CS9840 Learning and Computer Vision Prof. Olga Veksler

Lecture 9
Validation
and
Cross-Validation

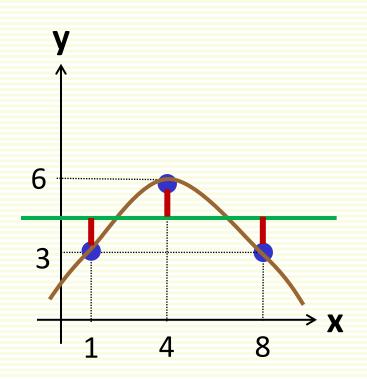
Outline

- Performance evaluation and model selection methods
 - validation
 - cross-validation
 - k-fold
 - Leave-one-out

Regression

- In this lecture, it is convenient to show examples in the context of regression
- In regression, labels y

 continuous
- Classification/regression are solved very similarly
- Everything we have done so far transfers to regression with very minor changes
- Error: sum of distances from examples to the fitted model

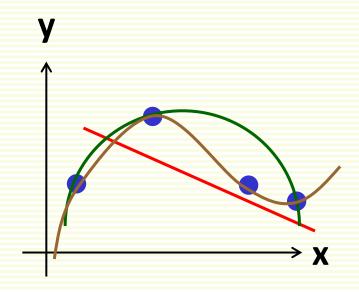


Training/Test Data Split

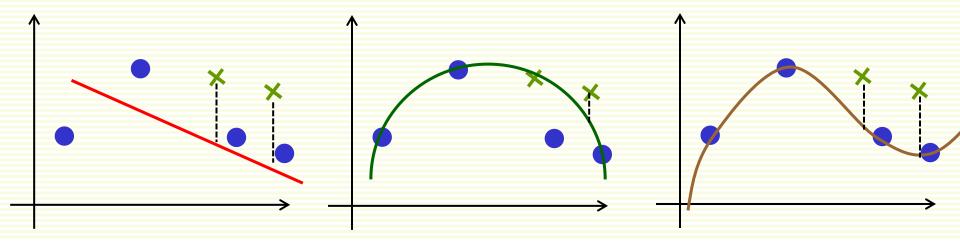
- Talked about splitting data in training/test sets
 - training data is used to fit parameters
 - test data is used to assess how classifier generalizes to new data
- What if classifier has "non-tunable" parameters?
 - a parameter is "non-tunable" if tuning (or training) it on the training data leads to overfitting
 - Examples:
 - k in kNN classifier
 - T (number of training epoch) in adaBoost
 - Kernel width in SVM
 - etc

Example of Overfitting

- Want to fit a polynomial machine f(x,w)
- Instead of fixing polynomial degree, make it parameter d
 - learning machine f(x,w,d)
- Consider just three choices for d
 - degree 1
 - degree 2
 - degree 3
- Training error is a bad measure to choose d
 - degree 3 is the best according to the training error, but overfits the data



Training/Test Data Split



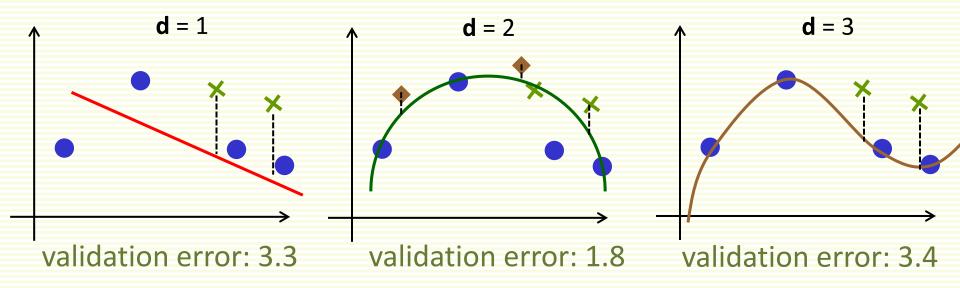
- What about test error? Seems appropriate
 - degree 2 is the best model according to the test error
- Except what do we report as the test error now?
- Test error should be computed on data that was not used for training at all
- Here used "test" data for training, i.e. choosing model

Validation data

- Same question when choosing among several classifiers
 - our polynomial degree example can be looked at as choosing among 3 classifiers (degree 1, 2, or 3)
- Solution: split the labeled data into three parts

labeled data **Training Validation Test** ≈20% ≈60% ≈20% use only to train other train tunable assess final parameters, parameters w performance or to select classifier

Training/Validation/Test Data



- Training Data
- Validation Data
 - **d** = 2 is chosen
- Test Data
 - 1.3 test error computed for **d** = 2

Training/Validation

labeled data

Training Validation Test ≈60% ≈20%

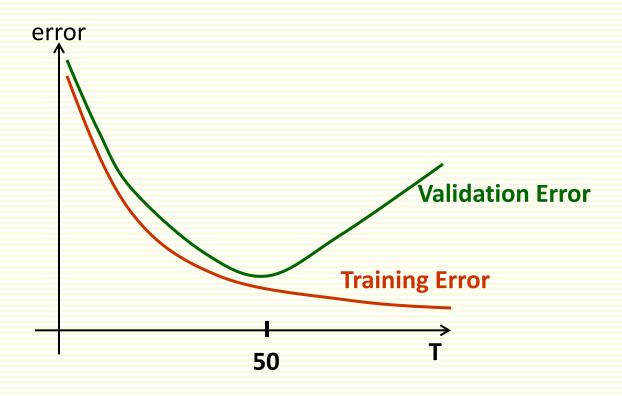
 After non-tunable parameters are chosen (using validation data), retrain on combined Training+Validation data before computing
 Test error

labeled data

/training//	//////////////////////////////////////	Test
/	['] ///////////≈2ø%///	≈20%

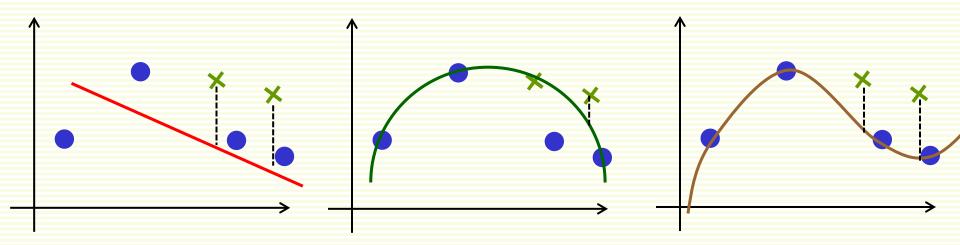
 The more data to train on, the better is the trained classifier (the more reliable test error)

Choosing Parameters: Example



- Need to choose **T** for adaBoost
 - The more iterations, the better can fit training data
 - But at some point we overfit the data

Diagnosing Underfitting/Overfitting



Underfitting

- large training error
- large validation error

Just Right

- small training error
- small validation error

Overfitting

- small training error
- large validation error

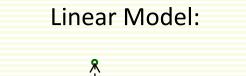
Fixing Underfitting/Overfitting

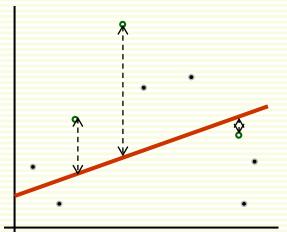
- Fixing Underfitting
 - getting more training examples will not help
 - get more features
 - try more complex classifier
 - if using MNN, try more hidden units
- Fixing Overfitting
 - getting more training examples might help
 - try smaller set of features
 - Try less complex classifier
 - If using MNN, try less hidden units

Train/Test/Validation Method

- Good news
 - Very simple
- Bad news:
 - Wastes data
 - in general, the more data we have, the better are the estimated parameters
 - we estimate parameters on 40% less data, since 20% removed for test and 20% for validation data
 - If we have a small dataset our test (validation) set might just be lucky or unlucky
- Cross Validation is a method for performance evaluation that wastes less data

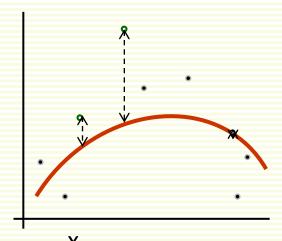
Small Dataset





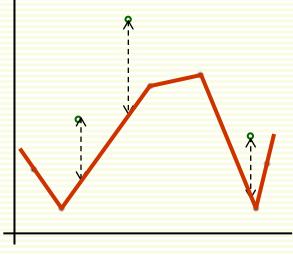
Mean Squared Error = 2.4

Quadratic Model:

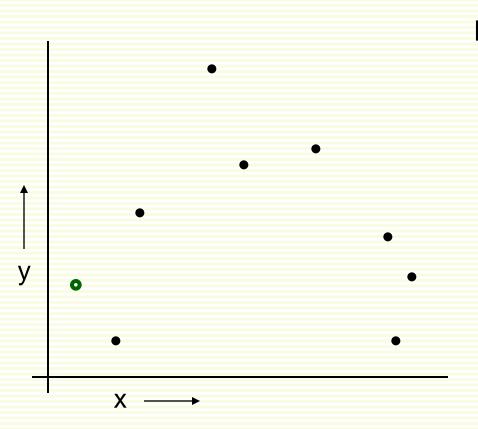


Mean Squared Error = 0.9

Join the dots Model:

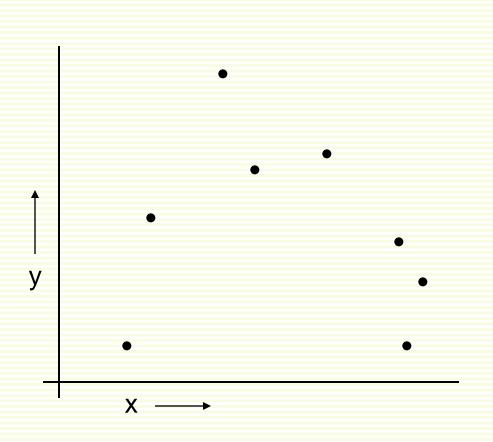


Mean Squared Error = 2.2



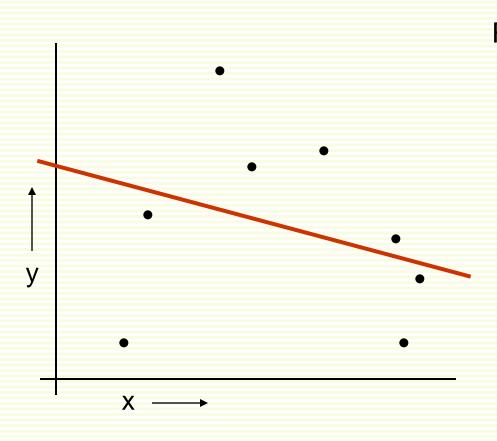
For k=1 to R

1. Let $(\mathbf{x}^k, \mathbf{y}^k)$ be the **k** example



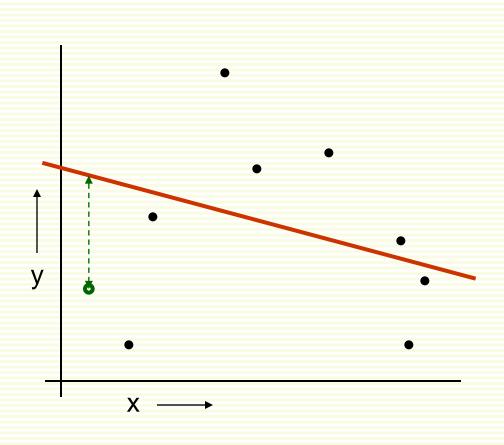
For k=1 to n

- 1. Let $(\mathbf{x}^k, \mathbf{y}^k)$ be the **k**th example
- 2. Temporarily remove $(\mathbf{x}^k, \mathbf{y}^k)$ from the dataset



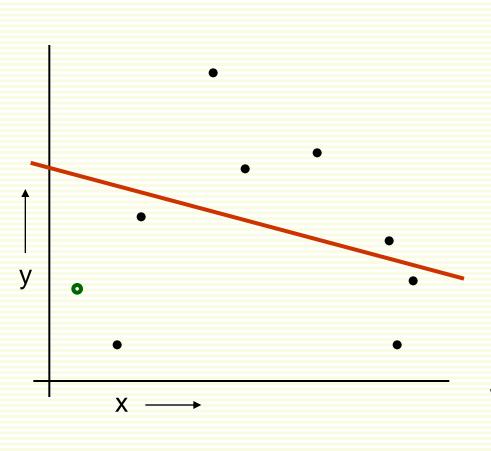
For k=1 to n

- 1. Let $(\mathbf{x}^k, \mathbf{y}^k)$ be the **k**th example
- 2. Temporarily remove $(\mathbf{x}^k, \mathbf{y}^k)$ from the dataset
- 3. Train on the remaining **n**-1 examples



For k=1 to n

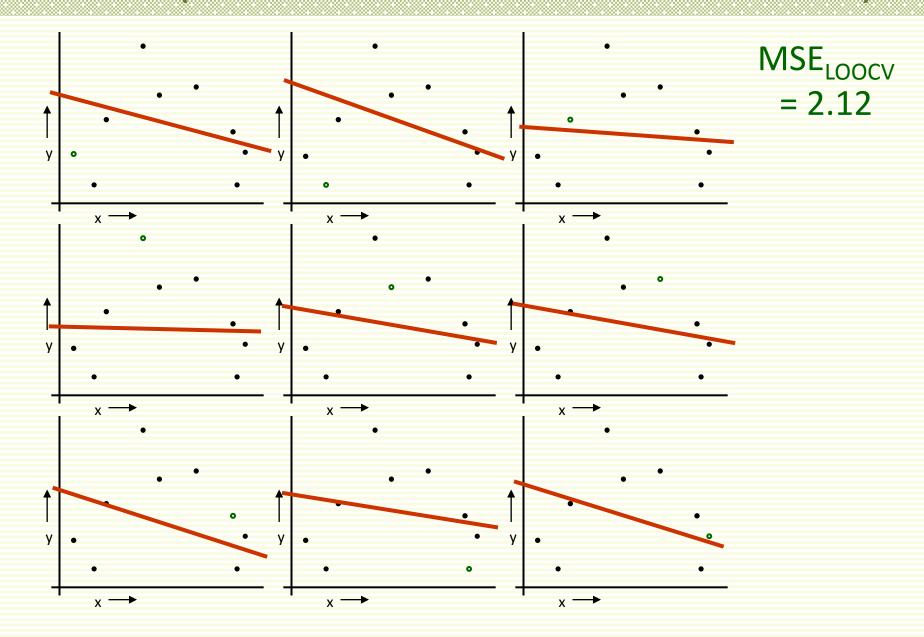
- 1. Let $(\mathbf{x}^k, \mathbf{y}^k)$ be the **k**th example
- 2. Temporarily remove $(\mathbf{x}^k, \mathbf{y}^k)$ from the dataset
- 3. Train on the remaining **n**-1 examples
- 4. Note your error on $(\mathbf{x}^k, \mathbf{y}^k)$



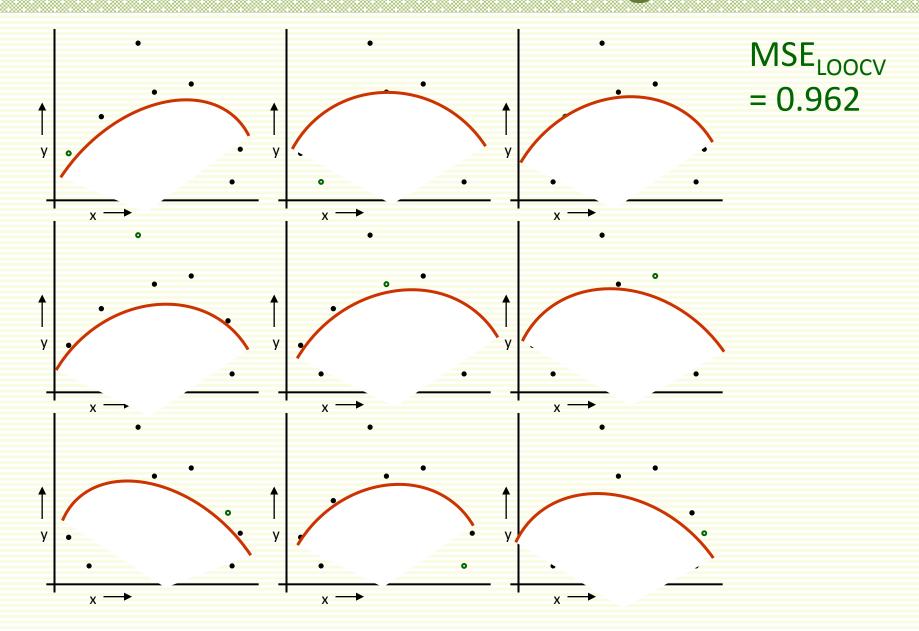
For k=1 to n

- 1. Let $(\mathbf{x}^k, \mathbf{y}^k)$ be the kth example
- 2. Temporarily remove $(\mathbf{x}^k, \mathbf{y}^k)$ from the dataset
- 3. Train on the remaining **n**-1 examples
- 4. Note your error on $(\mathbf{x}^k, \mathbf{y}^k)$

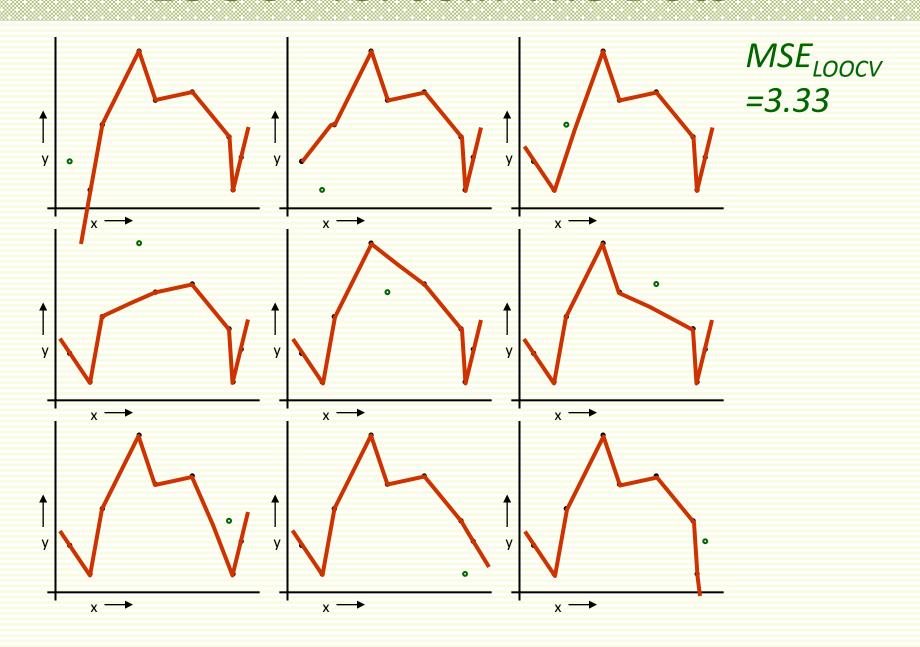
When you've done all points, report the mean error



LOOCV for Quadratic Regression



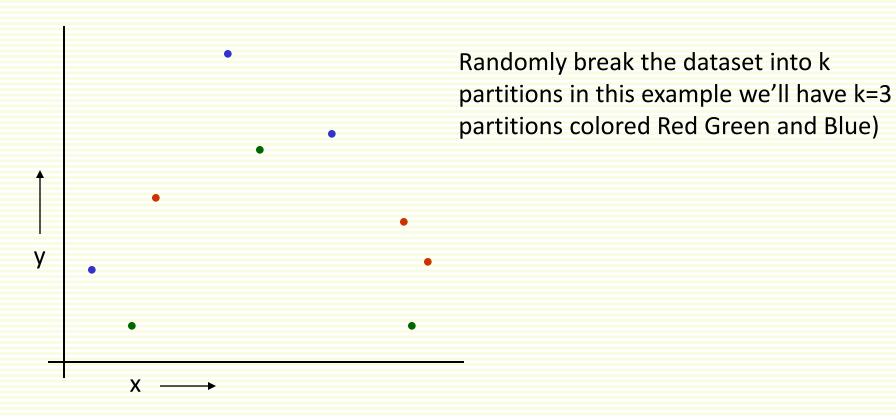
LOOCV for Join The Dots

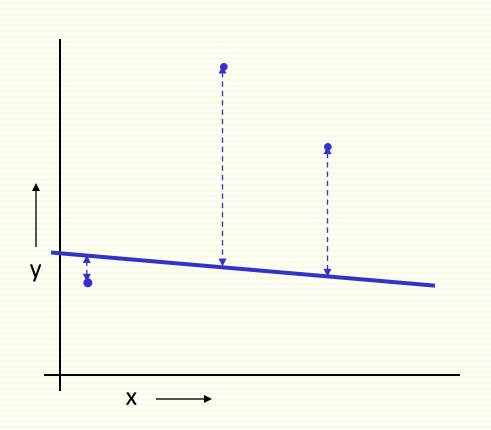


Which kind of Cross Validation?

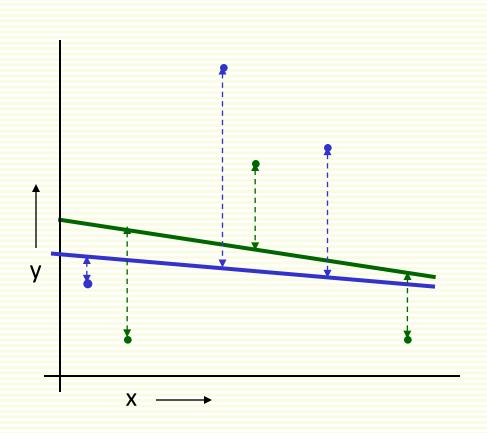
	Downside	Upside
Test-set	may give unreliable estimate of future performance	cheap
Leave-one- out	expensive	doesn't waste data

Can we get the best of both worlds?

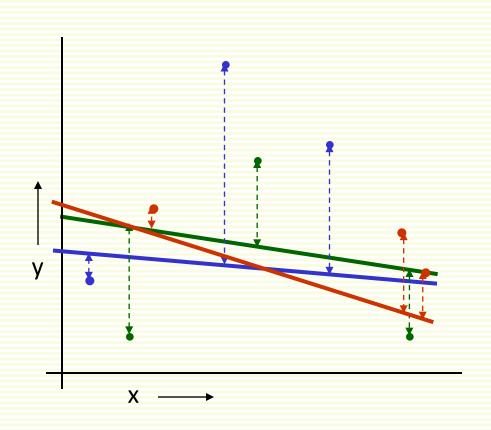




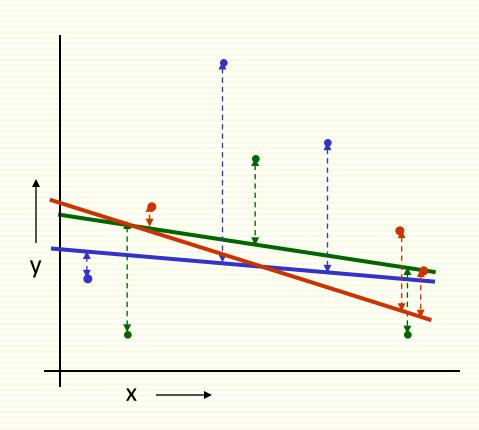
- Randomly break the dataset into k partitions
- in example have k=3 partitions colored red green and blue
- For the blue partition: train on all points not in the blue partition. Find testset sum of errors on blue points



- Randomly break the dataset into k partitions
- in example have k=3 partitions colored red green and blue
- For the blue partition: train on all points not in the blue partition. Find testset sum of errors on blue points
- For the green partition: train on all points not in green partition. Find test-set sum of errors on green points

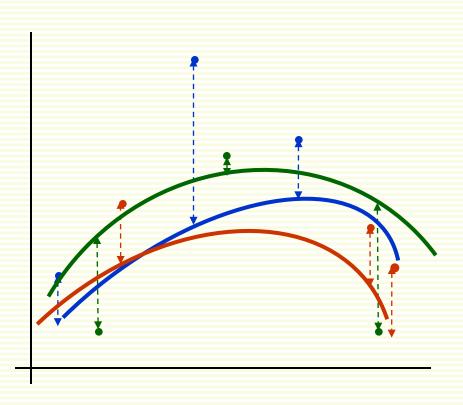


- Randomly break the dataset into k partitions
- in example have k=3 partitions colored red green and blue
- For the blue partition: train on all points not in the blue partition. Find testset sum of errors on blue points
- For the green partition: train on all points not in green partition. Find test-set sum of errors on green points
- For the red partition: train on all points not in red partition. Find the test-set sum of errors on red points



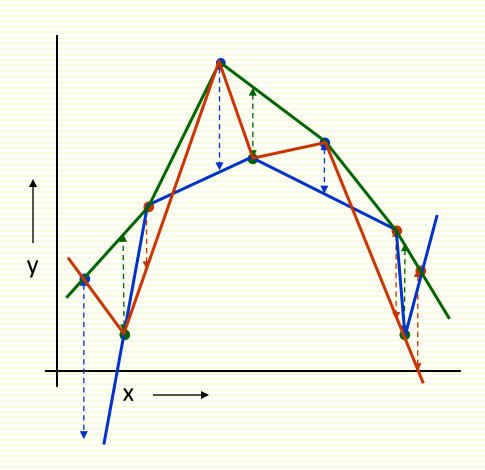
Linear Regression MSE_{3FOLD}=2.05

- Randomly break the dataset into k partitions
- in example have k=3 partitions colored red green and blue
- For the blue partition: train on all points not in the blue partition. Find testset sum of errors on blue points
- For the green partition: train on all points not in green partition. Find test-set sum of errors on green points
- For the red partition: train on all points not in red partition. Find the test-set sum of errors on red points
- Report the mean error



Quadratic Regression MSE_{3FOLD}=1.11

- Randomly break the dataset into k partitions
- in example have k=3 partitions colored red green and blue
- For the blue partition: train on all points not in the blue partition. Find testset sum of errors on blue points
- For the green partition: train on all points not in green partition. Find test-set sum of errors on green points
- For the red partition: train on all points not in red partition. Find the test-set sum of errors on red points
- Report the mean error



Joint-the-dots
MSE_{3FOLD}= 2.93

- Randomly break the dataset into k partitions
- in example have k=3 partitions colored red green and blue
- For the blue partition: train on all points not in the blue partition. Find testset sum of errors on blue points
- For the green partition: train on all points not in green partition. Find test-set sum of errors on green points
- For the red partition: train on all points not in red partition. Find the test-set sum of errors on red points
- Report the mean error

Which kind of Cross Validation?

	Downside	Upside
Test-set	may give unreliable estimate of future performance	cheap
Leave- one-out	expensive	doesn't waste data
10-fold	wastes 10% of the data,10 times more expensive than test set	only wastes 10%, only 10 times more expensive instead of n times
3-fold	wastes more data than 10- fold, more expensive than test set	slightly better than test-set
N-fold	Identical to Leave-one-out	

Cross-validation for classification

 Instead of computing the sum squared errors on a test set, you should compute...

Cross-validation for classification

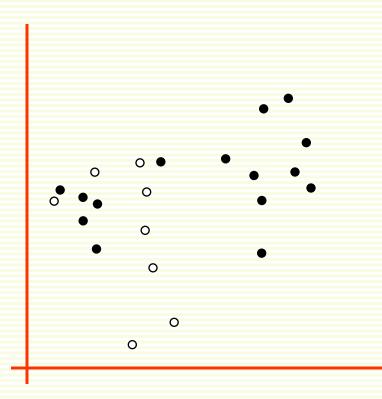
 Instead of computing the sum squared errors on a test set, you should compute...

The total number of misclassifications on a testset

Cross-validation for classification

 Instead of computing the sum squared errors on a test set, you should compute...

The total number of misclassifications on a testset



- What's LOOCV of 1-NN?
- What's LOOCV of 3-NN?
- What's LOOCV of 22-NN?

Cross-Validation for classification

- Choosing k for k-nearest neighbors
- Choosing Kernel parameters for SVM
- Any other "free" parameter of a classifier
- Choosing Features to use
- Choosing which classifier to use

CV-based Model Selection

- We're trying to decide which algorithm to use.
- We train each machine and make a table...

f _i	Training Error	10-FOLD-CV Error	Choice
\mathbf{f}_1			
f ₂			
f ₃			\boxtimes
f ₄			
f ₅			
f ₆			

CV-based Model Selection

- Example: Choosing "k" for a k-nearest-neighbor regression.
- Step 1: Compute LOOCV error for six different model classes:

Algorithm	Training Error	10-fold-CV Error	Choice
k =1			
k =2			
k =3			
k =4			\boxtimes
k =5			
k =6			

- Step 2: Choose model that gave best CV score
- Train it with all the data, and that's the final model you'll use

CV-based Model Selection

- Why stop at **k**=6?
 - No good reason, except it looked like things were getting worse as K was increasing
- Are we guaranteed that a local optimum of K vs LOOCV will be the global optimum?
 - No, in fact the relationship can be very bumpy
- What should we do if we are depressed at the expense of doing LOOCV for k = 1 through 1000?
 - Try: **k**=1, 2, 4, 8, 16, 32, 64, ...,1024
 - Then do hillclimbing from an initial guess at k