
CS9840
Machine Learning in Computer Vision

Olga Veksler

Lecture 3
A Few Computer Vision Concepts

Some Slides are from Cornelia, Fermüller, Mubarak Shah,
Gary Bradski, Sebastian Thrun, Derek Hoiem

Outline

• Computer Vision Concepts
• Filtering
• Edge Detection
• Image Features
• Template matching based on

• Correlation
• SSD
• Normalized Cross Correlation

• Motion and Optical Flow Field

Digital Grayscale Image

Slide Credit: D. Hoeim

10 9 54 7 54 72

13 52 26 42 6 57

8 2 50 23 54 9

22 76 57 86 24 86

9 54 57 26 65 59

35 68 98 65 45 78

5 0 34 7 86 7

Digital Grayscale Image

• Image is array f(x,y)
• approximates continuous

function f(x,y) from R2 to R:

• f(x,y) is the intensity or
grayscale at position (x,y)
• proportional to brightness of

the real world point it images
• standard range: 0, 1, 2,…., 255

x

y

(0,0)

Digital Color Image
• Color image is three

functions pasted together
• Write this as a vector-

valued function:

()
()
()
()

=

x,yb
x,yg
x,yr

y,xf

50
50

200

120
10
0

R G B

Digital Color Image
• Can consider color image as 3 separate images: R, G, B

Image filtering
• Given f(x,y) filtering computes a new

image g(x,y)
• As a function of local neighborhood at

each position (x,y)
g(x,y) = f(x,y)+f(x-1,y)× f(x,y-1)

1 2 4 2 8
9 2 2 7 5
2 8 1 3 9
4 3 2 7 2
2 2 2 6 1
8 3 2 5 4

g(2,3) = 3 + 4 × 8 = 35

g(4,5) = 4 + 5 × 1 = 9

g(3,1) = 7 + 2×4 - 3×9 = -12

• Linear filtering: function is a weighted
sum (or difference) of pixel values

g(x,y) = f(x,y) + 2×f(x-1,y-1) - 3×f(x+1,y+1)
• Many applications:

• Enhance images
• denoise, resize, increase contrast, …

• Extract information from images
• Texture, edges, distinctive points …

• Detect patterns
• Template matching

Image Filtering: Moving Average

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

f(x,y) g(x,y)

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

f(x,y) g(x,y)

Image Filtering: Moving Average

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

f(x,y) g(x,y)

Image Filtering: Moving Average

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

f(x,y) g(x,y)

Image Filtering: Moving Average

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

f(x,y) g(x,y)

Image Filtering: Moving Average

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

f(x,y) g(x,y)

Image Filtering: Moving Average

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

f(x,y) g(x,y)

sticking out not sticking out

sharp border border washed out

Image Filtering: Moving Average

Correlation Filtering

• Write as equation, averaging window (2k+1)x(2k+1)

()
()

()∑ ∑
−= −=

++
+

=
k

ku

k

kv

vj,uif
k

j,ig 212
1

loop over all pixels in
neighborhood around pixel f(i,j)

uniform weight for
each pixel

• Generalize by allowing different weights for different pixels in the
neighborhood

() [] ()∑ ∑
−= −=

++=
k

ku

k

kv

vj,uifv,uHj,ig

non-uniform weight
for each pixel

2k+1

-k,-k

k,k

Correlation filtering

() [] ()∑ ∑
−= −=

++=
k

ku

k

kv

vj,uifv,uHj,ig

• This is called cross-correlation, denoted g = H ⊗ f
• Filtering an image: replace each pixel with a linear

combination of its neighbors
• The filter kernel or mask H is gives the weights in linear

combination

Averaging Filter

• What is kernel H for the moving average example?

0 10 20 30 30
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

111
111
111

box filter

H[u,v] = ? g(x,y)f(x,y)

g = H ⊗ f

Smoothing by Averaging

original filtered

• What if the mask is larger than 3x3 ?

• Pictorial representation of box filter:
• white means large value, black means low value

Effect of Average Filter

7 × 7

9 × 9

11 × 11

Gaussian noise Salt and Pepper noise

Gaussian Filter

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 2 1

2 4 2

1 2 1

• May want nearest neighboring pixels to have the most influence

This kernel H is an
approximation of a 2d

Gaussian function:

H[u,v]f(x,y)

16
1

Gaussian Filters: Mask Size
• Gaussian has infinite domain, discrete filters use finite mask

• larger mask contributes to more smoothing

σ = 5 with 10 x 10 mask σ = 5 with 30 x 30 mask

blue weights
are so small
they are
effectively 0

Gaussian filters: Variance
• Variance (σ) also contributes to the extent of smoothing

• larger σ gives less rapidly decreasing weights → can construct a larger mask
with non-negligible weights

σ = 2 with 30 x 30 kernel σ = 5 with 30 x 30 kernel σ = 8 with 30 x 30 kernel

Average vs. Gaussian Filter

mean filter Gaussian filter

More Average vs. Gaussian Filter

mean filter Gaussian filter

5 × 5

15 × 15

31 × 31

Properties of Smoothing Filters

• Values positive
• Sum to 1

• constant regions same as input
• overall image brightness stays unchanged

• Amount of smoothing proportional to mask size
• larger mask means more extensive smoothing

Filtering an Impulse Signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i

• What is the result of filtering the impulse signal
(image) with arbitrary kernel H?

H[u,v]

g(x,y)=?f(x,y)

⊗ =

Filtering an Impulse Signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i

• What is the result of filtering the impulse signal
(image) with arbitrary kernel H?

H[u,v]

g(x,y)=?f(x,y)

⊗ =
i h g

f e d

c b a

Convolution
• Convolution:

• Flip the mask in both dimensions
• bottom to top, right to left

• Then apply cross-correlation

() [] ()∑ ∑
−= −=

−−=
k

ku

k

kv

vj,uifv,uHj,ig

2k+1
-k,-k

k,k

fH H
flipped

• Notation for convolution: g = H*f

Convolution vs. Correlation

• Convolution: g = H*f

() [] ()∑ ∑
−= −=

−−=
k

ku

k

kv

vj,uifv,uHj,ig

• Correlation: g = H ⊗ f

() [] ()∑ ∑
−= −=

++=
k

ku

k

kv

vj,uifv,uHj,ig

• For Gaussian or box filter, how the outputs differ?
• If the input is an impulse signal, how the outputs differ?

Derivatives and Edges

image
intensity function

(along horizontal scanline) first derivative

edges correspond to
extrema of derivative

• An edge is a place of rapid change in intensity

Derivatives with Convolution

ε
ε

ε

),(),(lim),(
0

yxfyxf
x

yxf −+
=

∂
∂

→

1
),(),1(),(yxfyxf

x
yxf −+

≈
∂

∂

• For 2D function f(x,y), partial derivative in horizontal
direction

• For discrete data, approximate

• Similarly, approximate vertical partial derivative (wrt y)

• How to implement as a convolution?

Image Partial Derivatives
Which is with respect to x?

-1
1

1
-1or

-1 1

x
yxf

∂
∂),(

y
yxf

∂
∂),(

1 -1
or

Finite Difference Filters
• Other filters for derivative approximation

10-1
10-1
10-1

-1-1-1
000
111

Prewitt: Hx = Hy =

10-1
20-2
10-1

-1-2-1
000
121

Sobel: Hx = Hy =

6
1

6
1

8
1

8
1

Image Gradient

• Combine both partial derivatives into vector

• Gradient points in the direction of most rapid increase in intensity

∂
∂

∂
∂

=∇
y
f,

x
ff

∂
∂

=∇ 0,
x
ff

∂
∂

=∇
y
f,f 0

∂
∂

∂
∂

=∇
y
f,

x
ff

∂
∂

∂
∂

= −

x
f

y
f1tanθ

• Direction perpendicular to edge:

gradient orientation

• Edge strength
22

∂
∂

+

∂
∂

=∇
y
f

x
ff

gradient magnitude

image gradient

Sobel Filter for Vertical Gradient Component

-101

-202

-101

Vertical Edge
(absolute value)

Sobel

Slide Credit: D. Hoeim

Sobel Filter for Horizontal Gradient Component

-1-2-1

000

121

Horizontal Edge
(absolute value)

Sobel

Slide Credit: D. Hoeim

Edge Detection

• Smooth image
• gets rid of noise and small detail

• Compute Image gradient (with Sobel filter, etc)
• Pixels with large gradient magnitude are marked as edges
• Can also apply non-maximum suppression to “thin” the

edges and other post-processing

canny edge detector

Image Features

• Edge features capture places where something interesting
is happening
• large change in image intensity

• Edges is just one type of image features or “interest
points”

• Various type of corner features, etc. are popular in vision
• Other features:

corners stable regions SIFT

What does this Mask Detect?

2 2 -4 -4 2 2

2 2 -4 -4 2 2

2 2 -4 -4 2 2

2 2 -4 -4 2 2

2 2 -4 -4 2 2 strong negative response strong positive response

• Masks “looks like” the feature it’s trying to detect

What Does this Mask Detect?

2 2 -2 -2

2 2 -2 -2

-2 -2 2 2

-2 -2 2 2

strong negative response strong positive response

Template matching
• Goal: find in image
• Main challenge: What

is a good similarity or
distance measure
between two patches?
• Correlation
• Zero-mean correlation
• Sum Square Difference
• Normalized Cross

Correlation

Slide Credit: D. Hoeim

Method 0: Correlation
• Goal: find in image
• Filter the image with H = “eye patch”

Input Filtered Image

],[],[],[
,

lnkmflkHnmg
lk

++=∑

What went wrong?

f = image
H = filter

Slide Credit: D. Hoeim

Method 1: zero-mean Correlation
• Goal: find in image
• Filter the image with zero-mean eye

Input Filtered Image (scaled) Thresholded Image

)],[()],[(],[
,

lnkmfHlkHnmg
lk

++−=∑

True detections

False
detections

mean of template H

Slide Credit: D. Hoeim

Method 3: Sum of Squared Differences
• Goal: find in image

Input 1- sqrt(SSD) Thresholded Image

2

,

)],[],[(],[lnkmflkHnmg
lk

++−=∑

True detections

Slide Credit: D. Hoeim

Problem with SSD
• SSD is sensitive to changes in brightness

Input 1- sqrt(SSD)

Slide Credit: D. Hoeim

(-)2 = large
(-)2 = medium

Method 3: Normalized Cross-Correlation
• Goal: find in image

mean image patchmean template

5.0

,

2
,

,

2

,
,

)],[()],[(

)],[)(],[(
],[

−++−

−++−
=

∑ ∑

∑

lk
nm

lk

nm
lk

flnkmfHlkH

flnkmfHlkH
nmg

Slide Credit: D. Hoeim

Input

Normalized X-Correlation

Thresholded Image

True detections

Slide Credit: D. Hoeim

Method 3: Normalized Cross-Correlation

Comparison
• Zero-mean filter: fastest but not a great

matcher
• SSD: next fastest, sensitive to overall

intensity
• Normalized cross-correlation: slowest,

but invariant to local average intensity
and contrast

Slide Credit: D. Hoeim

Optical flow

• How to estimate pixel motion from image I1 to image I2 ?
• Solve pixel correspondence problem

• given a pixel in I1 , find pixels with similar color in I2

• Frequently made assumptions
• color constancy: a point in I1 looks the same in I2

• For grayscale images, this is brightness constancy
• small motion: points do not move very far

• This is called the optical flow problem

first image I1 second image I2

Optical Flow Field

• Optical flow field is the apparent motion of brightness
patterns between 2 (or several) frames in an image
sequence

• Why does brightness change between frames?
• Assuming that illumination does not change:

• changes are due to the RELATIVE MOTION between the scene
and the camera

• There are 3 possibilities:
• Camera still, moving scene
• Moving camera, still scene
• Moving camera, moving scene

Optical Flow and Motion Field

Motion Field (MF)

• The MF assigns a velocity vector to each pixel in the
image

• These velocities are induced by the relative motion
between the camera and the 3D scene

• The MF is the projection of the 3D velocities on the
image plane

Examples of Motion Fields

(a) (b)

(c) (d)

(a) Translation perpendicular to a surface. (b) Rotation about axis
perpendicular to image plane. (c) Translation parallel to a surface at a
constant distance. (d) Translation parallel to an obstacle in front of a more
distant background.

Optical Flow vs. Motion Field

(a) (b)

(a) A smooth sphere is rotating
under constant illumination.
Thus the optical flow field is
zero, but the motion field is
not

(b) A fixed sphere is illuminated
by a moving source—the
shading of the image changes.
Thus the motion field is zero,
but the optical flow field is not

• Optical Flow is the apparent motion of brightness patterns
• We equate Optical Flow Field with Motion Field
• Frequently works, but now always:

Optical Flow vs. Motion Field

• Often (but not always) optical flow corresponds to
the true motion of the scene

Human Motion System
Illusory Snakes

from Gary Bradski and Sebastian Thrun

Computing Optical flow: Direct Search

• Can perform direct search for pixel correspondence
• Individual pixels are not reliable to match

first image I1 second image I2

? ?

?

Computing Optical flow: Direct Search

• Can perform direct search for pixel correspondence
• Individual pixels are not reliable to match
• For each pixel, take a patch of pixels around it, and match patches

• Use any of template matching cost functions studied previously

first image I1 second image I2

Computing Optical flow: Direct Search

• Can perform direct search for pixel correspondence
• Individual pixels are not reliable to match
• For each pixel, take a patch of pixels around it, and match patches

• Use any of template matching cost functions studied previously

first image I1 second image I2

• Assuming small motion lets us limit the search to a small area
around pixel’s position in the first image

Computing Optical Flow without Direct Search

• Can find optical flow without direct search
• Very small motion (not more than one pixel)

• will relax this later

• Color constancy
• Can also be relaxed

first image I1 second image I2

Computing Optical Flow: Brightness Constancy Equation

• Let P be a moving point in 3D:
• At time t, P has coordinates (X(t),Y(t),Z(t))
• Let p=(x(t),y(t)) be the coordinates of its image at

time t
• Let E(x(t),y(t),t) be the brightness at p at time t.

• Brightness Constancy Assumption:
• As P moves over time, E(x(t),y(t),t) remains

constant

Computing Optical Flow: Brightness Constancy Equation

• Taking derivative with respect to time:

• Rewriting:

Computing Optical Flow: Brightness Constancy Equation

frame spatial gradient optical flow derivative across frames

• This is one equation with two unknowns:

• Let’s group some terms together:

0=
∂
∂

+
∂
∂

+
∂
∂

t
E

dt
dy

y
E

dt
dx

x
E

∂
∂
∂
∂

=∇

y
E
x
E

E

=

dt
dy
dt
dx

v

u

t
EEt ∂
∂

=

• Equation becomes: [] tEvuE −=⋅∇

Computing Optical Flow: Brightness Constancy Equation

• Need to get more equations for a pixel:
• Idea: impose additional constraints

• assume that the flow field is smooth locally
• i.e. pretend the pixel’s neighbors have the same (u,v)

• If we use a 5x5 window, that gives us 25 equations per pixel!

() [] ()iti pEvupE −=⋅∇

() ()
() ()

() ()

()
()

()

−=

25

2

1

2525

22

11

pE

pE
pE

v
u

pEpE

pEpE
pEpE

t

t

t

yx

yx

yx

matrix E
25x2

vector d
2x1

vector b
25x1

* Picture from Khurram Hassan-Shafique CAP5415 Computer Vision 2003

*

Video Sequence

Optical Flow Results

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Revisiting the small motion assumption

• Is this motion small enough?
• Probably not—it’s much larger than one pixel
• How might we solve this problem?

Reduce the resolution!

motion is about 1 pixel

image Iimage H

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation

Iterative Lukas-Kanade Refinement

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

solve for optical flow

Iterative Lukas-Kanade Refinement

image Iimage H

solve for optical flow

wrap H towards I using
estimated flow field

H I

• Before wrapping, motion of 3.9 pixels
• Estimated flow is 1.4 pixels to the left

• After wrapping
• Residual motion is 1.1 pixels to the left

H I

move by 2.8 since image twice bigger

Iterative Lukas-Kanade Refinement

image Iimage H

solve for optical flow

wrap H towards I using
estimated flow field

solve for optical flow

• Continue iterations until reach the bottom
of the pyramid
• Solve for optical flow
• Wrap H toward I using estimated optical flow

Optical Flow Results

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Modern OF Algorithms

• A lot of development in the past 10 years
• See Middlebury Optical Flow Evaluation

• http://vision.middlebury.edu/flow/
• Dataset with ground truth

http://vision.middlebury.edu/flow/

	CS9840 �Machine Learning in Computer Vision Olga Veksler
	Outline
	Digital Grayscale Image
	Digital Grayscale Image
	Digital Color Image
	Digital Color Image
	Image filtering
	Image Filtering: Moving Average
	Slide Number 9
	Image Filtering: Moving Average
	Image Filtering: Moving Average
	Image Filtering: Moving Average
	Image Filtering: Moving Average
	Image Filtering: Moving Average
	 Correlation Filtering
	Correlation filtering
	Averaging Filter
	Smoothing by Averaging
	Effect of Average Filter
	Gaussian Filter
	Gaussian Filters: Mask Size
	Gaussian filters: Variance
	Average vs. Gaussian Filter
	More Average vs. Gaussian Filter
	Properties of Smoothing Filters
	Filtering an Impulse Signal
	Filtering an Impulse Signal
	Convolution
	Convolution vs. Correlation
	Derivatives and Edges
	Derivatives with Convolution
	Image Partial Derivatives
	Finite Difference Filters
	Image Gradient
	Sobel Filter for Vertical Gradient Component
	Sobel Filter for Horizontal Gradient Component
	Edge Detection
	Image Features
	 What does this Mask Detect?
	 What Does this Mask Detect?
	Template matching
	Method 0: Correlation
	Method 1: zero-mean Correlation
	Method 3: Sum of Squared Differences
	Problem with SSD
	Method 3: Normalized Cross-Correlation
	Slide Number 47
	Comparison
	Optical flow
	Optical Flow Field
	Optical Flow and Motion Field
	Motion Field (MF)
	Examples of Motion Fields
	Optical Flow vs. Motion Field
	 Optical Flow vs. Motion Field
	Human Motion System�Illusory Snakes
	Computing Optical flow: Direct Search
	Computing Optical flow: Direct Search
	Computing Optical flow: Direct Search
	Computing Optical Flow without Direct Search
	Computing Optical Flow: Brightness Constancy Equation
	Computing Optical Flow: Brightness Constancy Equation
	Computing Optical Flow: Brightness Constancy Equation
	Computing Optical Flow: Brightness Constancy Equation
	Slide Number 65
	Optical Flow Results
	Revisiting the small motion assumption
	Reduce the resolution!
	Coarse-to-fine optical flow estimation
	Iterative Lukas-Kanade Refinement
	Iterative Lukas-Kanade Refinement
	Iterative Lukas-Kanade Refinement
	Optical Flow Results
	Modern OF Algorithms

