
CS9840
Learning and Computer Vision Prof.

Olga Veksler

Lecture 5
Boosting

Some slides are due to Robin Dhamankar
Vandi Verma & Sebastian Thrun

Today

• New Machine Learning Topics:
• Ensemble Learning

• Bagging
• Boosting

Ensemble Learning: Bagging and Boosting

• So far we have talked about design of a single classifier
that generalizes well (want to “learn” f(x))

• From statistics, we know that it is good to average your
predictions (reduces variance)

• Bagging is based on ensemble learning ideas
• Boosting was inspired by bagging

Bagging
• Generate a random sample from training set by selecting l elements

(out of N elements available) with replacement
• New sampled dataset has, on average, 63.2% of training examples

• each example has a probability of 1-(1-1/N)N of being selected at least once.
For N→∞, this converges to (1-1/e) or 0.632 [Bauer and Kohavi, 1999]

• Repeat the sampling procedure, getting a sequence of k
independent training sets

• Train classifiers f1(x),f2(x),…,fk(x) for each of these training sets, using
the same classification algorithm

• To classify an unknown sample x, let each classifier predict
• The bagged classifier fFINAL(x) combines predictions of individual

classifiers, frequently by simple voting

fFINAL(x) =sign[1/k Σ fi(x)]

Boosting: Motivation
• Hard to design accurate classifier which generalizes well
• Easy to find many rule of thumb or weak classifiers

• a classifier is weak if it is slightly better than random guessing
• example: if an email has word “money” classify it as spam, otherwise

classify it as not spam
• likely to be better than random guessing

• How combine weak classifiers to produce an accurate classifier?
• Question people have been working on since 1980’s
• Ada-Boost (1996) was the first practical boosting algorithm

• Boosting
• Assign different weights to training samples in a “smart” way so that

different classifiers pay more attention to different samples
• Weighted majority voting, the weight of individual classifier is

proportional to its accuracy
• Ada-boost was influenced by bagging, and it is superior to bagging

Ada Boost
• Assume 2-class problem, with labels +1 and -1

• yi in {-1,1}

• Ada boost produces a discriminant function:

() () () () ()xh...xhxhxhxg TT

T

t
tt αααα ++==∑

=
2211

1

• Where ht(x) is a weak classifier, for example:

• The final classifier is the sign of the discriminant function
ffinal(x) = sign[g(x)]

()

−= 1

1xht
if email has word “money”
if email does not have word “money”

Idea Behind Ada Boost

• Algorithm is iterative
• Maintains distribution of weights over the training

examples
• Initially weights are equal
• Main Idea: at successive iterations, the weight of

misclassified examples is increased
• This forces the algorithm to concentrate on examples

that have not been classified correctly so far

Idea Behind Ada Boost
• Examples of high weight are shown more often at later rounds
• Face/nonface classification problem:

Round 1
1/7 1/7 1/7 1/7 1/7 1/7 1/7

change weights: 1/16 1/4 1/16 1/16 1/4 1/16 1/4
 best weak classifier:

 best weak classifier:

1/8 1/32 11/32 1/2 1/8 1/32 1/32change weights:

Round 2

Idea Behind Ada Boost
Round 3

• out of all available weak classifiers, we choose the one
that works best on the data we have at round 3

• we assume there is always a weak classifier better than
random (better than 50% error)

• image is half of the data given to the classifier
• chosen weak classifier has to classify this image correctly

More Comments on Ada Boost

• Ada boost is simple to implement, provided you have
an implementation of a “weak learner”

• Will work as long as the “basic” classifier ht(x) is at
least slightly better than random
• will work if the error rate of ht(x) is less than 0.5
• 0.5 is the error rate of a random guessing for a 2-class

problem

• Can be applied to boost any classifier, not necessarily
weak
• but there may be no benefits in boosting a “strong” classifier

Ada Boost for 2 Classes
Initialization step: for each example x, set

Iteration step (for t = 1…T):
1. Find best weak classifier ht(x) using weights D(x)
2. Compute the error rate εt as

() ()[]i
t

i
N

i

i
t xhyIxD ≠⋅=∑

=1

ε

3. compute weight αt of classifier ht

αt = log ((1- εt)/ εt)
4. For each xi , D(xi) =D(xi)⋅exp(αt⋅I[yi ≠ ht(xi)])

()
N

xD 1
= , where N is the number of examples

5. Normalize D(xi) so that () 1
1

=∑
=

N

i

ixD

ffinal(x) =sign [∑ α t ht (x)]

()

 ≠

=
otherwise

xhyif i
t

i

0
1

Ada Boost: Step 1
1. Find best weak classifier ht(x) using weights D(x)

• some classifiers accept weighted samples, but most don’t
• if classifier does not take weighted samples, sample from

the training samples according to the distribution D(x)

1/16 1/4 1/16 1/16 1/4 1/16 1/4

• Draw k samples, each x with probability equal to D(x):

re-sampled examples

1. Find best weak classifier ht(x) using weights D(x)

• To find the best weak classifier, go through all
weak classifiers, and find the one that gives the
smallest error on the re-sampled examples

h1(x) h2(x) h3(x) hm(x) ……..…

errors: 0.46 0.36 0.16 0.43
the best classifier ht(x)
to choose at iteration t

Ada Boost: Step 1

• Give to the classifier the re-sampled examples:

weak
classifiers

2. Compute εt the error rate as

• εt is the weight of all misclassified examples added
• the error rate is computed over original examples, not the

re-sampled examples
• If a weak classifier is better than random, then εt < ½

1/16 1/4 1/16 1/16 1/4 1/16 1/4

16
5

16
1

4
1

=+=tε

Ada Boost: Step 2

() ()[]i
t

i
N

i

i
t xhyIxD ≠⋅=∑

=1

ε
()

 ≠

=
otherwise

xhyif i
t

i

0
1

3. compute weight αt of classifier ht

αt = log ((1 – εt)/εt)

• Recall that εt < ½
• Thus (1- ε t)/ εt > 1 ⇒ αt > 0
• The smaller is εt, the larger is αt, and thus the more

importance (weight) classifier ht(x)
final(x) =sign [∑ αt ht (x)]

In example from previous slide:

16
5

=tε 80
5

11

16
5
16
51

.loglogt ≈=
−

=α⇒

Ada Boost: Step 3

4. For each xi , D(xi) =D(xi)⋅exp(αt⋅I[yi ≠ ht(xi)])

• weight of misclassified examples is increased

1/16 1/4 1/16 1/16 1/4 1/16 1/4

from previous slide αt = 0.8

1/16

⇒

1/4

⇒

1/16

⇒ ⇒
(1/16) exp(0.8)

⇒
(1/4) exp(0.8)

1/16 1/4

⇒ ⇒

Ada Boost: Step 4

5. Normalize D(xi) so that ∑D(xi) = 1

1/16 1/4 1/16 0.14 0.56 1/16 1/4

from previous slide:

• after normalization

0.05 0.18 0.05 0.10 0.40 0.05 0.18

Ada Boost: Step 5

AdaBoost Example

D

1x

2x

from “A Tutorial on Boosting” by Yoav Freund and Rob Schapire

• Initialization: all examples have equal weights

AdaBoost Example
ROUND 1

() ()11 3= xsignxh -

1x

2x

3

D

1x

2x

AdaBoost Example

() ()12 7= xsignxh -
7 1x

2x

ROUND 2

D

1x

2x

AdaBoost Example

1x

2x

4

() ()423 −= xsignxh

ROUND 3

AdaBoost Example

ffinal (x)=

()
() () ()()4920+7650+3420

=

211 --- xsign.xsign.xsign.sign

xffinal

• note non-linear decision boundary

AdaBoost Comments

• Can show that training error drops exponentially fast

()∑−≤
t ttrain expErr 22 γ

• Here γt = ε t – 1/2, where εt is classification error at
round t

• Example: let errors for the first four rounds be, 0.3,
0.14, 0.06, 0.03, 0.01 respectively. Then

()[]
190

490470440360202 22222

.
.....expErrtrain

≈
++++−≤

AdaBoost Comments
• We are really interested in the generalization properties of

fFINAL(x), not the training error
• AdaBoost was shown to have excellent generalization

properties in practice
• the more rounds, the more complex is the final classifier, so overfitting

is expected as the training proceeds
• but in the beginning researchers observed no overfitting of the data
• It turns out it does overfit data eventually, if you run it really long

• It can be shown that boosting increases the margins of
training examples, as iterations proceed
• larger margins help better generalization
• margins continue to increase even when training error reaches zero
• helps to explain empirically observed phenomena: test error continues

to drop even after training error reaches zero

AdaBoost Example

+
+

+ -

-

-
+

+

+ -

-

-

• zero training error • zero training error
• larger margins helps

better genarlization

keep

training

+

new (test) example

+

Margin Distribution

Iteration number 5 100 1000
training error 0.0 0.0 0.0
test error 8.4 3.3 3.1
%margins≤0.5 7.7 0.0 0.0
Minimum margin 0.14 0.52 0.55

Boosting As Additive Model

• The final prediction in boosting g(x) can be expressed
as an additive expansion of individual classifiers

);x(f)x(g kk

M

1k
k γα∑

=

=

∑ ∑
= =

N

1i

M

1k
kikki,,...,,

);x(f,yLmin
MM11

γα
αγγα

• Typically we would try to minimize a loss function on
the N training examples

• For example, under squared-error loss:

∑ ∑
= =

−

N

1i

2M

1k
kikki,,...,,

);x(fymin
MM11

γα
αγγα

fixed

fixed

Boosting As Additive Model

()2titti1ti);x(f)x(gy γα−−= −

=+−));x(f)x(g,y(L titti1ti γα

• Under the squared difference loss function:

• Forward stage-wise optimization seems to produce
classifier with better generalization, doing the process
stagewise seems to overfit less quickly

);()()(1 ttttt xfxgxg γα+= −

• Forward stage-wise modeling is iterative and fits the
fk(x,γk) sequentially, fixing the results of previous
iterations

model at
iteration t

fit γt, αt to produce
improved gt(x)

Boosting As Additive Model

• It can be shown that AdaBoost uses forward stage-wise
modeling under the following loss function:
• L(y, g (x)) = exp(-y ∙ g (x))

• the exponential loss function

• At stage (or iteration) m, we fit:

∑

∑

∑

=
−

=
−

=

⋅⋅−⋅⋅−=

⋅+⋅−=

=

N

1i
immii1mi

f,

N

1i
immi1mi

f,

i

N

1i
i

f,

))x(fyexp())x(gyexp(minarg

)])x(f)x(g[yexp(minarg

))x(g,y(Lminarg

mm

mm

mm

α

α

α

α

α

);x(f)x(g kk

M

1k
k γα∑

=

=

Exponential Loss vs. Squared Error Loss
• L(y, g (x)) = exp(-y ∙ g (x))

y ∙ g (x)
0-2 •-

1
1 2

• L(y, g (x)) = (y - g (x))2

1

SE loss

exponential loss

• Squared Error Loss penalizes classifications that are “too correct”,
with y ∙ g (x) >1, and thus it is inappropriate for classification

• Exponential loss encourages large margins, want y ∙ g (x) large

Loss

Logistic Regression Model

• It can be shown that Adaboost builds a logistic regression
model:

() ()
() ()∑

=

=
−=
==

M

1k
mm xf

x|1YPr
x|1YPrlogxg α

()() ()∑ ∑∑
= ==

⋅−=⋅−

N

1i

M

1k
immi

N

1i
ii xfyexpxgyexp α

• It can also be shown that the the training error on
the samples is at most:

Practical Advantages of AdaBoost

• Can construct arbitrarily complex decision
regions

• Fast
• Simple
• Has only one parameter to tune, T
• Flexible: can be combined with any classifier
• provably effective (assuming weak learner)

• shift in mind set: goal now is merely to find
hypotheses that are better than random guessing

Caveats

• AdaBoost can fail if
• weak hypothesis too complex (overfitting)
• weak hypothesis too weak (γt→0 too quickly),

• underfitting

• empirically, AdaBoost seems especially
susceptible to noise
• noise is the data with wrong labels

	CS9840 �Learning and Computer Vision Prof. Olga Veksler
	Today
	Ensemble Learning: Bagging and Boosting
	Bagging
	Boosting: Motivation
	Ada Boost
	Idea Behind Ada Boost
	Idea Behind Ada Boost
	Idea Behind Ada Boost
	More Comments on Ada Boost
	�Ada Boost for 2 Classes�
	Ada Boost: Step 1
	Ada Boost: Step 1
	Ada Boost: Step 2
	Ada Boost: Step 3
	Ada Boost: Step 4
	Ada Boost: Step 5
	AdaBoost Example
	AdaBoost Example
	AdaBoost Example
	AdaBoost Example
	AdaBoost Example
	AdaBoost Comments
	AdaBoost Comments
	AdaBoost Example
	Margin Distribution
	Boosting As Additive Model
	Boosting As Additive Model
	Boosting As Additive Model
	Slide Number 30
	Slide Number 31
	Practical Advantages of AdaBoost
	Caveats

