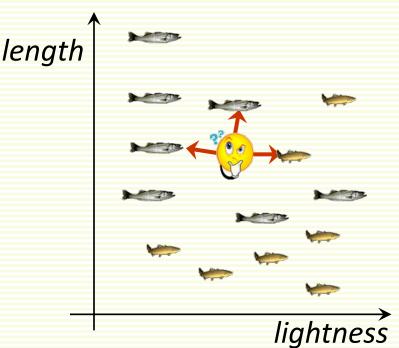
CS840a Machine Learning in Computer Vision Olga Veksler

Lecture 2 k Nearest Neighbors

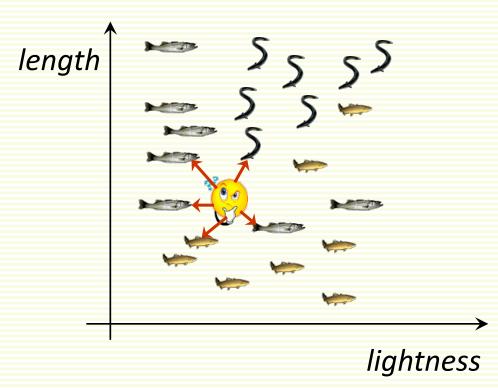
k-Nearest Neighbors

- classify an unknown example with the most common class among k closest examples
 - "tell me who your neighbors are, and I'll tell you who you are"
 - Example:
 - *k* = 3
 - 2 sea bass, 1 salmon
 - Classify as sea bass



kNN: Multiple Classes

- Easy to implement for multiple classes
- Example for k = 5
 - 3 fish species: salmon, sea bass, eel
 - 3 sea bass, 1 eel, 1 salmon \Rightarrow classify as sea bass

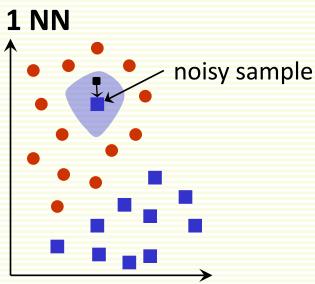


kNN: How to Choose k?

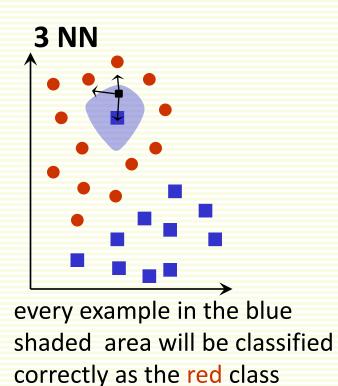
- In theory, if infinite number of samples available, the larger is *k*, the better is classification
- The caveat is that all k neighbors have to be close
 - Possible when infinite # samples available
 - Impossible in practice since # samples is finite

kNN: How to Choose k?

- Rule of thumb is *k* < sqrt(*n*), *n* is number of examples
 - interesting theoretical properties
- In practice, k = 1 is often used for efficiency, but can be sensitive to "noise"

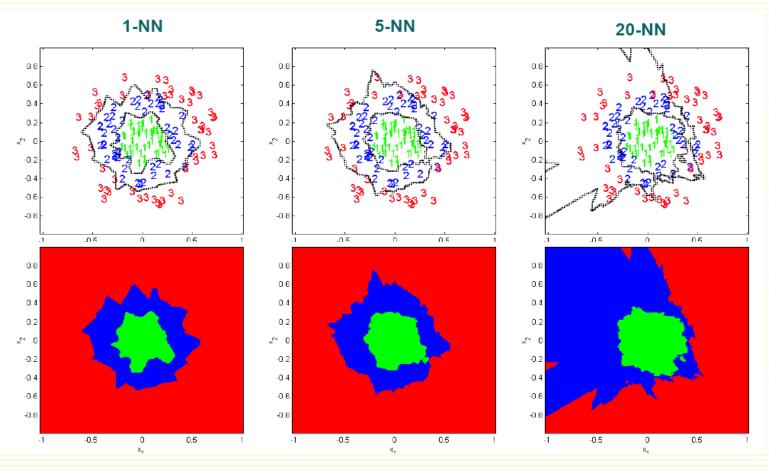


every example in the blue shaded area will be misclassified as the blue class



kNN: How to Choose k?

- larger k may improve performance, but too large k destroys locality, i.e. end up looking at samples that are not neighbors
- cross-validation (study later) may be used to choose **k**



picture from R. Gutierrez-Osuna

kNN: How Well does it Work?

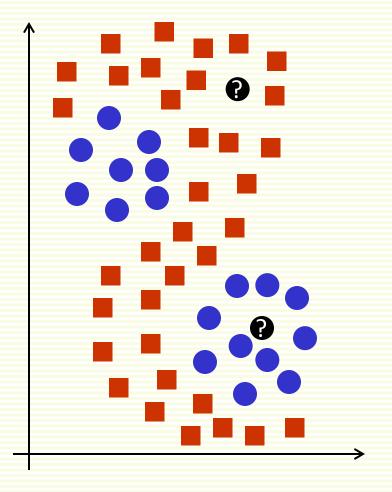
- kNN is simple and intuitive, but does it work?
- Theoretically, the best error rate is the Bayes rate **E***
 - Bayes error rate is the best (smallest) error rate a classifier can have, for a given problem, but we do not study it in this course
- Assume we have an unlimited number of samples
- kNN leads to an error rate greater than E*
- But even for k =1, as n → ∞, it can be shown that kNN error rate is smaller than 2E*
- As we increase k, the upper bound on the error gets better, that is the error rate (as n → ∞) for the kNN rule is smaller than cE*, with smaller c for larger k
- If we have lots of samples, kNN works well

kNN: Multi-Modal Distributions

 Most parametric distributions would not work for this 2 class classification problem:

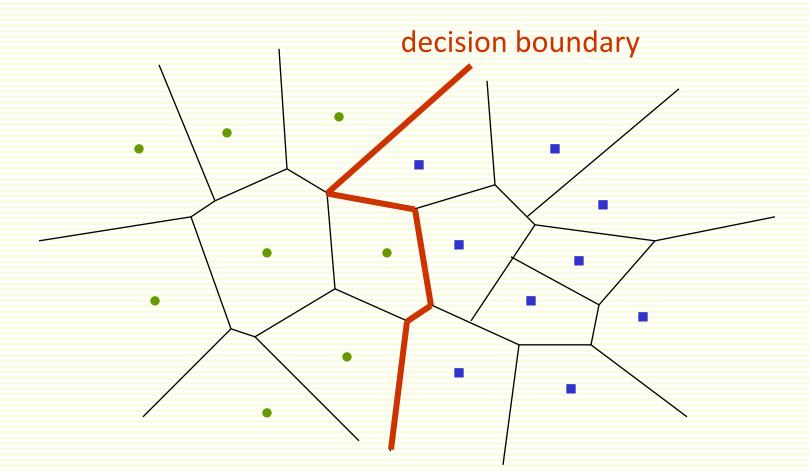
•

 Nearest neighbors will do reasonably well, provided we have a lot of samples



1NN Visualization

Voronoi tesselation is useful for visualization



kNN Selection of Distance

 So far we assumed we use Euclidian Distance to find the nearest neighbor:

$$D(a,b) = \sqrt{\sum_{k} (a_k - b_k)^2} = \sqrt{a \cdot b}$$

- Euclidean distance treats each feature as equally important
- However some features (dimensions) may be much more discriminative than other features

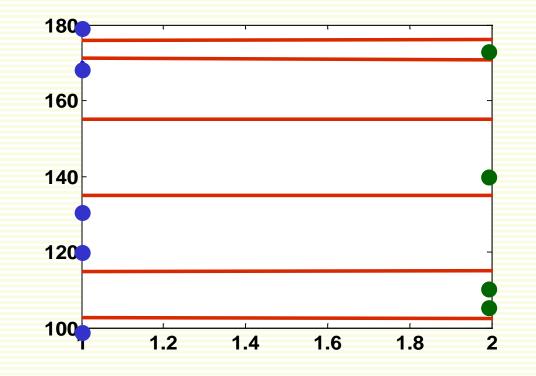
kNN Distance Selection: Extreme Example

- feature 1 gives the correct class: 1 or 2
- feature 2 gives irrelevant number from 100 to 200
- dataset: [1 150]
 - [2 110]
- classify **[1 100]**

$$D(\begin{bmatrix} 1\\100 \end{bmatrix}, \begin{bmatrix} 1\\150 \end{bmatrix}) = \sqrt{(1-1)^2 + (100-150)^2} = 50$$
$$D(\begin{bmatrix} 1\\100 \end{bmatrix}, \begin{bmatrix} 2\\110 \end{bmatrix}) = \sqrt{(1-2)^2 + (100-110)^2} = 10.5$$

- [1 100] is misclassified!
- The denser the samples, the less of this problem
- But we rarely have samples dense enough

kNN Distance Selection: Extreme Example



• Decision boundary is in red, and is really wrong because

- feature 1 is discriminative, but it's scale is small
- feature 2 gives no class information but its scale is large, it dominates distance calculation

kNN: Feature Normalization

- Notice that 2 features are on different scales:
- First feature takes values between 1 or 2
- Second feature takes values between 100 to 200
- Idea: normalize features to be on the same scale
- Different normalization approaches
- Linearly scale the range of each feature to be, say, in range [0,1]

$$f_{new} = \frac{f_{old} - f_{old}^{\min}}{f_{old}^{\max} - f_{old}^{\min}}$$

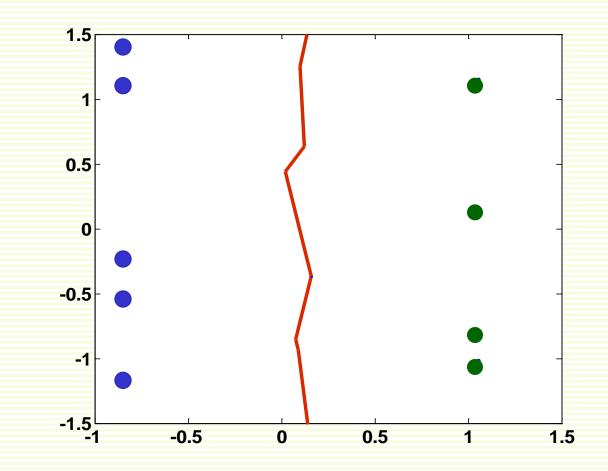
kNN: Feature Normalization

- Linearly scale to **0** mean variance **1**:
- If Z is a random variable of mean m and variance G², then (Z - m)/G has mean 0 and variance 1
- For each feature *f* let the new rescaled feature be

$$f_{new} = \frac{f_{old} - \mu}{\sigma}$$

• Let us apply this normalization to previous example

kNN: Feature Normalization



kNN: Selection of Distance

 Feature normalization does not help in high dimensional spaces if most features are irrelevant

$$D(a,b) = \sqrt{\sum_{k} (a_{k} - b_{k})^{2}} = \sqrt{\sum_{i} (a_{i} - b_{i})^{2} + \sum_{j} (a_{j} - b_{j})^{2}}$$

discriminative noisy
features features

 If the number of useful features is smaller than the number of noisy features, Euclidean distance is dominated by noise

kNN: Feature Weighting

• Scale each feature by its importance for classification

$$D(a,b) = \sqrt{\sum_{k} w_{k} (a_{k} - b_{k})^{2}}$$

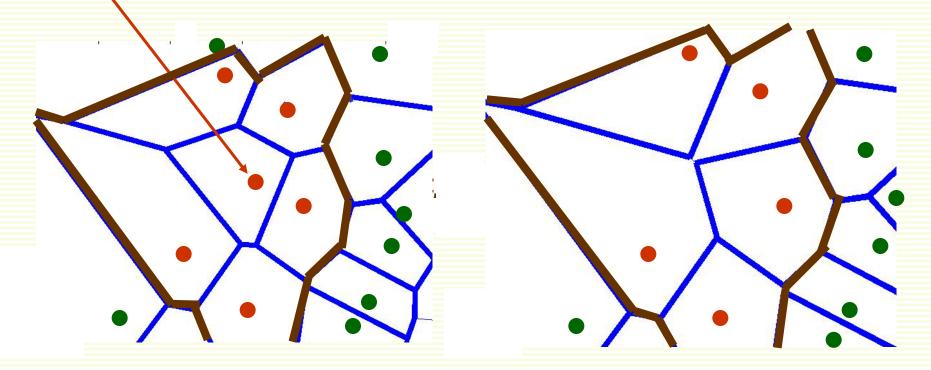
- Can use our prior knowledge about which features are more important
- Can learn the weights w_k using cross-validation (to be covered later)

kNN: Computational Complexity

- Basic kNN algorithm stores all examples
- Suppose we have **n** examples each of dimension **d**
- **O(d)** to compute distance to one example
- O(nd) to find one nearest neighbor
- More time to find **k** closest examples
- Very expensive for a large number of samples
- But we need a large number of samples for kNN to work well!

Reducing Complexity: editing 1NN

 If all Voronoi neighbors have the same class, a sample is useless, remove it



- Number of samples decreases
- Decision boundary does not change

Reducing Complexity: Partial Distance

- Have current *k* closes samples
- Abort distance computation if partial distance is already greater than the full distance to the current k closest samples
- Advantages:
 - complexity decreases
 - we are guaranteed to find closes neighbor(s)
- Disadvantages:
 - how much complexity decreases depends on our luck and data layout

Reducing Complexity

- Other methods for reducing complexity
 - reduce dimensionality of the data
 - find projection to a lower dimensional space so that the distances between samples are approximately the same
 - PCA
 - Projection to a Random subspace
 - use smart data structures, like kd trees

kNN Summary

- Advantages
 - Can be applied to the data from any distribution
 - for example, data does not have to be separable with a linear boundary
 - Very simple and intuitive
 - Good classification if the number of samples is large enough
- Disadvantages
 - Choosing k may be tricky
 - Test stage is computationally expensive
 - No training stage, all the work is done during the test stage
 - This is actually the opposite of what we want. Usually we can afford training step to take a long time, but we want fast test step
 - Need large number of samples for accuracy