CS9840
 Machine Learning in Computer Vision Olga Veksler

 Lecture 3A Few Computer Vision Concepts

Some Slides are from Cornelia, Fermüller, Mubarak Shah, Gary Bradski, Sebastian Thrun, Derek Hoiem

Outline

- Computer Vision Concepts
- Filtering
- Edge Detection
- Image Features
- Template matching based on
- Correlation
- SSD
- Normalized Cross Correlation
- Motion and Optical Flow Field

Digital Grayscale Image

Slide Credit: D. Hoeim

Digital Grayscale Image

- Image is array $f(x, y)$
- approximates continuous function $f(x, y)$ from R^{2} to R :
- $f(x, y)$ is the intensity or grayscale at position (x, y)
- proportional to brightness of the real world point it images
- standard range: 0, 1, 2,...., 255

Digital Color Image

- Color image is three functions pasted together
- Write this as a vectorvalued function:

$$
f(x, y)=\left[\begin{array}{l}
r(x, y) \\
g(x, y) \\
b(x, y)
\end{array}\right]
$$

$$
\left[\begin{array}{c}
0 \\
10 \\
120
\end{array}\right]
$$

Digital Color Image

- Can consider color image as 3 separate images: R, G, B

Image filtering

- Given $f(x, y)$ filtering computes a new image $g(x, y)$
- As a function of local neighborhood at each position (x, y)

$$
g(x, y)=f(x, y)+f(x-1, y) \times f(x, y-1)
$$

- Linear filtering: function is a weighted sum (or difference) of pixel values

$$
g(x, y)=f(x, y)+2 \times f(x-1, y-1)-3 \times f(x+1, y+1)
$$

- Many applications:
- Enhance images
- denoise, resize, increase contrast, ...
- Extract information from images
- Texture, edges, distinctive points ...
- Detect patterns
- Template matching

1	2	4	2	8
9	2	2	7	5
2	8	1	3	9
4	3	2	7	2
2	2	2	6	1
8	3	2	5	4

$g(2,3)=3+4 \times 8=35$
$g(4,5)=4+5 \times 1=9$
$g(3,1)=7+2 \times 4-3 \times 9=-12$

Image Filtering: Moving Average

$f(x, y)$
$g(x, y)$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

				$\|l\| l\|l\| l \mid$		
0						

Image Filtering: Moving Average

$f(x, y)$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10							

Image Filtering: Moving Average

$f(x, y)$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10	20						

Image Filtering: Moving Average

$f(x, y)$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10	20	30					

Image Filtering: Moving Average

$$
f(x, y)
$$

$g(x, y)$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10	20	30	30				

Image Filtering: Moving Average

$$
f(x, y)
$$

$g(x, y)$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	
	0	30	60	90	90	90	60	30	
	0	30	50	80	80	90	60	30	
	0	30	50	80	80	90	60	30	
	0	20	30	50	50	60	40	20	
	10	20	30	30	30	30	20	10	
	10	10	10	0	0	0	0	0	

Image Filtering: Moving Average

$$
f(x, y)
$$

sharp border

0	0	0	0	0	2	0	0	0	0
0	0	0	0	0	0	2	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	c	0	0	0	0	0
0	0	0	0	c	0	0	0	0	0

sticking out
$g(x, y)$
border washed out

	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	
	0	30	60	90	90	90	60	30	
	0	30	50	80	80	90	60	30	
	0	30	50	80	80	90	60	30	
	0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10		
	10	10	10	10	0	0	0	0	

not sticking out

Correlation Filtering

- Write as equation, averaging window $(2 k+1) \times(2 k+1)$

$$
g(i, j)=\frac{1}{\frac{1}{(2 k+1)^{2}}} \underbrace{\sum_{u=-k}^{k} \sum_{v=-k}^{k} f(i+u, j+v)}_{\begin{array}{c}
\text { uniform weight for } \\
\text { each pixel }
\end{array}}
$$

- Generalize by allowing different weights for different pixels in the neighborhood

$$
g(i, j)=\sum_{u=-k}^{k} \sum_{\substack{v=-k}}^{k} \underbrace{H[u, v] f(i+u, j+v)}_{\substack{\text { non-uniform weight } \\ \text { for each pixel }}}
$$

Correlation filtering

$$
g(i, j)=\sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] f(i+u, j+v)
$$

- This is called cross-correlation, denoted $g=H \otimes f$
- Filtering an image: replace each pixel with a linear combination of its neighbors
- The filter kernel or mask H is gives the weights in linear combination

Averaging Filter

- What is kernel H for the moving average example?

$$
f(x, y)
$$

$$
H[u, v]=? \quad g(x, y)
$$

$\frac{1}{9}$| 1 | 1 | 1 |
| :--- | :--- | :--- |
| 1 | 1 | 1 |
| 1 | 1 | 1 | box filter

Smoothing by Averaging

- Pictorial representation of box filter: \square
- white means large value, black means low value

original

filtered
- What if the mask is larger than 3×3 ?

Effect of Average Filter

Gaussian noise
7×7

Salt and Pepper noise

Gaussian Filter

- May want nearest neighboring pixels to have the most influence

$f(x, V)$									
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$H[u, v]$

$\frac{1}{16}$| 1 | 2 | 1 |
| :---: | :---: | :---: |
| 2 | 4 | 2 |
| 1 | 2 | 1 |

This kernel H is an approximation of a 2 d Gaussian function:

$$
h(u, v)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{u^{2}+v^{2}}{\sigma^{2}}}
$$

Gaussian Filters: Mask Size

- Gaussian has infinite domain, discrete filters use finite mask
- larger mask contributes to more smoothing

$$
\sigma=5 \text { with } 10 \times 10 \text { mask }
$$

$\sigma=5$ with 30×30 mask

Gaussian filters: Variance

- Variance (σ) also contributes to the extent of smoothing
- larger σ gives less rapidly decreasing weights \rightarrow can construct a larger mask with non-negligible weights

$\sigma=5$ with 30×30 kernel

$\sigma=8$ with 30×30 kernel

Average vs. Gaussian Filter

mean filter
Gaussian filter

More Average vs. Gaussian Filter

Properties of Smoothing Filters

- Values positive
- Sum to 1
- constant regions same as input
- overall image brightness stays unchanged
- Amount of smoothing proportional to mask size
- larger mask means more extensive smoothing

Filtering an Impulse Signal

- What is the result of filtering the impulse signal (image) with arbitrary kernel H ?

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

$f(x, y)$

$g(x, y)=$?

Filtering an Impulse Signal

- What is the result of filtering the impulse signal (image) with arbitrary kernel H ?

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

$f(x, y)$

a	b	c
d	e	f
g	h	i
$H[U, V]$		

©
$H[u, v]$

$$
g(x, y)=?
$$

Convolution

- Convolution:
- Flip the mask in both dimensions
- bottom to top, right to left

- Then apply cross-correlation

$$
g(i, j)=\sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] f(i-u, j-v)
$$

flipped

- Notation for convolution: $g=H^{*} f$

Convolution vs. Correlation

- Convolution: $\mathrm{g}=\mathrm{H}^{*} \mathrm{f}$

$$
g(i, j)=\sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] f(i-u, j-v)
$$

- Correlation: $\mathrm{g}=\mathrm{H} \otimes f$

$$
g(i, j)=\sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] f(i+u, j+v)
$$

- For Gaussian or box filter, how the outputs differ?
- If the input is an impulse signal, how the outputs differ?

Derivatives and Edges

- An edge is a place of rapid change in intensity

Derivatives with Convolution

- For 2D function $f(x, y)$, partial derivative in horizontal direction

$$
\frac{\partial f(x, y)}{\partial x}=\lim _{\varepsilon \rightarrow 0} \frac{f(x+\varepsilon, y)-f(x, y)}{\varepsilon}
$$

- For discrete data, approximate

$$
\frac{\partial f(x, y)}{\partial x} \approx \frac{f(x+1, y)-f(x, y)}{1}
$$

- Similarly, approximate vertical partial derivative (wrt y)
- How to implement as a convolution?

Image Partial Derivatives

Which is with respect to x ?

$\frac{\partial f(x, y)}{\partial x}$
$\frac{\partial f(x, y)}{\partial y}$

Finite Difference Filters

- Other filters for derivative approximation

Prewitt: $\quad H_{x}=\frac{1}{6}$\begin{tabular}{|c|c|c|}
\hline-1 \& 0 \& 1

\hline-1 \& 0 \& 1

\hline-1 \& 0 \& 1

\hline

$\quad H_{y}=\frac{1}{6}$

\hline 1 \& 1 \& 1

\hline 0 \& 0 \& 0

\hline-1 \& -1 \& -1

\hline
\end{tabular}

Sobel:

$$
H_{y}=\frac{1}{8} \begin{array}{|c|c|c|}
\hline 1 & 2 & 1 \\
\hline 0 & 0 & 0 \\
\hline-1 & -2 & -1 \\
\cline { 2 - 3 }
\end{array}
$$

Image Gradient

- Combine both partial derivatives into vector $\nabla f=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$ image gradient
- Gradient points in the direction of most rapid increase in intensity

- Direction perpendicular to edge:
$\theta=\tan ^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$
gradient orientation
- Edge strength

$$
\|\nabla f\|=\sqrt{\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}}
$$

gradient magnitude

Sobel Filter for Vertical Gradient Component

Vertical Edge (absolute value)

Slide Credit: D. Hoeim

Sobel Filter for Horizontal Gradient Component

Horizontal Edge (absolute value)

Slide Credit: D. Hoeim

Edge Detection

- Smooth image

canny edge detector
- gets rid of noise and small detail
- Compute Image gradient (with Sobel filter, etc)
- Pixels with large gradient magnitude are marked as edges
- Can also apply non-maximum suppression to "thin" the edges and other post-processing

Image Features

- Edge features capture places where something interesting is happening
- large change in image intensity
- Edges is just one type of image features or "interest points"
- Various type of corner features, etc. are popular in vision
- Other features:

corners

stable regions

SIFT

What does this Mask Detect?

- Masks "looks like" the feature it's trying to detect

2	2	-4	-4	2	2
2	2	-4	-4	2	2
2	2	-4	-4	2	2
2	2	-4	-4	2	2
2	2	-4	-4	2	2

What Does this Mask Detect?

strong negative response

2	2	-2	-2
2	2	-2	-2
-2	-2	2	2
-2	-2	2	2

strong positive response

Template matching

- Goal: find in image
- Main challenge: What is a good similarity or distance measure between two patches?
- Correlation
- Zero-mean correlation
- Sum Square Difference
- Normalized Cross

Correlation

Method 0: Correlation

- Goal: find in image
- Filter the image with $\mathrm{H}=$ "eye patch"

$$
g[m, n]=\sum_{k, l} H[k, l] f[m+k, n+l]
$$

Input

Filtered Image

What went wrong?

Slide Credit: D. Hoeim

Method 1: zero-mean Correlation

- Goal: find in image
- Filter the image with zero-mean eye

$$
\left.g[m, n]=\sum_{k, l}(H[k, l]-\bar{H}) \xlongequal[{(f[m+k, n+l]})\right]{\text { mean of template } \mathrm{H}}
$$

Input

Filtered Image (scaled)

Thresholded Image

Method 3: Sum of Squared Differences

- Goal: find in image

$$
g[m, n]=\sum_{k, l}(H[k, l]-f[m+k, n+l])^{2}
$$

Input

1- sqrt(SSD)

Thresholded Image Slide Credit: D. Hoeim

Problem with SSD

- SSD is sensitive to changes in brightness

$(\text { (2) })^{2}=$ large
$(\infty-\sqrt{\infty})^{2}=$ medium
Slide Credit: D. Hoeim

Method 3: Normalized Cross-Correlation

- Goal: find in image

$$
g[m, n]=\frac{\sum_{k, l}(H[k, l]-\bar{H})\left(f[m+k, n+l]-\bar{f}_{m, n}\right)}{\left(\sum_{k, l}(H[k, l]-\bar{H})^{2} \sum_{k, l}\left(f[m+k, n+l]-\bar{f}_{m, n}\right)^{2}\right)^{0.5}}
$$

Method 3: Normalized Cross-Correlation

Input

Thresholded Image

Comparison

- Zero-mean filter: fastest but not a great matcher
- SSD: next fastest, sensitive to overall intensity
- Normalized cross-correlation: slowest, but invariant to local average intensity and contrast

first image I_{1}

- How to estimate pixel motion from image $\boldsymbol{I}_{\mathbf{1}}$ to image $\boldsymbol{I}_{\mathbf{2}}$?
- Solve pixel correspondence problem
- given a pixel in I_{1}, find pixels with similar color in I_{2}
- Frequently made assumptions
- color constancy: a point in I_{1} looks the same in I_{2}
- For grayscale images, this is brightness constancy
- small motion: points do not move very far
- This is called the optical flow problem

Optical Flow Field

Optical Flow and Motion Field

- Optical flow field is the apparent motion of brightness patterns between 2 (or several) frames in an image sequence
- Why does brightness change between frames?
- Assuming that illumination does not change:
- changes are due to the RELATIVE MOTION between the scene and the camera
- There are 3 possibilities:
- Camera still, moving scene
- Moving camera, still scene
- Moving camera, moving scene

Motion Field (MF)

- The MF assigns a velocity vector to each pixel in the image
- These velocities are induced by the relative motion between the camera and the 3D scene
- The MF is the projection of the 3D velocities on the image plane

Examples of Motion Fields

(a) Translation perpendicular to a surface. (b) Rotation about axis perpendicular to image plane. (c) Translation parallel to a surface at a constant distance. (d) Translation parallel to an obstacle in front of a more distant background.

Optical Flow vs. Motion Field

- Optical Flow is the apparent motion of brightness patterns
- We equate Optical Flow Field with Motion Field
- Frequently works, but now always:

(a)

(b)
(a) A smooth sphere is rotating under constant illumination. Thus the optical flow field is zero, but the motion field is not
(b) A fixed sphere is illuminated by a moving source-the shading of the image changes. Thus the motion field is zero, but the optical flow field is not

Optical Flow vs. Motion Field

- Often (but not always) optical flow corresponds to the true motion of the scene

Barber's pole

Motion field

Optical flow

from Gary Bradski and Sebastian Thrun

Computing Optical flow: Direct Search

- Can perform direct search for pixel correspondence
- Individual pixels are not reliable to match

Computing Optical flow: Direct Search

first image I_{1}

second image \boldsymbol{I}_{2}

- Can perform direct search for pixel correspondence
- Individual pixels are not reliable to match
- For each pixel, take a patch of pixels around it, and match patches
- Use any of template matching cost functions studied previously

Computing Optical flow: Direct Search

first image \mathbf{I}_{1}

- Can perform direct search for pixel correspondence
- Individual pixels are not reliable to match
- For each pixel, take a patch of pixels around it, and match patches
- Use any of template matching cost functions studied previously
- Assuming small motion lets us limit the search to a small area around pixel's position in the first image

Computing Optical Flow without Direct Search

- Can find optical flow without direct search
- Very small motion (not more than one pixel)
- will relax this later
- Color constancy
- Can also be relaxed

Computing Optical Flow: Brightness Constancy Equation

- Let \boldsymbol{P} be a moving point in 3D:
- At time $\boldsymbol{t}, \boldsymbol{P}$ has coordinates $(\boldsymbol{X}(\boldsymbol{t}), \boldsymbol{Y}(\boldsymbol{t}), \mathbf{Z}(\boldsymbol{t}))$
- Let $\boldsymbol{p}=(\boldsymbol{x}(\boldsymbol{t}), \boldsymbol{y}(\boldsymbol{t}))$ be the coordinates of its image at time t
- Let $\boldsymbol{E}(\boldsymbol{x}(\boldsymbol{t}), \boldsymbol{y}(\boldsymbol{t}), \boldsymbol{t})$ be the brightness at \boldsymbol{p} at time \boldsymbol{t}.
- Brightness Constancy Assumption:
- As \boldsymbol{P} moves over time, $\boldsymbol{E}(\boldsymbol{x}(\boldsymbol{t}), \boldsymbol{y}(\boldsymbol{t}), \boldsymbol{t})$ remains constant

Computing Optical Flow: Brightness Constancy Equation

$$
E(x(t), y(t), t)=\text { Constant }
$$

- Taking derivative with respect to time:

$$
\frac{d E(x(t), y(t), t)}{d t}=0
$$

- Rewriting:

$$
\frac{\partial E}{\partial x} \frac{d x}{d t}+\frac{\partial E}{\partial y} \frac{d y}{d t}+\frac{\partial E}{\partial t}=0
$$

Computing Optical Flow: Brightness Constancy Equation

- This is one equation with two unknowns:

$$
\frac{\partial E}{\partial x} \frac{d x}{d t}+\frac{\partial E}{\partial y} \frac{d y}{d t}+\frac{\partial E}{\partial t}=0
$$

- Let's group some terms together:

$$
\nabla E=\left[\begin{array}{l}
\frac{\partial E}{\partial x} \\
\frac{\partial E}{\partial y}
\end{array}\right] \quad\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
\frac{d x}{d t} \\
\frac{d y}{d t}
\end{array}\right] \quad E_{t}=\frac{\partial E}{\partial t}
$$

frame spatial gradient
optical flow
derivative across frames

- Equation becomes: $\nabla E \cdot\left[\begin{array}{ll}u & v\end{array}\right]=-E_{t}$

Computing Optical Flow: Brightness Constancy Equation

- Need to get more equations for a pixel: $\nabla E\left(p_{i}\right) \cdot\left[\begin{array}{ll}u & v\end{array}\right]=-E_{t}\left(p_{i}\right)$
- Idea: impose additional constraints
- assume that the flow field is smooth locally
- i.e. pretend the pixel's neighbors have the same (\mathbf{u}, \mathbf{v})
- If we use a 5×5 window, that gives us 25 equations per pixel!

$$
\begin{aligned}
& {\left[\begin{array}{cc}
E_{x}\left(p_{1}\right) & E_{y}\left(p_{1}\right) \\
E_{x}\left(p_{2}\right) & E_{y}\left(p_{2}\right) \\
\vdots & \vdots \\
E_{x}\left(p_{25}\right) & E_{y}\left(p_{25}\right)
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=-\left[\begin{array}{c}
E_{t}\left(p_{1}\right) \\
E_{t}\left(p_{2}\right) \\
\vdots \\
E_{t}\left(p_{25}\right)
\end{array}\right]} \\
& \text { matrix } E \\
& \text { 25×2 } \\
& \text { vector } b \\
& \text { 25×1 }
\end{aligned}
$$

Video Sequence

Optical Flow Results

Revisiting the small motion assumption

- Is this motion small enough?
- Probably not-it's much larger than one pixel
- How might we solve this problem?

Reduce the resolution!

motion is about 1 pixel

Coarse-to-fine optical flow estimation

Gaussian pyramid of image H
$u=1.25$ pixels
$u=2.5$ pixels
$u=5$ pixels
u=10 pixels

Gaussian pyramid of image I

Iterative Lukas-Kanade Refinement

Iterative Lukas-Kanade Refinement

- Before wrapping, motion of 3.9 pixels - After wrapping
- Estimated flow is 1.4 pixels to the left - Residual motion is 1.1 pixels to the left

Iterative Lukas-Kanade Refinement

- Continue iterations until reach the bottom of the pyramid
- Solve for optical flow
- Wrap \mathbf{H} toward I using estimated optical flow

Optical Flow Results

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Modern OF Algorithms

- A lot of development in the past 10 years
- See Middlebury Optical Flow Evaluation
- http://vision.middlebury.edu/flow/
- Dataset with ground truth

