cells that 

process and transmit information by 
electrical signaling
• in brain and also spinal cord

• Human brain has around 1011 neurons  
• A neuron connects to other neurons to form 

a network
• Each neuron cell communicates to anywhere 

from 1000 to 10,000 other neurons



Neuron: Main Components
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dendrites

nucleus

cell 
body

axon

axon 
terminals

• cell body
• computational unit

• dendrites
• “input wires”, receive inputs from other neurons
• a neuron may have thousands of dendrites, usually short

• axon
• “output wire”, sends signal to other neurons
• single long structure (up to 1 meter)
• splits in possibly thousands branches at the end, “axon terminals”



ANN History: First Successes
• 1958, F. Rosenblatt, Cornell University

• perceptron, oldest neural network still in use today
• that’s what we studied in lecture on linear classifiers

• Algorithm to train the perceptron network
• Built in hardware
• Proved convergence in linearly separable case
• initially seemed promising, but too many claims were made



ANN History: Stagnation
• Early success lead to a lot of claims which were not 

fulfilled
• 1969, M. Minsky and S. Pappert

• Book “Perceptrons”
• Proved that perceptrons can learn only linearly separable 

classes
• In particular cannot learn very simple XOR function
• Conjectured that multilayer neural networks also limited by 

linearly separable functions

• No funding and almost no research (at least in North 
America)  in 1970’s as the result of 2 things above  



ANN History: Revival
• Revival of ANN in 1980’s
• 1982, J. Hopfield

• New kind of networks (Hopfield’s networks)
• Not just model of how human brain might work, but also how 

to create useful devices
• Implements associative memory

• 1982 joint US-Japanese conference on ANN
• US worries that it will stay behind

• Many examples of mulitlayer Neural Networks appear
• 1986, re-discovery of backpropagation algorithm 

by Werbos, Rumelhart, Hinton and Ronald Williams
• Allows a network to learn not linearly separable classes

• Lots of successes in the past 5 years due to better training 



Artificial Neural Nets (ANN): Perceptron

• Linear classifier f(x) = sign(wtx+w0) is a single neuron “net” 

x1

x2

x3

w1

w2

w3

sign(wtx+w0)

1 w0

layer 2
output layer

layer 1
input layer

bias unit

• Input layer units output features, except bias outputs “1”
• Output layer unit applies sign() or some other function h()
• h() is also called an activation function

h()=sign()



Multilayer Neural Network (MLP)

x1

x2

x3

1

layer 3
output layer

layer 1
Input layer

layer 2
hidden layer

• First hidden unit outputs:       h(…) = h(w0+w1x1 +w2x2 +w3x3)

w

w

h( w∙h(…)+w∙h(…) )

• Network corresponds to classifier f(x) = h( w∙h(…)+w∙h(…) )
• More complex than Perceptron, more complex boundaries

• Second hidden unit outputs: h(…) = h(w0+w1x1 +w2x2 +w3x3)



MLP Small Example

x1

x2

1
layer 3: output layer 1:  input layer 2:  hidden

• Let activation function h()  = sign()
• MLP Corresponds to classifier 

f(x) = sign(  4⋅h(…)+2⋅h(…) + 7 )
= sign(4⋅sign(3x1+5x2)+2⋅sign(6+3x2) + 7)

• MLP terminology: computing f(x) is called feed forward operation
• graphically, function is computed from left to right

• Edge weights are learned through training 
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MLP: Multiple Classes

x1

x2

1

layer 1
Input layer

layer 2
hidden layer

• 3 classes, 2 features, 1 hidden layer
• 3 input units, one for each feature
• 3 output units, one for each class
• 2 hidden units
• 1 bias unit, usually drawn in layer 1

layer 3
output layer



MLP: General Structure

x1

x2

1

layer 1
Input layer

layer 2
hidden layer

• Classification:

layer 3
output layer

h(...)

h(...)

h(...)

• If f1(x) is largest, decide class 1
• If f2(x) is largest, decide class 2
• If f3(x) is largest, decide class 3

= f1(x)

• f(x) = [f1(x), f2(x), f3(x)] is multi-dimensional  

= f2(x)

= f3(x)



MLP: General Structure

x1

x2

1

layer 1
Input layer

layer 2
hidden layer

• Input layer: d features, d input units
• Output layer: m classes, m output units
• Hidden layer: how many units?

layer 3
output layer



MLP: General Structure

x1

x2

1

layer 1
Input layer

layer 2
hidden layer

• Can have more than 1 hidden layer
• ith layer connects to (i+1)th  layer

• except bias unit can connect to any layer

• can have different number of units in each hidden layer

layer 4
output layer

layer 3
hidden layer

• First output unit outputs:
h(...) = h( w⋅h(…) + w )

h(...)w
ww

w

= h( w⋅h(w⋅h(…) + w⋅h(…)) + w )



MLP: Activation Function

• h() = sign() is discontinuous, not good 
for gradient descent

• Instead can use continuous 
sigmoid function

• Or another differentiable function
• Can even use different activation functions at different 

layers/units
• From now, assume h() is a differentiable function

• Rectified Linear is gaining 
popularity recently (ReLu)



MLP: Overview
• A neural network corresponds to a classifier f(x,w) that 

can be rather complex 
• complexity depends on the number of hidden layers/units
• f(x,w) is a composition of many functions

• easier to visualize as a network
• notation gets ugly

• To train neural network, just as before
• formulate an objective function J(w)  
• optimize it with gradient descent
• That’s all! 
• Except we need quite a few slides to write down details due 

to complexity of f(x,w)



Expressive Power of MLP
• Every continuous function from input to output can be 

implemented with enough hidden units, 1 hidden layer, 
and proper nonlinear activation functions
• easy to show that with linear activation function, multilayer 

neural network is equivalent to perceptron 
• This is more of theoretical than practical interest

• Proof is not constructive (does not tell how construct  MLP)
• Even if constructive, would be of no use, we do not know the 

desired function, our goal is to learn it through the samples
• But this result gives confidence that we are on the right track 

• MLP is general (expressive) enough to construct any required decision 
boundaries, unlike the Perceptron



Decision Boundaries

• Perceptron (single 
layer neural net)

• Arbitrarily complex 
decision regions

• Even not contiguous



Nonlinear Decision Boundary: Example
• Start with two Perceptrons,  h() = sign() 

x1

x2

1 -1
-1
1

– x1 + x2 – 1 > 0 ⇒class 1

x1

x2

1 -3
1

-1

x1 - x2 – 3  > 0 ⇒class 1 
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1
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-3
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Nonlinear Decision Boundary: Example

x1

x2

1 -1
-1
1

-3
1

-1

• Now combine them into a 3 layer NN
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• For Neural Networks, due to historical reasons, training 
and testing stages have special names
• Backpropagation (or training) 

Minimize objective function with gradient descent

• Feedforward (or testing)

MLP: Modes of Operation



MLP: Notation for Edge Weights

• wk
pj is edge weight from unit p in layer k-1 to unit j in layer k

1

x1

xd

…
.

layer 1
input

…
.

layer 2
hidden

…
.

layer k-1
hidden

bias unit 
or unit 0

unit 1

unit d

wk
1m

• wk
0j  is edge weight from bias unit to unit  j in layer k

wk
0m

• wk
j  is all weights to unit j in layer k, i.e. wk

0j , wk
1j , …, wk

N(k-1)j
• N(k) is the number of units in layer k, excluding the bias unit

…
.

layer k
output



MLP: More Notation

x1

x2

1

layer 1 layer 2 layer 3

• For the input layer (k=1),  z1
0 = 1 and z1

j = xj, j ≠ 0
• Denote the output of unit j in layer k as zk

j

• Convenient to set zk
0 = 1 for all k

• Set zk = [zk
0 , zk

1,…, zk
N(k)] 

z3
2 = h(…)

z1
0 = 1

z1
2 = x2

• For all other layers, (k > 1), zk
j = h(…)

z2
2 = h(…)



MLP: More Notation
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• Net activation at unit j in layer k > 1 is the sum of inputs  
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MLP: Class Representation
• m class problem, let Neural Net have t layers
• Let xi be a example of class c

• It is convenient to denote its label as yi= row c
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• Recall that zt
c is the output of unit c

in layer t (output layer) 
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• Want to minimize difference between yi and f(xi)
• Use squared difference
• Let w be all edge weights in MLP collected in one vector

Training MLP: Objective Function
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• For simplicity, first consider error for one example xi

Training MLP: Single Sample

• Compute partial derivatives w.r.t. wk
pj for all k, p, j

• Suppose have t layers
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Training MLP: Single Sample

• For weights wt
pj to the output layer t:
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Training MLP: Single Sample
• For a layer k, compute partial derivatives w.r.t. wk

pj

• Gets complex, since have lots of function compositions

• Will give the rest of derivatives

• First define ek
j, the error attributed to unit j in layer k:

• For layer t (output): 
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MLP Training: Multiple Samples

( ) ( )( )∑∑
= =

−=
n

i

m

c

i
c

i
c yxfwJ

1 1

2

2
1

• Error on all examples: 

( ) ( )( )∑
=

−=
m

c

i
c

i
ci yxfwJ

1

2

2
1• Error on one example xi : 

( ) ( ) 1−=
∂
∂ k

p
k
j

k
jik

pj

za'hewJ
w

( ) ( )∑
=

−=
∂
∂ n

i

k
p

k
j

k
jk

pj

za'hewJ
w 1

1



Training Protocols
• Batch Protocol

• true gradient descent
• weights are updated only after all examples are processed
• might be very slow to train

• Single Sample Protocol
• examples are chosen randomly from the training set
• weights are updated after every example
• weighs get changed faster than batch, less stable

• Mini Batch
• Update weights after processing a ‘batch’ of examples
• Middle ground between single sample and batch protocols
• Helps to prevent over-fitting in practice 

• think of it as “noisy” gradient
• allows CPU/GPU memory hierarchy to be exploited so that it trains much 

faster than single-sample in terms of wall-clock time



MLP Training: Single Sample
initialize w to small random numbers
choose  ε, α
while α||∇J(w)|| > ε

for i = 1 to n
r = random index from {1,2,…,n}
deltapjk = 0        ∀ p,j,k

for k = t to 2
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pj + deltapjk ∀ p,j,k
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MLP Training: Batch
initialize w to small random numbers
choose  ε, α
while α||∇J(w)|| > ε

for i = 1 to n
deltapjk = 0        ∀ p,j,k

for k = t to 2

wk
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BackPropagation of Errors
• In MLP terminology, training is called backpropagation
• errors computed (propagated) backwards from the 

output to the input layer

first last layer errors computed

then errors computed backwards

while α||∇J(w)|| > ε
for i = 1 to n

deltapjk = 0        ∀ p,j,k

for k = t to 2
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MLP Training

• Important:  weights should be initialized to random 
nonzero numbers

• if wk
jc = 0, errors ek

j are zero for layers k < t
• weights in  layers k < t will not be updated
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• To avoid overfitting, it is recommended to keep 
weights small

• Implement  weight decay after each weight update:
wnew = wnew(1-β), 0 < β < 1

• Additional benefit is that “unused” weights  grow small 
and may be eliminated altogether

• a weight is “unused” if it is left almost unchanged by the 
backpropagation algorithm

Practical tips for BP: Weight Decay



• Gradient descent finds only a local minima
• Momentum: popular method to avoid local minima and 

speed up descent in flat (plateau) regions
• Add temporal average direction in which weights have 

been moving recently
• Previous direction: ∆wt=wt-wt-1

• Weight update rule with momentum:

Practical Tips for BP: Momentum

previous 
direction

steepest descent 
direction
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• Features should be normalized for faster convergence
• Suppose we measure fish length in meters and weight 

in grams
• Typical sample [length = 0.5, weight = 3000]
• Feature length will be almost ignored
• If length is in fact important, learning will be very slow

• Any normalization we looked at before (lecture on 
kNN) will do

• Test samples should be normalized exactly as the training 
samples

Practical Tips for BP: Normalization



• As any gradient descent algorithm, backpropagation 
depends on the learning rate α

• Rule of thumb α = 0.1
• However can adjust α at the training time
• The objective function J(w) should decrease during 

gradient descent
• If J(w) oscillates, α is too large, decrease it
• If J(w) goes down but very slowly,  α is too small, 

increase it

Practical Tips: Learning Rate



training time

Large training error:
random decision 
regions in the 
beginning - underfit

Small training error: 
decision regions 
improve with time

Zero training error: 
decision regions fit 
training data 
perfectly - overfit

MLP Training: How long to Train? 

can learn when to stop training through validation



MLP as Non-Linear Feature Mapping

x1

x2

1

• MLP can be interpreted as first mapping input 
features to new features

• Then applying Perceptron (linear classifier) to the 
new features



MLP as Non-Linear Feature Mapping

x1

x2

1

this part implements 
Perceptron (liner classifier)

y1

y2

y3



MLP as Non-Linear Feature Mapping

x1

x2

1

this part implements 
mapping to new features y

y1

y2

y3



MLP as Nonlinear Feature Mapping

x1

x2

1 -1
-1
1

-3
1

-1

1.5
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• Consider 3 layer NN example we saw previously:

x1

x2

non linearly separable in 
the original feature space

+

y1

y2

linearly separable in the 
new feature space



• How many layers should we choose?
Shallow network

Shallow vs. Deep Architecture

Deep network

• Deep network lead to many successful 
applications recently



• 2 layer networks can represent any function
• But deep architectures are more efficient for representing some 

classes of functions
• problems which can be represented with a polynomial number of nodes with 

k layers, may require an exponential number of nodes with k-1 layers
• thus with deep architecture, less units might be needed overall

• less weights, less parameter updates
• maybe especially in image processing, with structure being mainly local

Why Deep Networks

• Sub-features created in deep 
architecture can potentially be shared 
between multiple tasks



• Deep architecture works well for  hierarchical feature extraction
• hierarchies are natural, especially in vision

• Each stage is a trainable feature transform
• Level of abstraction increases with the level

Why Deep Networks: Hierarchical Feature Extraction

Input layer: 
pixels

First layer: 
edges

Second layer: 
object parts 
(combination 
of edges)

Third layer:  
objects 
(combinations of 
object parts)



• Another example (from M. Zeiler’2013)

Why Deep Networks: Hierarchical Feature Extraction

Visualization of 
learned features

Patches that result in 
high response

Layer 1

Layer 2



Why Deep Networks: Hierarchical Feature Extraction
Visualization of 

learned features
Patches that result in 

high response

Layer 3

Layer 4



Early Work
• Fukushima (1980) – Neo-Cognitron
• LeCun (1998) – Convolutional Neural Networks

• Similarities to Neo-Cognitron

• Many layered Networks trained with 
backpropagation
• Tried early but without much success

• Very slow
• Diffusion of gradient

• recent work has shown significant training 
improvements with various tricks (drop-out, 
unsupervised learning of early layers, etc.)



Prior Knowledge for Network Architecture

• We can put our prior knowledge about the task into 
the network by designing appropriate
• connectivity structure
• weight constraints
• neuron activation functions

• This is less intrusive than hand-designing the features
• but it still prejudices the network towards the particular way 

of solving the problem that we had in mind



Convolutional Nets
• Neural Networks with special type of architecture that is 

particularly good for image processing

Convolution layer: feature extraction

Subsampling layer: shift and distortion invariance

C S

feature 
maps

input image feature 
maps

subsample subsample final layer

SC



w13w12w11

w23w22w21

w33w32w31

convolve with threshold

w13w12w11

w23w22w21

w33w32w31

Feature extraction or Convolution layer

w13w12w11

w23w22w21

w33w32w31

• Recall how convolution works:

input image

convolved thresholded image = feature map

• Use convolution (and thresholding)  to detect the same feature at 
different image positions 

neuron



Feature extraction
• Convolution masks are learned

• tunable parameters of the network

• Shared weights: all neurons in a 
feature share the same weights 
• but not  the biases

• Thus all neurons detect the same 
feature at different positions in the 
input image
• if a feature is useful in one image 

location, it should be useful in all 
other locations

• also greatly reduces the number of 
tunable parameters

The red connections all 
have the same weight
The red connections all 
have the same weight
The red connections all 
have the same weight



Weight Sharing Constraints
• It is easy to modify  

backpropagation algorithm to 
incorporate weight sharing

• We compute the gradients as 
usual, and then modify the 
gradients so that they satisfy the 
constraints.
• so if the weights started off 

satisfying the constraints, 
they will continue to satisfy 
them



Feature extraction or Convolution layer

features

• Use several different 
feature types, each with its 
own mask, and the 
resulting map of replicated 
detectors

• Allows each patch of image 
to be represented in several 
ways

feature map 1
(convolve with mask 1)

feature map 2
(convolve with mask 2)

feature map 3
(convolve with mask 3)

feature map 4
(convolve with mask 4)

feature map 5
(convolve with mask 5)



• Subsampling layers reduce spatial resolution of each feature map
• weighted sum

• This achieves certain degree of shift and distortion invariance
• Weight sharing is also applied in subsampling layers

• reduce the effect of noise and shift or distortion

feature map

Subsampling Layer

subsampled



• Subsampling is also called pooling
• Instead of subsampling, sometimes max pooling works betters 

• replace weighted sum with max operation

feature map

Subsampling Layer

subsampled



• Subsampling achieves certain degree of shift and distortion 
invariance is

Subsampling Layer



Subsampling Layer



62

Convolutional Nets



Problem with Subsampling (Pooling)
• Averaging (or taking a max) of four pixels gets a small 

amount of shift invariance
• Problem to be aware of

• After several levels of pooling, we have lost information about 
the precise positions of things

• This makes it impossible to use the precise spatial 
relationships between high-level parts for recognition.



Le Net
• Yann LeCun and his collaborators developed a  

good recognizer for handwritten digits by using 
backpropagation in a convoluitonal net 

• LeNet uses knowledge about the invariance to 
design
• local connectivity
• weight-sharing
• pooling

• This net was used for reading ~10% of the checks 
in North America

• Look the impressive demos of LENET at 
http://yann.lecun.com



Conv Nets: Character Recognition
• http://yann.lecun.com/exdb/lenet/index.html

http://yann.lecun.com/exdb/lenet/index.html


ConvNet for ImageNet
• Krizhevsky et.al.(NIPS 2012) developed  deep 

convolutional neural net of the type pioneered by 
Yann LeCun

• Architecture:
• 7 hidden layers not counting some max pooling layers.
• the early layers were convolutional.
• the last two layers were globally connected.

• Activation function:
• rectified linear units in every hidden layer
• train much faster and are more expressive than logistic unit



ConvNet on Image Classification



Tricks to Improve Generalization

• To get more data:
• Use left-right reflections of the images
• Train on random 224x224 patches from the 256x256 images 

• At test time:
• combine the opinions from ten different patches: 

• four 224x224 corner patches plus the central 224x224 patch 
• the reflections of those five patches

• Use dropout to regularize weights in the fully connected layers
• half of the hidden units in a layer are randomly removed  for each 

training example
• This stops hidden units from relying too much on other hidden 

units



Training Deep Networks
• Difficulties of supervised training of deep networks

• Early layers of MLN do not get trained well
• Diffusion of Gradient – error attenuates as it propagates to earlier 

layers
• Exacerbated since top couple layers can usually learn any task 

"pretty well" and thus the error to earlier layers drops quickly as 
the top layers "mostly" solve the task– lower layers never get the 
opportunity to use their capacity to improve results, they just do a 
random feature map

• Need a way for early layers to do effective work
• Often not enough labeled data available while there may 

be lots of unlabeled data
• Can we use unsupervised/semi-supervised approaches to take 

advantage of the unlabeled data
• Deep networks tend to have more local minima problems 

than shallow networks during supervised training



Greedy Layer-Wise Training
• Greedy layer-wise training to insure lower layers learn
1. Train first layer using your data without the labels (unsupervised)

• we do not know targets at this level anyway
• can use the more abundant unlabeled data which is not part of the training set 

2. Freeze the first layer parameters and start training the second layer using 
the output of the first layer as the unsupervised input to the second layer

3. Repeat this for as many layers as desired
• This builds our set of robust features

4. Use the outputs of the final layer as inputs to a supervised layer/model and 
train the last supervised layer(s) 

• leave early weights frozen
5. Unfreeze all weights and fine tune the full network by training with a 

supervised approach, given the pre-processed weight settings



Greedy Layer-Wise Training
• Greedy layer-wise training avoids many of the problems of trying 

to train a deep net in a supervised fashion
• Each layer gets full learning focus in its turn since it is the only 

current "top" layer
• Can take advantage of the unlabeled data
• When you finally tune the entire network with supervised 

training the network weights have already been adjusted so 
that you are in a good error basin and just need fine tuning  
This helps with problems of

• Ineffective early layer learning
• Deep network local minima



Unsupervised Learning: Auto-Encoders
• A type of unsupervised learning which tries to discover generic features of the 

data
• Input sample = output 
• Learn identity function by learning important sub-features,  not by just passing 

through data

bottleneck



• Advantages
• MLP can learn complex mappings from inputs to 

outputs, based only on the training samples
• Easy to incorporate a lot of heuristics
• Many competitions won recently

• Disadvantages
• May be difficult to analyze and predict its behavior
• May take a long time to train
• May get trapped in a bad local minima
• A lot of tricks for successful implementation

Concluding Remarks
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