CS9840

Learning and Computer Vision Prof. Olga Veksler

Lecture 6
Linear Machines

- Optimization with Gradient descent
- Linear Classifier
- Two classes
- Multiple classes
- Perceptron Criterion Function
- Batch perceptron rule
- \quad Single sample perceptron rule
- Minimum Squared Error (MSE) rule
- Pseudoinverse
- Generalized Linear Classifier
- Gradient Descent Based learning

Optimization

- How to minimize a function of a single variable

$$
J(x)=(x-5)^{2}
$$

- From calculus, take derivative, set it to 0

$$
\frac{d}{d x} J(x)=0
$$

- Solve the resulting equation
- maybe easy or hard to solve
- Example above is easy:

$$
\frac{d}{d x} J(x)=2(x-5)=0 \Rightarrow x=5
$$

Optimization

- How to minimize a function of many variables

$$
\mathbf{J}(\mathbf{x})=\mathbf{J}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{d}}\right)
$$

- From calculus, take partial derivatives, set them to 0

> gradient

- Solve the resulting system of \mathbf{d} equations
- It may not be possible to solve the system of equations above analytically

Optimization: Gradient Direction

- Gradient $\nabla \mathbf{J}(\mathbf{x})$ points in the direction of steepest increase of function $\mathrm{J}(\mathbf{x})$
- $\quad-\nabla \mathbf{J}(\mathbf{x})$ points in the direction of steepest decrease

Gradient Direction in 2D

- $\mathbf{J}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\left(\mathbf{x}_{1}-5\right)^{2}+\left(\mathbf{x}_{2}-10\right)^{2}$
- $\frac{\partial}{\partial x_{1}} J(x)=2\left(x_{1}-5\right)$
- $\frac{\partial}{\partial \mathbf{x}_{2}} \mathbf{J}(\mathbf{x})=\mathbf{2}\left(\mathbf{x}_{2}-10\right)$
- Let $\mathbf{a}=[10,5]$
- $-\frac{\partial}{\partial \mathbf{x}_{1}} \mathbf{J}(\mathrm{a})=-\mathbf{1 0}$
- $-\frac{\partial}{\partial \mathbf{x}_{2}} \mathbf{J}(a)=10$

Gradient Descent: Step Size

$$
J\left(\mathbf{x}_{1}, x_{2}\right)=\left(\mathbf{x}_{1}-5\right)^{2}+\left(\mathbf{x}_{2}-10\right)^{2}
$$

- Which step size to take?
- Controlled by parameter α
- called learning rate
- From previous example:
- $a=[105]$

- $\quad-\nabla \mathrm{J}(\mathrm{a})=\left[\begin{array}{ll}-10 & 10\end{array}\right]$
- Let $\alpha=0.2$
- $\quad \mathbf{a}-\alpha \nabla \mathrm{J}(\mathrm{a})=\left[\begin{array}{ll}10 & 5\end{array}\right]+0.2\left[\begin{array}{ll}-10 & 10\end{array}\right]=[87]$
- $J(10,5)=50$
- $J(8,7)=18$

Gradient Descent Algorithm

$\mathrm{k}=1$
$x^{(1)}=$ any initial guess
choose $\boldsymbol{\alpha}, \boldsymbol{\varepsilon}$
while $\alpha\left\|\nabla J\left(x^{(k)}\right)\right\|>\varepsilon$

$$
\begin{aligned}
& \mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-\alpha \nabla \mathbf{J}\left(\mathbf{x}^{(k)}\right) \\
& \mathbf{k}=\mathbf{k}+1
\end{aligned}
$$

Gradient Descent: Local Minimum

- Not guaranteed to find global minimum
- gets stuck in local minimum

- Still gradient descent is very popular because it is simple and applicable to any differentiable function

How to Set Learning Rate α ?

- If α too small, too many iterations to converge

- If α too large, may overshoot the local minimum and possibly never even converge

- It helps to compute $\mathbf{J}(\mathbf{x})$ as a function of iteration number, to make sure we are properly minimizing it

How to Set Learning Rate α ?

- As we approach local minimum, often gradient gets smaller
- Step size may get smaller automatically, even if $\boldsymbol{\alpha}$ is fixed

- So it may be unnecessary to decrease α over time in order not to overshoot a local minimum

Variable Learning Rate

- If desired, can change learning rate α at each iteration

$$
\begin{aligned}
& \mathbf{k}=1 \\
& \mathbf{x}^{(1)}=\text { any initial guess } \\
& \text { choose } \alpha, \varepsilon \\
& \text { while } \alpha\left\|\nabla \mathbf{J}\left(\mathbf{x}^{(k)}\right)\right\|>\varepsilon \\
& \quad \mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-\alpha \nabla \mathbf{J}\left(\mathbf{x}^{(k)}\right) \\
& \mathbf{k}=\mathbf{k}+1
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{k}=1 \\
& \mathbf{x}^{(1)}=\text { any initial guess } \\
& \text { choose } \boldsymbol{\varepsilon} \\
& \text { while } \alpha\left\|\mathbf{J} \mathbf{J}\left(\mathbf{x}^{(k)}\right)\right\|>\boldsymbol{\varepsilon} \\
& \quad \text { choose } \boldsymbol{\alpha}^{(k)} \\
& \quad \mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-\alpha^{(k)} \nabla \mathbf{J}\left(\mathbf{x}^{(k)}\right) \\
& \quad \mathbf{k}=\mathbf{k}+1
\end{aligned}
$$

Variable Learning Rate

- Usually don't keep track of all intermediate solutions

$$
\begin{aligned}
& \mathbf{k}=1 \\
& \mathbf{x}^{(1)}=\text { any initial guess } \\
& \text { choose } \alpha, \boldsymbol{\varepsilon} \\
& \text { while } \alpha\left\|\nabla \mathbf{J}\left(\mathbf{x}^{(k)}\right)\right\|>\boldsymbol{\varepsilon} \\
& \quad \mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-\alpha \nabla \mathrm{J}\left(\mathbf{x}^{(k)}\right) \\
& \quad \mathbf{k}=\mathbf{k}+1
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{x}=\text { any initial guess } \\
& \text { choose } \alpha, \varepsilon \\
& \text { while } \alpha\|\nabla \mathrm{J}(\mathrm{x})\|>\varepsilon \\
& \qquad \mathbf{x}=\mathrm{x}-\alpha \nabla \mathrm{J}(\mathrm{x})
\end{aligned}
$$

Advanced Optimization Methods

- There are more advanced gradient-based optimization methods
- Such as conjugate gradient
- automatically pick a good learning rate α
- usually converge faster
- however more complex to understand and implement
- in Matlab, use fminunc for various advanced optimization methods

Last Time: Supervised Learning

- Training samples (or examples)

$$
\mathbf{x}^{1}, \mathbf{x}^{2}, \ldots \mathbf{x}^{n}
$$

- Each example is typically multi-dimensional
- $\mathbf{x}^{\mathbf{i}}=\left[\mathbf{x}_{1}{ }_{1}, \mathbf{x}_{2}{ }_{2}, \ldots, \mathbf{x}_{\mathrm{d}}^{\mathrm{i}}\right]$
- \mathbf{x}^{i} is often called a feature vector
- Know desired output for each example

$$
\mathbf{y}^{1}, \mathbf{y}^{2}, \ldots y^{n}
$$

- regression: continuous y
- classification: finite y

Last Time: Supervised Learning

- Wish to design a machine $\mathbf{f}(\mathbf{x}, \mathbf{w})$ s.t.

$$
f(x, w)=y
$$

- How do we choose f?
- last lecture studied kNN classifier
- this lecture in on liner classifier
- many other choices
- W is typically multidimensional vector of weights (also called parameters)

$$
\mathbf{w}=\left[\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots \mathbf{w}_{k}\right]
$$

- By modifying w, the machine "learns"

Training and Testing Phases

- Divide all labeled samples $\mathbf{x}^{1}, \mathbf{x}^{2}, \ldots, \mathbf{x}^{n}$ into training and test sets
- Training phase
- Uses training samples
- goal is to "teach" the machine
- find weights \mathbf{w} s.t. $\mathbf{f}\left(\mathbf{x}^{i}, \mathbf{w}\right)=\mathbf{y}^{i}$ "as much as possible"
- "as much as possible" needs to be defined
- Testing phase
- Uses only test samples
- for evaluating how well our machine works on unseen examples

Loss Function

- How to quantify " $\mathbf{f}\left(\mathbf{x}^{\mathbf{i}}, \mathbf{w}\right)=\mathbf{y}^{i}$ as much as possible"?
- $\mathbf{f}(\mathbf{x}, \mathbf{w})$ has to be "close" to the true output \mathbf{y}
- Define Loss (or Error, or Criterion) function \mathbf{L}
- Typically first define per-sample loss $L\left(\mathbf{x}^{i}, \mathbf{y}^{i}, \mathbf{w}\right)$
- for classification, $\mathbf{L}\left(\mathbf{x}^{\mathbf{i}}, \mathbf{y}^{\mathbf{i}}, \mathbf{w}\right)=\mathbf{I}\left[\mathbf{f}\left(\mathbf{x}^{\mathbf{i}}, \mathbf{w}\right) \neq \mathbf{y}^{\mathbf{i}}\right]$
- where $\mathrm{I}[$ true $]=1$, I[false] = 0
- for regression, $\mathbf{L}\left(\mathbf{x}^{i}, \mathbf{y}^{\mathbf{i}}, \mathbf{w}\right)=\left\|\mathbf{f}\left(\mathbf{x}^{i}, \mathbf{w}\right)-\mathbf{y}^{\boldsymbol{i}}\right\|^{2}$,
- how far is the estimated output from the correct one?
- Then loss function $\mathbf{L}=\Sigma_{i} \mathbf{L}\left(\mathbf{x}^{i}, \mathbf{y}^{i}, \mathbf{w}\right)$
- classification: counts number of missclassified examples
- regression: sums distances to the correct output

Linear Machine: Regression

- $\mathbf{f}(\mathbf{x}, \mathbf{w})=\mathbf{w}_{0}+\sum_{\mathrm{i}=1,2, \ldots \mathrm{~d}} \mathbf{w}_{\mathrm{i}} \mathbf{x}_{\mathrm{i}}$
- In vector notation
- $\mathbf{x}=\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{d}}\right]$
- $\mathbf{f}(\mathbf{x}, \mathbf{w})=\mathbf{w}_{0}+\mathbf{w}^{\mathbf{t}} \mathbf{x}$
- This is standard linear regression

- line fitting
- assume $\mathbf{L}\left(\mathbf{x}^{i}, \mathbf{y}^{\mathbf{i}}, \mathbf{w}\right)=\left\|\mathbf{f}\left(\mathbf{x}^{i}, \mathbf{w}\right)-\mathbf{y}^{\mathbf{i}}\right\|^{2}$
- optimal w can be found by solving a system of linear equations

$$
\mathbf{w}^{*}=\left[\Sigma \mathbf{x}^{i}\left(\mathbf{x}^{\mathrm{i}}\right)^{\top}\right]^{-1} \Sigma \mathbf{y}^{i} \mathbf{x}^{\mathrm{i}}
$$

Linear Machine: Classification

- First consider the two-class case
- We choose the following encoding:
- $\mathbf{y}=1$ for the first class
- $\quad \mathbf{y}=-1$ for the second class

- Linear classifier
- $\quad-\infty \leq \mathbf{w}_{0}+\mathbf{x}_{1} \mathbf{w}_{1}+\ldots+\mathbf{x}_{\mathrm{d}} \mathbf{w}_{\mathrm{d}} \leq \infty$
- we need $\mathbf{f}(\mathbf{x}, \mathbf{w})$ to be either +1 or -1
- let $\mathbf{g}(\mathbf{x}, \mathbf{w})=\mathbf{w}_{0}+\mathbf{x}_{1} \mathbf{w}_{1}+\ldots+\mathbf{x}_{\mathrm{d}} \mathbf{w}_{\mathrm{d}}=\mathbf{w}_{0}+\mathbf{w}^{\mathrm{t}} \mathbf{x}$
- let $\mathbf{f}(\mathbf{x}, \mathbf{w})=\operatorname{sign}(\mathbf{g}(\mathbf{x}, \mathbf{w}))$
- 1 if $\mathbf{g}(\mathbf{x}, \mathbf{w})$ is positive
- -1 if $\mathbf{g}(\mathbf{x}, \mathbf{w})$ is negative
- other choices for $\mathbf{g}(\mathbf{x}, \mathbf{w})$ are also used
- $\mathbf{g}(\mathbf{x}, \mathbf{w})$ is called the discriminant function

Linear Classifier: Decision Boundary

- $f(\mathbf{x}, \mathbf{w})=\operatorname{sign}(\mathbf{g}(\mathbf{x}, \mathbf{w}))=\operatorname{sign}\left(\mathbf{w}_{0}+\mathbf{x}_{1} \mathbf{w}_{1}+\ldots+\mathbf{x}_{\mathrm{d}} \mathbf{w}_{\mathrm{d}}\right)$
- Decision boundary is linear
- Find the best linear boundary to separate two classes
- Search for best $\mathbf{w}=\left[\mathbf{w}_{0}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{\mathrm{d}}\right]$ to minimize training error

More on Linear Discriminant Function (LDF)

- LDF: $\mathbf{g}(\mathbf{x}, \mathbf{w})=\mathbf{w}_{0}+\mathbf{x}_{1} \mathbf{w}_{1}+\ldots+\mathbf{x}_{\mathrm{d}} \mathbf{w}_{\mathrm{d}}$
- Written using vector notation $\mathbf{g}(\mathbf{x})=\mathbf{w}^{\mathbf{t}} \mathbf{x}+\mathbf{w}_{\mathbf{0}}$
weight vector bias or threshold
decision boundary

More on Linear Discriminant Function (LDF)

- Decision boundary: $\mathbf{g}(\mathbf{x}, \mathbf{w})=\mathbf{w}_{0}+\mathbf{x}_{1} \mathbf{w}_{1}+\ldots+\mathbf{x}_{\mathrm{d}} \mathbf{w}_{\mathrm{d}}=0$
- This is a hyperplane, by definition
- a point in 1D
- a line in 2D
- a plane in 3D
- a hyperplane in higher dimensions

Multiple Classes

- We have \mathbf{m} classes
- Define \mathbf{m} linear discriminant functions

$$
\mathbf{g}_{\mathbf{i}}(\mathbf{x})=\mathbf{w}_{\mathrm{i}}^{\mathrm{t}} \mathbf{x}+\mathbf{w}_{\mathrm{i} 0} \text { for } \mathbf{i}=1,2, \ldots \mathbf{m}
$$

- Assign \mathbf{x} to class \mathbf{i} if

$$
\mathbf{g}_{\mathbf{i}}(\mathbf{x})>\mathbf{g}_{\mathbf{j}}(\mathbf{x}) \text { for all } \mathbf{j} \neq \mathbf{i}
$$

- Let $\mathbf{R}_{\mathbf{i}}$ be the decision region for class \mathbf{i}
- That is all examples in $\mathbf{R}_{\mathbf{i}}$ get assigned class \mathbf{i}

Multiple Classes

- Can be shown that decision regions are convex
- In particular, they must be spatially contiguous

Failure Cases for Linear Classifier

- Thus applicability of linear classifiers is limited to mostly unimodal distributions, such as Gaussian
- Not unimodal data
- Need non-contiguous decision regions
- Linear classifier will fail

Linear Classifiers

- Linear classifiers give simple decision boundary
- try simpler models first
- Linear classifiers are optimal for certain type of data
- Gaussian distributions with equal covariance
- May not be optimal for other data distributions, but they are very simple to use

Fitting Parameters w

- Linear discriminant function $\mathbf{g}(\mathbf{x})=\mathbf{w}^{\mathbf{t}} \mathbf{x}+\mathbf{w}_{\mathbf{0}}$
- Can rewrite it $\mathbf{g (x)})=\underset{\left.\begin{array}{c}\text { new weight } \\ \text { vector } a\end{array}\right]}{\left[\begin{array}{ll}\mathbf{w}_{0} & \mathbf{w}^{t}\end{array}\right]}\left[\begin{array}{l}1 \\ \mathbf{x}\end{array}\right]=\mathbf{a}^{\mathrm{t} \mathbf{z}} \mathbf{z}=\mathbf{g}(\mathbf{z})$
- \mathbf{z} is called augmented feature vector
- new problem equivalent to the old $g(z)=a^{t} z$

Augmented Feature Vector

- Feature augmenting is done to simplify notation
- From now on we assume that we have augmented feature vectors
- given samples $\mathbf{x}^{1}, \ldots, \mathbf{x}^{n}$ convert them to augmented samples $\mathbf{z}^{1}, \ldots, \mathbf{z}^{\text {n }}$ by adding a new dimension of value 1
- $g(z)=a^{t} z$

Training Error

- For the rest of the lecture, assume we have 2 classes
- Samples $\mathbf{z}^{1}, \ldots, \mathbf{z}^{\mathrm{n}}$ some in class 1 , some in class 2
- Use these samples to determine weights a in the discriminant function $\mathbf{g}(\mathbf{z})=\mathbf{a}^{\mathrm{t}} \mathbf{z}$
- Want to minimize number of misclassified samples
- Recall that $\left\{\begin{array}{l}\mathbf{g}\left(z^{i}\right)>0 \Rightarrow \text { class } 1 \\ \mathbf{g}\left(\mathbf{z}^{i}\right)<0 \Rightarrow \text { class } 2\end{array}\right.$
- Thus training error is 0 if $\begin{cases}\mathbf{g}\left(z^{i}\right)>0 & \forall z^{i} \text { class } 1 \\ \mathbf{g}\left(z^{i}\right)<0 & \forall z^{i} \text { class } 2\end{cases}$

Simplifying Notation Further

- Thus training error is 0 if $\begin{cases}a^{t} z^{i}>0 & \forall z^{i} \text { class } 1 \\ a^{t} z^{i}<0 & \forall z^{i} \text { class } 2\end{cases}$
- Equivalently, training error is 0 if $\left\{\begin{array}{lll}a^{t} z^{i} & >0 \forall z^{i} \text { class } 1 \\ a^{t}\left(-z^{i}\right)>0 \quad \forall z^{i} \text { class } 2\end{array}\right.$
- Problem "normalization":

1. replace all examples z^{i} from class 2 by $-z^{i}$
2. seek weights a s.t. $a^{t} \mathbf{z}^{i}>0$ for $\forall z^{i}$

- If exists, such a is called a separating or solution vector
- Original samples $\mathbf{x}^{1}, \ldots . \mathbf{x}^{n}$ can also be linearly separated

Effect of Normalization

before normalization

seek a hyperplane that separates samples from different categories

after normalization

seek hyperplane that puts normalized samples on the same (positive) side

Solution Region

- Find weight vector a s.t. for all samples $\mathbf{z}^{1}, \ldots, \mathbf{z}^{\text {n }}$

$$
a^{t} z^{i}=\sum_{k=0}^{d} a_{k} z_{d}^{i}>0
$$

- If there is one such \mathbf{a}, then there are infinitely many a

Solution Region

- Solution region: the set of all possible solutions for a

Minimum Squared Error Optimization (MSE)

- Linear Regression is a very well understood problem
- Problem is not regression, but let's convert to regression!

- MSE procedure
- choose positive constants $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{\mathrm{n}}$
- try to find weight vector a s.t. $\mathbf{a}^{\mathrm{t}} \mathbf{z}^{\mathbf{i}}=\mathbf{b}_{\mathrm{i}}$ for all samples $\mathbf{z}^{\mathbf{i}}$
- if succeed, then \mathbf{a} is a solution because $\mathbf{b}_{\mathbf{i}}$'s are positive
- consider all the samples (not just the misclassified ones)

MSE: Margins

- By setting $\mathbf{a}^{\mathrm{t}} \mathbf{z}^{\mathbf{i}}=\mathbf{b}_{\text {}}$, we expect $\mathbf{z}^{\mathbf{i}}$ to be at a relative distance $\mathbf{b}_{\mathbf{i}}$ from the separating hyperplane
- Thus $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{\mathrm{n}}$ are expected relative distances of examples from the separating hyperplane
- Should make $\mathbf{b}_{\mathbf{i}}$ small if sample \mathbf{i} is expected to be near separating hyperplane, and make \mathbf{b}_{i} larger otherwise
- In the absence of any such information, there are good reasons to set

$$
\mathbf{b}_{1}=\mathbf{b}_{2}=\ldots=\mathbf{b}_{\mathrm{n}}=1
$$

MSE: Matrix Notation

- Solve system of \mathbf{n} equations $\left\{\begin{array}{c}a^{t} z^{1}=b_{1} \\ \vdots \\ a^{t} z^{n}=b_{n}\end{array}\right.$
- Using matrix notation:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
\mathbf{z}_{0}^{1} & z_{1}^{1} & \cdots & z_{d}^{1} \\
z_{0}^{2} & z_{1}^{2} & \cdots & z_{d}^{2} \\
\vdots & & & \vdots \\
\vdots & & & \vdots \\
z_{0}^{n} & z_{1}^{n} & \cdots & z_{d}^{n}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{d}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{b}_{1} \\
\mathbf{b}_{2} \\
\vdots \\
\vdots \\
\mathbf{Z}^{2}
\end{array}\right]} \\
& \left.\begin{array}{l}
\text { a }
\end{array}\right]
\end{aligned}
$$

- Solve a linear system $\mathbf{Z a}=\mathbf{b}$

MSE:Approximate Solution

- Typically Z is overdetermined
- more rows (examples) than columns (features)

- No exact solution for $\mathbf{Z a}=\mathbf{b}$ in this case
- Find an approximate solution \mathbf{a}, that is $\mathbf{Z a} \approx \mathbf{b}$
- approximate solution a does not necessarily give a separating hyperplane in the separable case
- but hyperplane corresponding to an approximate a may still be a good solution
- Least Squares Solution: $\mathbf{a}=\left(\mathbf{Z}^{\mathbf{t}}\right)^{-1} \mathbf{Z}^{\mathbf{t}} \mathbf{b}$

MSE: Example

- Class 1: (69), (5 7)
- Class 2: (5 9), (04)
- Add extra feature and "normalize"

$$
\mathbf{z}^{1}=\left[\begin{array}{l}
1 \\
6 \\
9
\end{array}\right] \mathbf{z}^{2}=\left[\begin{array}{l}
1 \\
5 \\
7
\end{array}\right] \mathbf{z}^{3}=\left[\begin{array}{l}
-1 \\
-5 \\
-9
\end{array}\right] \mathbf{z}^{4}=\left[\begin{array}{r}
-1 \\
0 \\
-4
\end{array}\right]
$$

$$
\mathbf{Z}=\left[\begin{array}{rrr}
1 & 6 & 9 \\
1 & 5 & 7 \\
-1 & -5 & -9 \\
-1 & 0 & -4
\end{array}\right]
$$

MSE: Example

- Choose $b=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$
- Use $\mathbf{a}=\mathbf{Z} \backslash \mathbf{b}$ to solve in Matlab

$$
a=\left[\begin{array}{r}
2.7 \\
1.0 \\
-0.9
\end{array}\right]
$$

- Note \mathbf{a} is an approximation since $\mathbf{Z a}=$
- Gives a separating hyperplane since

MSE: Example

- Class 1: (69), (5 7)
- Class 2: (5 9), (0 10)
- One example is far compared to others from separating hyperplane
$z^{1}=\left[\begin{array}{l}1 \\ 6 \\ 9\end{array}\right] \quad z^{2}=\left[\begin{array}{l}1 \\ 5 \\ 7\end{array}\right] \quad z^{3}=\left[\begin{array}{l}-1 \\ -5 \\ -9\end{array}\right] \quad z^{4}=\left[\begin{array}{r}-1 \\ 0 \\ -10\end{array}\right]$
- $\mathbf{Z}=\left[\begin{array}{rrr}1 & 6 & 9 \\ 1 & 5 & 7 \\ -1 & -5 & -9 \\ -1 & 0 & -10\end{array}\right]$

MSE: Example

- Choose $\mathbf{b}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$
- Solve $\mathbf{a}=\mathbf{Z} \backslash \mathbf{b}=\left[\begin{array}{r}3.2 \\ 0.2 \\ -0.4\end{array}\right]$
- $\mathbf{Z a}=\left[\begin{array}{r}0.2 \\ 0.9 \\ -0.04 \\ 1.16\end{array}\right] \neq\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$

- Does not give a separating hyperplane since $\mathbf{a}^{t} \mathbf{z}^{3}<\mathbf{0}$

MSE: Problems

- MSE wants all examples to be at the same distance from the separating hyperplane
- Examples that are "too right", i.e. too far from the boundary cause problems

- No problems with convergence though, both in separable and non-separable cases
- Can fix it in linearly separable case, i.e find better b

Another Approach: Design a Loss Function

- Find weight vector a s.t. $\forall \mathbf{z}^{1}, \ldots, \mathbf{z}^{\mathrm{n}}, \mathbf{a}^{\mathrm{t}} \mathbf{z}^{\mathrm{i}}>0$
- Design a loss function $\mathrm{J}(\mathrm{a})$, which is minimum when a is a solution vector
- Let $\mathbf{Z}(\mathbf{a})$ be the set of examples misclassified by a

$$
Z(a)=\left\{z^{i} \mid a^{t} z^{i}<0\right\}
$$

- Natural choice: number of misclassified examples

$$
J(a)=|Z(a)|
$$

- Unfortunately, can't be minimized with gradient descent
- piecewise constant, gradient zero or does not exist

Perceptron Loss Function

- Better choice: Perceptron loss function

$$
J_{p}(a)=\sum_{z \in Z(a)}\left(-a^{t} z\right)
$$

- If \mathbf{z} is misclassified, $\mathbf{a}^{\mathrm{t}} \mathbf{z}<0$
- Thus $\mathrm{J}(\mathrm{a}) \geq 0$
- $J_{p}(a)$ is proportional to the sum of distances of misclassified
 examples to decision boundary
- $J_{p}(a)$ is piecewise linear and suitable for gradient descent

Optimizing with Gradient Descent

$$
J_{p}(a)=\sum_{z \in Z(a)}\left(-a^{t} z\right)
$$

- Gradient of $J_{p}(a)$ is $\nabla J_{p}(a)=\sum_{z \in Z(a)}(-\mathbf{z})$
- cannot solve $\nabla \mathrm{J}_{\mathrm{p}}(\mathbf{a})=0$ analytically because of $\mathbf{Z}(\mathbf{a})$
- Recall update rule for gradient descent

$$
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k+1)}-\alpha \nabla \mathbf{J}\left(\mathbf{x}^{(k)}\right)
$$

- Gradient decent update rule for $J_{p}(a)$ is:

$$
a^{(k+1)}=a^{(k)}+\boldsymbol{\alpha} \sum_{z \in Z(a)} \mathbf{z}
$$

- called batch rule because it is based on all examples
- true gradient descent

Perceptron Single Sample Rule

- Gradient decent single sample rule for $J_{p}(a)$ is

$$
a^{(k+1)}=a^{(k)}+\alpha \cdot z_{M}
$$

- z_{m} is one sample misclassified by $\mathbf{a}^{(\mathrm{k})}$
- must have a consistent way to visit samples
- Geometric Interpretation:
- z_{M} misclassified by $\mathrm{a}^{(\mathrm{k})}$

$$
\left(a^{(k)}\right)^{t} z_{M} \leq 0
$$

- \mathbf{z}_{M} is on the wrong side of decision boundary
- adding $\alpha \cdot z_{\mathrm{M}}$ to a moves decision boundary in the right direction

Perceptron Single Sample Rule

if α is too large, previously correctly classified sample $\mathbf{z}^{\mathbf{i}}$ is now misclassified

if α is too small, \mathbf{z}_{M} is still misclassified

Non-Linearly Separable Case

- Suppose we have examples:
- class 1: $[2,1],[4,3],[3,5]$
- class 2: [1,3] , [5,6]
- not linearly separable
- Still would like to get approximate separation

- Good line choice is shown in green
- Let us run gradient descent
- Add extra feature and "normalize"

$$
\mathbf{z}^{1}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] \quad \mathbf{z}^{2}=\left[\begin{array}{l}
1 \\
4 \\
3
\end{array}\right] \quad \mathbf{z}^{3}=\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right] \quad \mathbf{z}^{4}=\left[\begin{array}{l}
-1 \\
-1 \\
-3
\end{array}\right] \quad \mathbf{z}^{5}=\left[\begin{array}{l}
-1 \\
-5 \\
-6
\end{array}\right]
$$

Non-Linearly Separable Case

- single sample perceptron rule
- Initial weights $\mathbf{a}^{(1)}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$
- This is line $\mathbf{x}_{1}+\mathbf{x}_{2}+1=0$
- Use fixed learning rate $\alpha=1$
- Rule is: $\mathbf{a}^{(k+1)}=a^{(k)}+\mathbf{z}_{\mathrm{M}}$

$$
\mathbf{z}^{1}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] \quad \mathbf{z}^{2}=\left[\begin{array}{l}
1 \\
4 \\
3
\end{array}\right] \quad \mathbf{z}^{3}=\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right] \mathbf{z}^{4}=\left[\begin{array}{l}
-1 \\
-1 \\
-3
\end{array}\right] \mathbf{z}^{5}=\left[\begin{array}{l}
-1 \\
-5 \\
-6
\end{array}\right]
$$

- $a^{t} \mathbf{z}^{1}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right] \cdot\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]^{t}>0$
- $a^{t} z^{2}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right] \cdot\left[\begin{array}{lll}1 & 4 & 3\end{array}\right]^{t}>0$
- $a^{t} z^{3}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right] \cdot\left[\begin{array}{lll}1 & 3 & 5\end{array}\right]^{t}>0$

Non-Linearly Separable Case

- $\mathbf{a}^{(1)}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$
- rule is: $a^{(k+1)}=a^{(k)}+z_{M}$

$$
z^{1}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] z^{2}=\left[\begin{array}{l}
1 \\
4 \\
3
\end{array}\right] z^{3}=\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right] \mathbf{z}^{4}=\left[\begin{array}{l}
-1 \\
-1 \\
-3
\end{array}\right] \mathbf{z}^{5}=\left[\begin{array}{l}
-1 \\
-5 \\
-6
\end{array}\right]
$$

- $a^{t} z^{4}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right] \cdot\left[\begin{array}{lll}-1 & -1 & -3\end{array}\right]^{t}=-5<0$
- Update: $\mathbf{a}^{(2)}=\mathbf{a}^{(1)}+\mathbf{z}_{\mathrm{M}}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]+\left[\begin{array}{lll}-1 & -1 & -3\end{array}\right]=\left[\begin{array}{lll}0 & 0 & -2\end{array}\right]$
- $a^{t} z^{5}=\left[\begin{array}{lll}0 & 0 & -2\end{array}\right] \cdot\left[\begin{array}{lll}-1 & -5 & -6\end{array}\right]^{t}=12>0$
- $a^{t} \mathbf{z}^{1}=\left[\begin{array}{lll}0 & 0 & -2\end{array}\right] \cdot\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]^{t}<0$
- Update: $\mathbf{a}^{(3)}=\mathbf{a}^{(2)}+\mathbf{z}_{\mathrm{M}}=\left[\begin{array}{lll}0 & 0 & -2\end{array}\right]+\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 2 & -1\end{array}\right]$

Non-Linearly Separable Case

- $\mathbf{a}^{(3)}=\left[\begin{array}{lll}1 & 2 & -1\end{array}\right]$
- rule is: $a^{(k+1)}=a^{(k)}+\mathbf{z}_{M}$

$$
\mathbf{z}^{1}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] \mathbf{z}^{2}=\left[\begin{array}{l}
1 \\
4 \\
3
\end{array}\right] \mathbf{z}^{3}=\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right] \mathbf{z}^{4}=\left[\begin{array}{l}
-1 \\
-1 \\
-3
\end{array}\right] \mathbf{z}^{5}=\left[\begin{array}{l}
-1 \\
-5 \\
-6
\end{array}\right]
$$

- $a^{t} z^{2}=\left[\begin{array}{lll}1 & 4 & 3\end{array}\right] \cdot\left[\begin{array}{ll}1 & 2\end{array}-1\right]^{t}=6>0$
- $a^{t} z^{3}=\left[\begin{array}{lll}1 & 3 & 5\end{array}\right] \cdot\left[\begin{array}{ll}1 & 2\end{array}-1\right]^{t}=2>0$
- $\mathbf{a}^{\mathrm{t}} \mathbf{z}^{4}=\left[\begin{array}{lll}-1 & -1 & -3\end{array}\right] \cdot\left[\begin{array}{ll}1 & 2-1\end{array}\right]^{\mathrm{t}}=0$
- Update: $\mathbf{a}^{(4)}=\mathbf{a}^{(3)}+\mathbf{z}_{\mathrm{M}}=\left[\begin{array}{lll}1 & 2 & -1\end{array}\right]+\left[\begin{array}{lll}-1 & -1 & -3\end{array}\right]=\left[\begin{array}{lll}0 & 1 & -4\end{array}\right]$

Non-Linearly Separable Case

- We can continue this forever
- there is no solution vector a satisfying for all $\mathbf{a}^{t} \mathbf{z}_{i}>0$ for all \mathbf{i}
- Need to stop at a good point
- Solutions at iterations 900 through 915
- Some are good some are not
- How do we stop at a good solution?

Convergence of Perceptron Rules

1. Classes are linearly separable:

- with fixed learning rate, both single sample and batch rules converge to a correct solution a
- can be any a in the solution space

2. Classes are not linearly separable:

- with fixed learning rate, both single sample and batch do not converge
- can ensure convergence with appropriate variable learning rate
- $\alpha \rightarrow 0$ as $k \rightarrow \infty$
- example, inverse linear: $\alpha=\mathbf{c} / \mathbf{k}$, where \mathbf{c} is any constant
- also converges in the linearly separable case
- no guarantee that we stop at a good point, but there are good reasons to choose inverse linear learning rate
- Practical Issue: both single sample and batch algorithms converge faster if features are roughly on the same scale
- see kNN lecture on feature normalization

Batch vs. Single Sample Rules

Batch

- True gradient descent, full gradient computed
- Smoother gradient because all samples are used
- Takes longer to converge

Single Sample

- Only partial gradient is computed
- Noisier gradient, therefore may concentrates more than necessary on any isolated training examples (those could be noise)
- Converges faster
- Easier to analyze

Linear Machine: Logistic Regression

- Despite the name, used for classification, not regression
- Instead of putting $\mathbf{g}(\mathbf{x})$ through a sign function, can put it through a smooth function
- smooth function is better for gradient descent
- Logistic sigmoid function
- $g(x, w)=\mathbf{w}_{0}+\mathbf{x}_{1} \mathbf{w}_{1}+\ldots+\mathbf{x}_{\mathrm{d}} \mathbf{w}_{\mathrm{d}}$
- let $\mathbf{f}(\mathbf{x}, \mathbf{w})=\sigma(\mathbf{g}(\mathbf{x}, \mathbf{w}))$

$$
\sigma(a)=\frac{1}{1+\exp (-a)}
$$

Linear Machine: Logistic Regression

- $\mathbf{f}(\mathbf{x}, \mathbf{w})=\sigma(\mathbf{g}(\mathbf{x}, \mathbf{w}))$
- bigger 0.5 if $\mathbf{g}(\mathbf{x}, \mathbf{w})$ is positive
- decide class 1
- less 0.5 if $\mathbf{g}(\mathbf{x}, \mathbf{w})$ is negative
- decide class 2
- Has an interesting probabilistic

$$
\sigma(a)=\frac{1}{1+\exp (-a)}
$$ interpretation

- $P($ class $1 \mid \mathbf{x})=\boldsymbol{\sigma}(\mathbf{g}(\mathbf{x}, \mathbf{w}))$
- Under a certain loss function, can be optimized exactly with gradient decent

Generalized Linear Classifier

- Can use other discriminant functions, like quadratics

$$
\mathbf{g}(\mathbf{x})=\mathbf{w}_{0}+\mathbf{w}_{1} \mathbf{x}_{1}+\mathbf{w}_{2} \mathbf{x}_{2}+\mathbf{w}_{12} \mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{w}_{11} \mathbf{x}_{1}^{2}+\mathbf{w}_{22} \mathbf{x}_{2}^{2}
$$

- Methodology is almost the same as
 in the linear case:
- $\mathbf{f}(\mathbf{x})=\operatorname{sign}\left(\mathbf{w}_{0}+\mathbf{w}_{1} \mathbf{x}_{1}+\mathbf{w}_{2} \mathbf{x}_{2}+\mathbf{w}_{12} \mathbf{x}_{1} \mathbf{x}_{2}+\mathbf{w}_{11} \mathbf{x}_{1}{ }^{2}+\mathbf{w}_{22} \mathbf{x}_{2}{ }^{2}\right)$
- $\quad \mathbf{z}=\left[\begin{array}{llllll}1 & \mathbf{x}_{1} & \mathbf{x}_{2} & \mathbf{x}_{1} \mathbf{x}_{2} & \mathbf{x}_{1}{ }^{2} & \mathbf{x}_{2}{ }^{2}\end{array}\right]$
- $\quad \mathbf{a}=\left[\begin{array}{llllll}\mathbf{w}_{0} & \mathbf{w}_{1} & \mathbf{w}_{2} & \mathbf{w}_{12} & \mathbf{w}_{11} & \mathbf{w}_{22}\end{array}\right]$
- "normalization": multiply negative class samples by -1
- all the other procedures remain the same, i.e. gradient descent to minimize Perceptron loss function, or MSE procedure, etc.

Generalized Linear Classifier

- In general, to the liner function:

$$
\mathbf{g}(\mathbf{x}, \mathbf{w})=\mathbf{w}_{0}+\sum_{\mathbf{i}=1 \ldots \mathrm{~d}} \mathbf{w}_{\mathrm{i}} \mathbf{x}_{\mathrm{i}}
$$

- can add quadratic terms:

$$
\mathbf{g}(\mathbf{x}, \mathbf{w})=\mathbf{w}_{0}+\sum_{\mathrm{i}=1 \ldots \mathrm{~d}} \mathbf{w}_{\mathrm{i}} \mathbf{x}_{\mathrm{i}}+\sum_{\mathrm{i}=1 \ldots \mathrm{~d}} \Sigma_{\mathrm{j}=1, \ldots \mathrm{~d}} \mathbf{w}_{\mathrm{ij}} \mathbf{x}_{\mathrm{i}} \mathbf{x}_{\mathrm{j}}
$$

- This is still a linear function in its parameters \mathbf{w}
- $\mathbf{g}(\mathbf{y}, \mathbf{v})=\mathbf{v}_{0}+\mathbf{v}^{\mathbf{t}} \mathbf{y}$

$$
\left.\right]
$$

- Can use all the same training methods as before

Generalized Linear Classifier

- Generalized linear classifier

$$
\mathbf{g}(\mathbf{x}, \mathbf{w})=\mathbf{w}_{0}+\sum_{\mathbf{i}=1 \ldots m} \mathbf{w}_{\mathbf{i}} \mathbf{h}_{\mathbf{i}}(\mathbf{x})
$$

- $\mathbf{h (x)}$ are called basis function, can be arbitrary functions
- in strictly linear case, $\mathbf{h}_{\mathrm{i}}(\mathbf{x})=\mathbf{x}_{\mathrm{i}}$
- Linear function in its parameters \mathbf{w}

$$
\begin{gathered}
\mathbf{g}(\mathbf{x}, \mathbf{w})=\mathbf{w}_{0}+\mathbf{w}^{t} \mathbf{h} \\
\mathbf{h}=\left[\begin{array}{llll}
\mathbf{h}_{1}(\mathbf{x}) & \mathbf{h}_{2}(\mathbf{x}) & \ldots . & \mathbf{h}_{\mathrm{m}}(\mathbf{x})
\end{array}\right] \\
{\left[\begin{array}{llll}
\mathbf{w}_{1} & \ldots & \mathbf{w}_{\mathrm{m}}
\end{array}\right]}
\end{gathered}
$$

- Can use all the same training methods as before

Generalized Linear Classifier

- Usually face severe overfitting
- too many degrees of freedom
- Boundary can "curve" to fit to the noise in the data
- Helps to regularize by keeping w small
- small w means the boundary is not as curvy
- Usually add $\boldsymbol{\lambda}\|\mathbf{w}\|^{2}$ to the loss function
- Recall quadratic loss function

$$
L\left(\mathbf{x}^{i}, \mathbf{y}^{i}, \mathbf{w}\right)=\left\|\mathbf{f}\left(\mathbf{x}^{i}, \mathbf{w}\right)-\mathbf{y}^{\mathbf{i}}\right\|^{2}
$$

- Regularized version

$$
L\left(\mathbf{x}^{i}, \mathbf{y}^{i}, \mathbf{w}\right)=\left\|f\left(\mathbf{x}^{i}, \mathbf{w}\right)-\mathbf{y}^{\mathbf{i}}\right\|^{2}+\lambda\|\mathbf{w}\|^{2}
$$

- How to set $\boldsymbol{\lambda}$?
- With cross-validation

Learning by Gradient Descent

- Can have classifiers even more general
- More general than generalized linear $)$
- Suppose we suspect that the machine has to have functional form $f(\mathbf{x}, \mathbf{w})$, not necessarily linear
- Pick differentiable per-sample loss function $\mathbf{L}\left(\mathbf{x}^{\mathbf{i}}, \mathbf{y}^{i}, \mathbf{w}\right)$
- Need to find \mathbf{w} that minimizes $\mathbf{L}=\Sigma_{i} \mathbf{L}\left(\mathbf{x}^{i}, \mathbf{y}^{i}, \mathbf{w}\right)$
- Use gradient-based minimization:
- Batch rule: w = w $-\alpha \nabla \mathbf{L}(\mathbf{w})$
- Or single sample rule: $\mathrm{W}=\mathrm{W}-\alpha \nabla \mathbf{L}\left(\mathbf{x}^{i}, \mathbf{y}^{\mathbf{i}}, \mathbf{w}\right)$

