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• Curse of Dimensionality 
• Dimensionality reduction with PCA



Curse of Dimensionality

• Problems of high dimensional data, “the curse 
of dimensionality”
• running time
• overfitting
• number of samples required

• Dimensionality Reduction Methods
• Principle Component Analysis 



Curse of Dimensionality: Complexity

• Complexity (running time) increases with dimension d

• A lot of methods have at least O(nd2) complexity, 
where n is the number of samples

• For example if we need to estimate covariance 
matrix

• So as d becomes large,  O(nd2) complexity may be too 
costly



Curse of Dimensionality: Number of Samples
• Suppose we want to use the nearest neighbor 

approach with k = 1 (1NN)

• This feature is not discriminative, i.e. it does not 
separate the classes well

 Suppose we start with only one feature
0 1

• We decide to use 2 features. For the 1NN method 
to work well, need a lot of samples, i.e. samples 
have to be dense

• To maintain the same density as in 1D (9 samples 
per unit length), how many samples do we need?



Curse of Dimensionality: Number of Samples

0
1

 We need 92 samples to maintain the same 
density as in 1D

1



0 1

 Of course, when we go from 1 feature to 2, no 
one gives us more samples, we still have 9

1

 This is way too sparse for 1NN to work well

Curse of Dimensionality: Number of Samples



0 1

 Things go from bad to worse if we decide to use 3 
features:

1

 If 9 was dense enough in 1D, in 3D we need 
93=729 samples!

Curse of Dimensionality: Number of Samples



 In general, if n samples is dense enough in 1D

 Then in d dimensions we need nd samples!

 And nd grows really really fast as a function of d

 Common pitfall:
 If we can’t solve a problem with a few features, adding 

more features seems like a good idea
 However the number of samples usually stays the same
 The method with more features is likely to perform 

worse instead of expected better

Curse of Dimensionality: Number of Samples



 We should try to avoid creating lot of features

The Curse of Dimensionality

 Often no choice, problem starts with many features
 Example: Face Detection

 One sample point is k by m array of pixels
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 Feature extraction is not trivial
 Say pixel intensities are taken as a feature
 Typical dimension is 20 by 20 = 400
 Suppose 10 samples are dense enough for 1 

dimension.  Need only 10400 samples



The Curse of Dimensionality
 Face Detection, dimension of one sample point is km
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 The fact that we set up the problem with km
dimensions (features) does not mean it is really          
a km-dimensional problem

 Most likely we are not setting the problem up with 
the right features

 If we used better features, we are likely need much 
less than km-dimensions

 Space of all k by m images has km dimensions
 Space of all k by m faces must be much smaller, 

since faces form a tiny fraction of all possible images



Dimensionality Reduction

 High dimensionality is challenging and redundant
 It is natural to try to reduce dimensionality
 Reduce dimensionality by feature combination: 

combine old features x to create new features y
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 For example, 

 Ideally, the new vector y should retain from x all 
information important for classification



Dimensionality Reduction

 The best f(x) is most likely a non-linear function

 Linear functions are easier to find though
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 Thus it can be represented by a matrix W:

 For now, assume that f(x) is a linear mapping



• Main idea: seek most accurate data representation in a 
lower dimensional space

Principle Component Analysis (PCA)

 Example in 2-D
 Project data to 1-D subspace (a line) which minimize the 

projection error

large projection errors,
bad line to project to

small projection errors,
good line to project to
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 Notice that the the good line to use for projection lies 
in the direction of largest variance 



PCA

y

 After the data is projected on the best line, need to 
transform the coordinate system to get 1D 
representation for vector y

 Note that  new data y has the same variance as old 
data x in the direction of the green line

 PCA preserves largest variances in the data



PCA: Approximation of Elliptical Cloud in 3D

best 2D approximation best 1D approximation



PCA

 What is the direction of largest variance in data?

 Recall that if x has multivariate distribution N(µ,Σ), 
direction of largest variance is given by eigenvector 
corresponding to the largest eigenvalue of Σ

 This is a hint that we should be looking at the 
covariance matrix of the data (note that PCA can be 
applied to distributions other than Gaussian)



PCA: Linear Algebra Review 
 Let V be a d dimensional  linear space, and W be a k

dimensional linear subspace of V
 We can always find a set of d dimensional vectors     

{e1,e2,…,ek} which forms an orthonormal basis for W
 <ei,ej> = 0 if i is not equal to j and <ei,ei> = 1

 Thus any vector in W can be written as 
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Let V = R2 and W be the line        
x-2y=0.  Then the orthonormal 
basis for W is
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PCA: Linear Algebra 
 Recall that subspace W contains the zero vector, i.e. 

it goes through the origin
this line is not a 
subspace of R2

 It is convenient to project to subspace W: thus we 
need to shift everything

this line is a 
subspace of R2



PCA  Derivation: Shift by the Mean Vector
 Before PCA, subtract sample mean from the data
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 Another way to look at it:
 first step of getting y is to subtract the mean of x

( ) ( )µ̂−==→ xgxfyx

 The new data has zero mean:  E(X-E(X)) = E(X)-E(X) = 0
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 All we did is change the coordinate system



PCA: Derivation
 We want to find the most accurate representation of 

data D={x1,x2,…,xn}  in some subspace W  which has 
dimension k < d

 Let {e1,e2,…,ek}  be the orthonormal basis for W. Any 
vector in W can be written as ∑

=
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 Thus x1 will be represented by some vector in W
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error at one point

PCA: Derivation

 Any xj can be written as ∑
=
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 To find the total error, we need to sum over all xj’s

 Thus the total error for representation of all data D is:
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PCA: Derivation

 A lot of math…….to finally get: 

 To minimize J take for the basis of  W the k
eigenvectors of S corresponding to the  k largest 
eigenvalues

 Let S be the scatter matrix, it is just n-1 times the 
sample covariance matrix 
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PCA

 This result is exactly what we expected: project x into 
subspace of dimension k which has the largest 
variance

 This is very intuitive: restrict attention to directions 
where the scatter is the greatest

 The larger the eigenvalue of S, the larger is the 
variance in the direction of corresponding eigenvector

301 =λ

8.02 =λ



PCA

 Thus PCA can be thought of as finding new 
orthogonal basis by rotating the old axis until the 
directions of maximum variance are found



PCA as Data Approximation
 Let  {e1,e2,…,ed }  be all d eigenvectors of the scatter 

matrix S, sorted in order of decreasing corresponding 
eigenvalue

 Without any approximation, for any sample xi:
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approximation of xi

 coefficients αm =xt
iem are called principle components

 The larger k, the better is the approximation
 Components are arranged in order of importance, more 

important components come first

 Thus PCA takes the first k most important 
components of xi as an approximation to xi



PCA: Last Step
 Now we know how to project the data

y

 Last step is to change the coordinates to get final       
k-dimensional vector  y

 Let matrix [ ]keeE 1=

 Then the coordinate transformation is xEy t=

 Under Et, the eigenvectors 
become the standard basis:
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Recipe for Dimension Reduction with PCA
Data D={x1,x2,…,xn}. Each xi is a d-dimensional 
vector.  Wish to use PCA to reduce dimension to k

1. Find the sample mean ∑
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2. Subtract sample mean from the data µ̂−= ii xz

3. Compute the scatter matrix ∑
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4. Compute eigenvectors e1,e2,…,ek corresponding to 
the k largest eigenvalues of S

5. Let e1,e2,…,ek be the columns of matrix [ ]keeE 1=

6. The desired y which is the closest approximation 
to x is zEy t=



Drawbacks of PCA
• PCA was designed for accurate data representation, 

not for data classification
• Preserves as much variance in data as possible
• If directions of maximum variance is important for 

classification, will work
 However  the directions of maximum variance may 

be  useless for classification

apply PCA

to each class
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