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Outline

• Computer Vision Concepts
• Filtering 
• Edge Detection
• Image Features
• Template matching based on

• Correlation
• SSD
• Normalized Cross Correlation

• Motion and Optical Flow Field 



Digital Grayscale Image

Slide Credit: D. Hoeim
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Digital Grayscale Image

• Image is array f(x,y)   
• approximates continuous 

function f(x,y) from R2 to R:

• f(x,y) is the intensity or 
grayscale at position (x,y)
• proportional to brightness  of 

the real world point it images
• standard range: 0, 1, 2,…., 255
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Digital Color Image
• Color image is three 

functions pasted together
• Write this as a vector-

valued function: 

( )
( )
( )
( )















=

x,yb
x,yg
x,yr

y,xf















50
50

200















120
10
0



R G B

Digital Color Image
• Can consider color image as 3 separate images: R, G, B 



Image filtering
• Given f(x,y) filtering computes a new 

image g(x,y)
• As a function of local neighborhood at 

each position (x,y)
g(x,y) = f(x,y)+f(x-1,y)× f(x,y-1) 

1 2 4 2 8
9 2 2 7 5
2 8 1 3 9
4 3 2 7 2
2 2 2 6 1
8 3 2 5 4

g(2,3) = 3 + 4 × 8 = 35

g(4,5) = 4 + 5 × 1 = 9

g(3,1) = 7 + 2×4 - 3×9 = -12

• Linear filtering: function is a weighted 
sum (or difference) of pixel values

g(x,y) = f(x,y) + 2×f(x-1,y-1) - 3×f(x+1,y+1) 
• Many applications:

• Enhance images
• denoise, resize, increase contrast, …

• Extract information from images
• Texture, edges, distinctive points …

• Detect patterns
• Template matching



Image Filtering: Moving Average
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Image Filtering: Moving Average
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Image Filtering: Moving Average
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Image Filtering: Moving Average
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Image Filtering: Moving Average



Correlation Filtering

• Write as equation, averaging window  (2k+1)x(2k+1)
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loop over all pixels in 
neighborhood around  pixel f(i,j)

uniform weight for 
each pixel

• Generalize by allowing different weights for different pixels in the 
neighborhood
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Correlation filtering
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• This is called cross-correlation, denoted  g = H ⊗ f
• Filtering an image: replace each pixel with a linear 

combination of its neighbors
• The filter kernel or mask H is gives the weights in linear 

combination



Averaging Filter

• What is kernel H for the moving average example?
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box filter

H[u,v] = ? g(x,y)f(x,y)

g = H ⊗ f



Smoothing by Averaging

original filtered

• What if the mask is larger than 3x3 ? 

• Pictorial representation of box filter:
• white means large value, black means low value



Effect of Average Filter

7 × 7

9 × 9

11 × 11

Gaussian noise Salt and Pepper noise



Gaussian Filter
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• May want nearest neighboring pixels to have the most influence

This kernel H is an 
approximation of a 2d 

Gaussian function:

H[u,v]f(x,y)
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Gaussian Filters: Mask Size
• Gaussian has infinite domain, discrete filters use finite mask

• larger mask contributes to more smoothing

σ = 5 with 10 x 10 mask σ = 5 with 30 x 30 mask

blue weights 
are so small 
they are 
effectively 0



Gaussian filters: Variance
• Variance (σ) also contributes to the extent of smoothing

• larger σ gives less rapidly decreasing weights → can construct a larger mask 
with non-negligible weights

σ = 2 with 30 x 30 kernel σ = 5 with 30 x 30 kernel σ = 8 with 30 x 30 kernel



Average vs. Gaussian Filter

mean filter Gaussian filter



More Average vs. Gaussian Filter

mean filter Gaussian filter

5 × 5

15 × 15

31 × 31



Properties of Smoothing Filters

• Values positive 
• Sum to 1 

• constant regions same as input
• overall image brightness stays unchanged

• Amount of smoothing proportional to mask size
• larger mask means more extensive smoothing



Filtering an Impulse Signal
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• What is the result of filtering the impulse signal 
(image) with arbitrary kernel H?

H[u,v]

g(x,y)=?f(x,y)

⊗ = 



Filtering an Impulse Signal
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• What is the result of filtering the impulse signal 
(image) with arbitrary kernel H?

H[u,v]

g(x,y)=?f(x,y)
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Convolution
• Convolution:

• Flip the mask in both dimensions 
• bottom to top, right to left

• Then apply cross-correlation
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• Notation for convolution: g = H*f



Convolution vs. Correlation

• Convolution: g = H*f 

( ) [ ] ( )∑ ∑
−= −=

−−=
k

ku

k

kv

vj,uifv,uHj,ig

• Correlation: g = H ⊗ f
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• For  Gaussian or box filter, how the outputs differ? 
• If the input is an impulse signal, how the outputs differ?



Derivatives and Edges

image
intensity function

(along horizontal scanline) first derivative

edges correspond to
extrema of derivative

• An edge is a place of rapid change in intensity



Derivatives with Convolution
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• For 2D function f(x,y), partial derivative in horizontal 
direction

• For discrete data, approximate

• Similarly, approximate vertical partial derivative (wrt y)

• How to implement as  a convolution?



Image Partial Derivatives
Which is with respect to x?
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Finite Difference Filters
• Other filters for derivative approximation
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Image Gradient

• Combine both partial derivatives into vector

• Gradient points in the direction of most rapid increase in intensity
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gradient orientation

• Edge strength
22









∂
∂

+






∂
∂

=∇
y
f

x
ff

gradient magnitude

image gradient



Sobel Filter for Vertical Gradient Component

-101

-202

-101

Vertical Edge
(absolute value)

Sobel

Slide Credit: D. Hoeim



Sobel Filter for Horizontal Gradient Component

-1-2-1

000

121

Horizontal Edge
(absolute value)

Sobel

Slide Credit: D. Hoeim



Edge Detection

• Smooth image
• gets rid of noise and small detail

• Compute Image gradient (with Sobel filter, etc)
• Pixels with large gradient magnitude are marked as edges
• Can also apply non-maximum suppression to “thin” the 

edges and other post-processing

canny edge detector



Image Features

• Edge features capture places where something interesting 
is happening
• large change in image intensity

• Edges is just one type of image features or “interest 
points”

• Various type of corner features, etc. are popular in vision
• Other features:

corners stable regions SIFT



What does this Mask Detect?

2 2 -4 -4 2 2

2 2 -4 -4 2 2

2 2 -4 -4 2 2

2 2 -4 -4 2 2

2 2 -4 -4 2 2 strong negative response strong positive response

• Masks “looks like” the feature it’s trying to detect



What Does this Mask Detect?

2 2 -2 -2
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Template matching
• Goal: find       in image
• Main challenge: What 

is a good similarity or 
distance measure 
between two patches?
• Correlation
• Zero-mean correlation
• Sum Square Difference
• Normalized Cross 

Correlation

Slide Credit: D. Hoeim



Method 0: Correlation
• Goal: find       in image
• Filter the image with H = “eye patch”

Input Filtered Image

],[],[],[
,

lnkmflkHnmg
lk
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What went wrong?

f = image
H = filter

Slide Credit: D. Hoeim



Method 1: zero-mean Correlation
• Goal: find       in image
• Filter the image with zero-mean eye

Input Filtered Image (scaled) Thresholded Image
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True detections

False 
detections

mean of template H

Slide Credit: D. Hoeim



Method 3: Sum of Squared Differences
• Goal: find       in image

Input 1- sqrt(SSD) Thresholded Image
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True detections

Slide Credit: D. Hoeim



Problem with SSD
• SSD is sensitive to changes in brightness

Input 1- sqrt(SSD)

Slide Credit: D. Hoeim

(      - )2 = large
(      - )2 = medium



Method 3: Normalized Cross-Correlation
• Goal: find       in image

mean image patchmean template
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Input

Normalized X-Correlation

Thresholded Image

True detections

Slide Credit: D. Hoeim

Method 3: Normalized Cross-Correlation



Comparison
• Zero-mean filter: fastest but not a great 

matcher
• SSD: next fastest, sensitive to overall 

intensity
• Normalized cross-correlation: slowest, 

but invariant to local average intensity 
and contrast

Slide Credit: D. Hoeim



Optical flow

• How to estimate pixel motion from image I1 to image I2 ?
• Solve pixel correspondence problem

• given a pixel in I1 , find pixels with similar color in I2

• Frequently made assumptions
• color constancy:  a point in I1 looks the same in I2

• For grayscale images, this is brightness constancy
• small motion:  points do not move very far

• This is called the optical flow problem

first image I1 second image I2



Optical Flow Field



• Optical flow field is the apparent motion of brightness 
patterns between 2 (or several) frames in an image 
sequence

• Why does brightness change between frames?
• Assuming that illumination does not change:

• changes are due to the RELATIVE MOTION between the scene 
and the camera

• There are 3 possibilities:
• Camera still, moving scene
• Moving camera, still scene
• Moving camera, moving scene

Optical Flow and Motion Field



Motion Field (MF)

• The MF assigns a velocity vector to each pixel in the 
image

• These velocities are induced by the relative motion 
between the camera and the 3D scene

• The MF is the projection of the 3D velocities on the 
image plane



Examples of Motion Fields

(a) (b)

(c) (d)

(a) Translation perpendicular to a surface. (b) Rotation about axis 
perpendicular to image plane. (c) Translation parallel to a surface at a 
constant distance. (d) Translation parallel to an obstacle in front of a more 
distant background.



Optical Flow vs. Motion Field

(a) (b)

(a) A smooth sphere is rotating 
under constant illumination. 
Thus the optical flow field is 
zero, but the motion field is 
not

(b) A fixed sphere is illuminated 
by a moving source—the 
shading of the image changes. 
Thus the motion field is zero, 
but the optical flow field is not

• Optical Flow is the apparent motion of brightness   patterns
• We equate Optical Flow Field with Motion Field
• Frequently works, but now always: 



Optical Flow vs. Motion Field

• Often (but not always) optical flow corresponds to 
the true motion of the scene



Human Motion System
Illusory Snakes

from Gary Bradski and Sebastian Thrun



Computing Optical flow: Direct Search

• Can perform direct search for pixel correspondence
• Individual pixels are not reliable to match

first image I1 second image I2

? ?

?



Computing Optical flow: Direct Search

• Can perform direct search for pixel correspondence
• Individual pixels are not reliable to match
• For each pixel, take a patch of pixels around it, and match patches

• Use any of template matching cost functions studied previously

first image I1 second image I2



Computing Optical flow: Direct Search

• Can perform direct search for pixel correspondence
• Individual pixels are not reliable to match
• For each pixel, take a patch of pixels around it, and match patches

• Use any of template matching cost functions studied previously

first image I1 second image I2

• Assuming small motion lets us limit the search to a small area 
around pixel’s position in the first image



Computing Optical Flow without Direct Search

• Can find optical flow without direct search
• Very small motion (not more than one pixel)

• will relax this later

• Color constancy
• Can also be relaxed

first image I1 second image I2



Computing Optical Flow: Brightness Constancy Equation

• Let P be a moving point in 3D:
• At time t, P has coordinates (X(t),Y(t),Z(t))
• Let p=(x(t),y(t)) be the coordinates of its image at 

time t
• Let E(x(t),y(t),t) be the brightness at p at time t.

• Brightness Constancy Assumption:
• As P moves over time, E(x(t),y(t),t) remains 

constant



Computing Optical Flow: Brightness Constancy Equation

• Taking derivative with respect to time: 

• Rewriting: 



Computing Optical Flow: Brightness Constancy Equation

frame spatial gradient optical flow derivative across frames

• This is one equation with two unknowns:

• Let’s group some terms together: 
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Computing Optical Flow: Brightness Constancy Equation

• Need to get more equations for a pixel:
• Idea:  impose additional constraints

• assume that the flow field is smooth locally
• i.e. pretend the pixel’s neighbors have the same (u,v)

• If we use a 5x5 window, that gives us 25 equations per pixel!
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* Picture from Khurram Hassan-Shafique CAP5415 Computer Vision 2003

*

Video Sequence



Optical Flow Results

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Revisiting the small motion assumption

• Is this motion small enough?
• Probably not—it’s much larger than one pixel
• How might we solve this problem?



Reduce the resolution!

motion is about 1 pixel



image Iimage H

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation



Iterative Lukas-Kanade Refinement

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

solve for optical flow



Iterative Lukas-Kanade Refinement

image Iimage H

solve for optical flow

wrap H towards I using 
estimated flow field

H I

• Before wrapping, motion of 3.9 pixels
• Estimated flow is 1.4 pixels to the left

• After wrapping
• Residual motion is 1.1 pixels to the left

H I

move by 2.8 since image twice bigger



Iterative Lukas-Kanade Refinement

image Iimage H

solve for optical flow

wrap H towards I using 
estimated flow field

solve for optical flow

• Continue iterations until reach the bottom 
of the pyramid
• Solve for optical flow
• Wrap H toward I using estimated optical flow



Optical Flow Results

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Modern OF Algorithms

• A lot of development in the past 10 years
• See Middlebury Optical Flow Evaluation

• http://vision.middlebury.edu/flow/
• Dataset with ground truth

http://vision.middlebury.edu/flow/
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