CS9840 Learning and Computer Vision Prof. Olga Veksler

Lecture 10

Neural Networks

Many slides are from A. Ng, Y. LeCun, G. Hinton, A. Ranzato

Outline

- Intro/History
- Perceptron (1 layer NN)
- Multilayer Perceptron (MLP)
- Deep Networks (DNN)
 - convolutional Network
- Training Deep Network
 - stacked autoencoders

Neural Networks

- Neural Networks correspond to some classifier function f_{NN}(x)
- Can carve out arbitrarily complex decision boundaries without requiring as many terms as polynomial functions
- Originally inspired by research in how human brain works
 - but cannot claim that this is how the brain actually works



 Now very successful in practice, but took a while to get there

ANN History: First Successes

- 1958, F. Rosenblatt, Cornell University
 - perceptron, oldest neural network still in use today
 - that's what we studied in lecture on linear classifiers
 - Algorithm to train the perceptron network
 - Built in hardware
 - Proved convergence in linearly separable case
 - Early success lead to a lot of claims which were not fulfilled
 - New York Times reports that perceptron is "the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence."

ANN History: Stagnation

- 1969, M. Minsky and S. Pappert
 - Book "Perceptrons"
 - Proved that perceptrons can learn only linearly separable classes
 - In particular cannot learn very simple XOR function
 - Conjectured that multilayer neural networks also limited by linearly separable functions
- No funding and almost no research (at least in North America) in 1970's as the result of 2 things above

ANN History: Revival & Stagnation (Again)

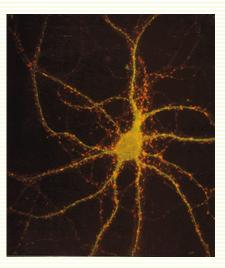
- Revival of ANN in early 1980
- 1986, (re)discovery of backpropagation algorithm by Werbos, Rumelhart, Hinton and Ronald Williams
 - Allows training a MLP
- Many examples of mulitlayer Neural Networks appear
- 1998, Convolutional network (convnet) by Y. Lecun for digit recognition, very successful
- 1990's: research in NN move slowly again
 - Networks with multiple layers are hard to train well (except convnet for digit recognition)
 - SVM becomes popular, works better

ANN History: Deep Learning Age

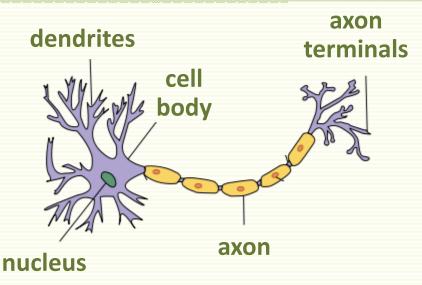
- Deep networks are inspired by brain architecture
- Until now, no success at training them, except convnet
- 2006-now: deep networks are trained successfully
 - massive training data becomes available
 - better hardware: fast training on GPU
 - better training algorithms for network training when there are many hidden layers
 - unsupervised learning of features, helps when training data is limited
- Break through papers
 - Hinton, G. E, Osindero, S., and Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18:1527-1554.
 - Bengio, Y., Lamblin, P., Popovici, P., Larochelle, H. (2007). Greedy Layer-Wise Training of Deep Networks, Advances in Neural Information Processing Systems 19
- Industry: Facebook, Google, Microsoft, etc.

Neuron: Basic Brain Processor

- Neurons (or nerve cells) are special cells that process and transmit information by electrical signaling
 - in brain and also spinal cord
- Human brain has around 10¹¹ neurons
- A neuron connects to other neurons to form a network
- Each neuron cell communicates to anywhere from 1000 to 10,000 other neurons

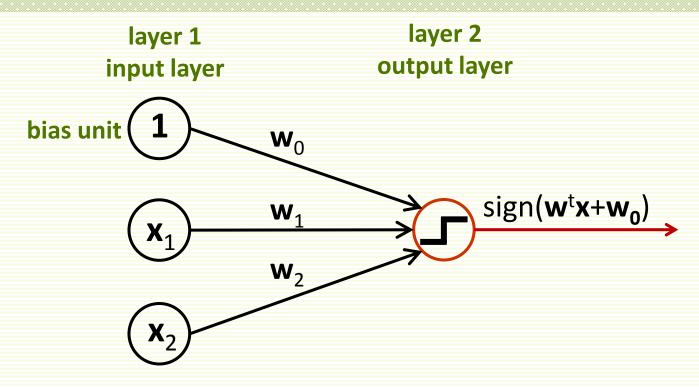


Neuron: Main Components



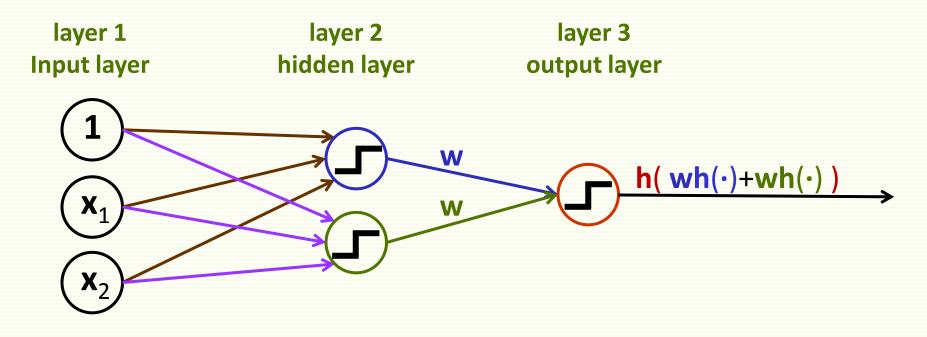
- cell body
 - computational unit
- dendrites
 - "input wires", receive inputs from other neurons
 - a neuron may have thousands of dendrites, usually short
- axon
 - "output wire", sends signal to other neurons
 - single long structure (up to 1 meter)
 - splits in possibly thousands branches at the end, "axon terminals"

Perceptron: 1 Layer Neural Network (NN)



- Linear classifier f(x) = sign(w^tx+w₀) is a single neuron "net"
- Input layer units emits features, except bias emits "1"
- Output layer unit applies **h**(t) = **sign**(t)
- **h**(t) is also called an *activation function*

Multilayer Perceptron (MLP)



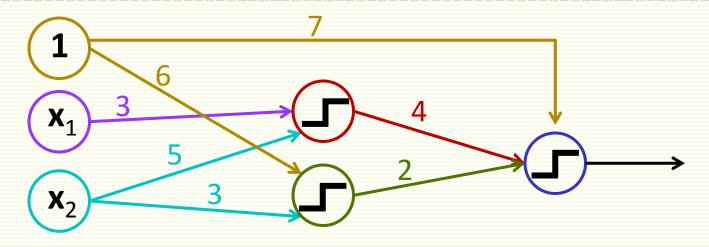
- First hidden unit outputs
- Second hidden unit outputs
- Network implements classifier

 $h(w_0 + w_1 x_1 + w_2 x_2)$ $h(w_0 + w_1 x_1 + w_2 x_2)$

 $f(x) = h(wh(\cdot)+wh(\cdot))$

• More complex boundaries than Perceptron

MLP Small Example



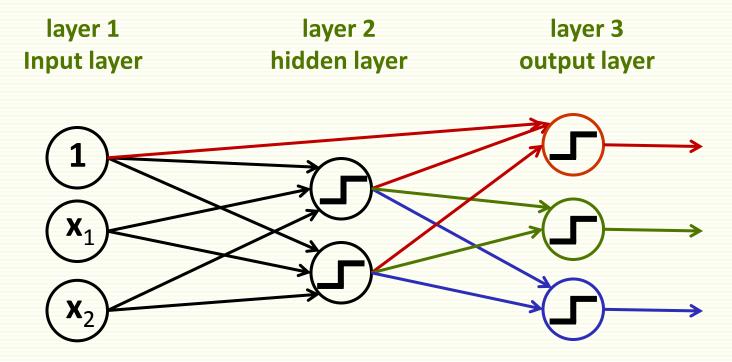
• Implements classifier

 $\mathbf{f}(\mathbf{x}) = \operatorname{sign}(4\mathbf{h}(\cdot) + 2\mathbf{h}(\cdot) + 7)$

= sign(4 sign(3x₁+5x₂)+2 sign(6+3x₂) + 7)

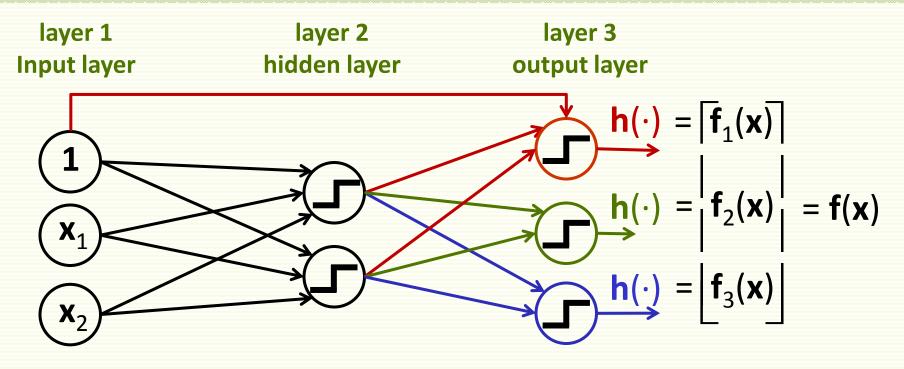
- Computing **f**(**x**) is called *feed forward operation*
 - graphically, function is computed from left to right
- Edge weights are learned through training

MLP: Multiple Classes



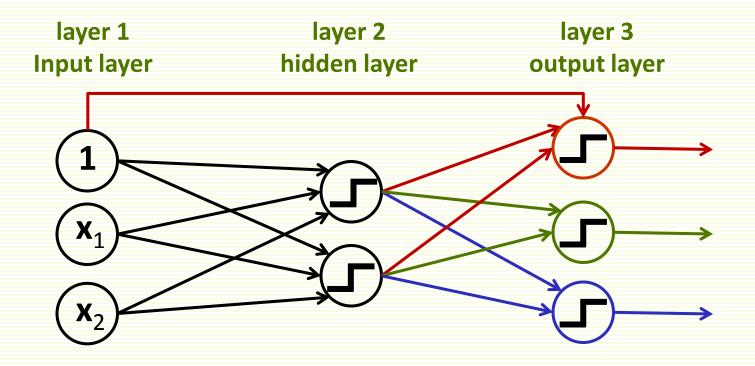
- 3 classes, 2 features, 1 hidden layer
 - 3 input units, one for each feature
 - 3 output units, one for each class
 - 2 hidden units
 - 1 bias unit, can draw in layer 1, or each layer has one

MLP: General Structure



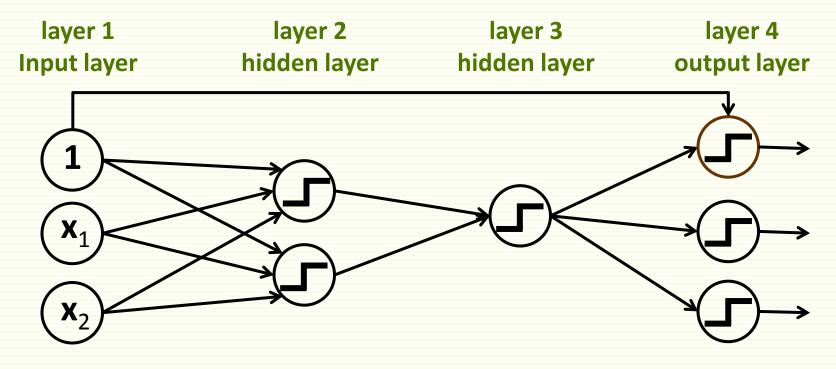
- f(x) is multi-dimensional
- Classification:
 - If **f**₁(**x**) is largest, decide class 1
 - If **f**₂(**x**) is largest, decide class 2
 - If **f**₃(**x**) is largest, decide class 3

MLP: General Structure



- Input layer: **d** features, **d** input units
- Output layer: **m** classes, **m** output units
- Hidden layer: how many units?
 - more units correspond to more complex classifiers

MLP: General Structure



- Can have many hidden layers
- Feed forward structure
 - ith layer connects to (i+1)th layer
 - except bias unit can connect to any layer
 - or, alternatively each layer can have its own bias unit

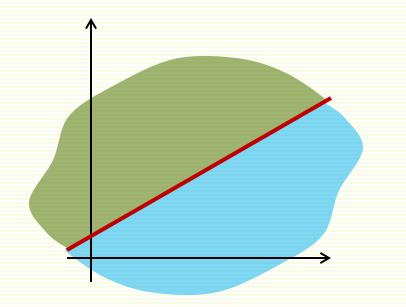
MLP: Overview

- MLP corresponds to rather complex classifier **f**(**x**,**w**)
 - complexity depends on the number of hidden layers/units
 - f(x,w) is a composition of many functions
 - easier to visualize as a network
 - notation gets ugly
- To train MLP, just as before
 - formulate an objective or *loss* function **L(w)**
 - optimize it with gradient descent
 - lots of notation due to gradient complexity
 - lots of tricks to get gradient descent work reasonably well

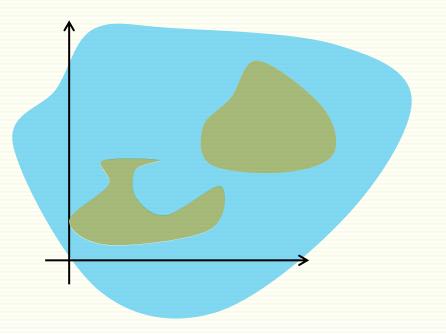
Expressive Power of MLP

- Every continuous function from input to output can be implemented with enough hidden units, 1 hidden layer, and proper *nonlinear* activation functions
 - easy to show that with linear activation function, multilayer neural network is equivalent to perceptron
- This is more of theoretical than practical interest
 - proof is not constructive (does not tell how construct MLP)
 - even if constructive, would be of no use, we do not know the desired function, our goal is to learn it through the samples
 - but this result gives confidence that we are on the right track
 - MLP is general (expressive) enough to construct any required decision boundaries, unlike the Perceptron

Decision Boundaries



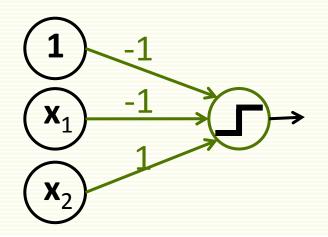
 Perceptron (single layer neural net)

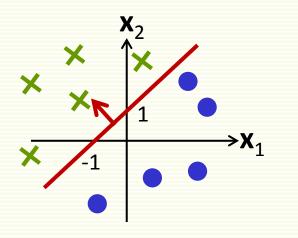


- Arbitrarily complex decision regions
- Even not contiguous

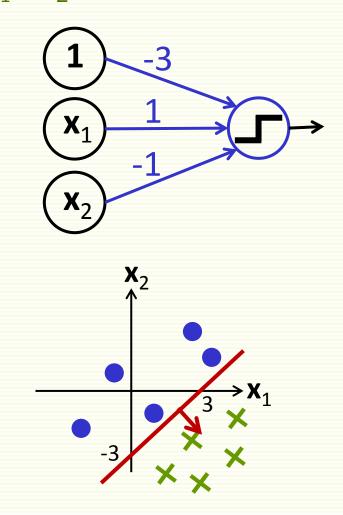
Nonlinear Decision Boundary: Example

$$-\mathbf{x}_1 + \mathbf{x}_2 - 1 > 0 \Rightarrow$$
 class 1



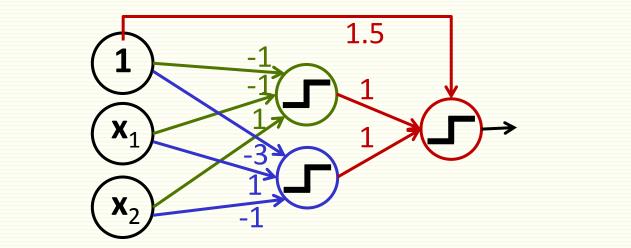


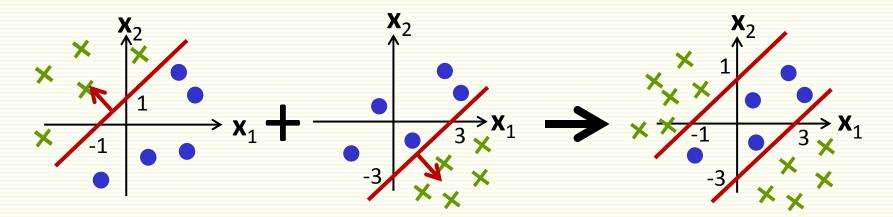
 $\mathbf{x}_1 - \mathbf{x}_2 - 3 > 0 \Rightarrow$ class 1



Nonlinear Decision Boundary: Example

• Combine two Perceptrons into a 3 layer NN

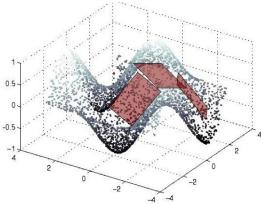




Multi-Layer Neural Networks: Activation Function

- h() = sign() does not work for gradient descent
- Can use sigmoid function

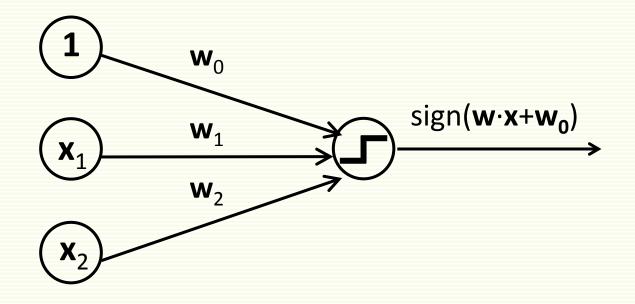
- Rectified Linear (RuLu) popular recently
 - constructs locally linear function



NN: Modes of Operation

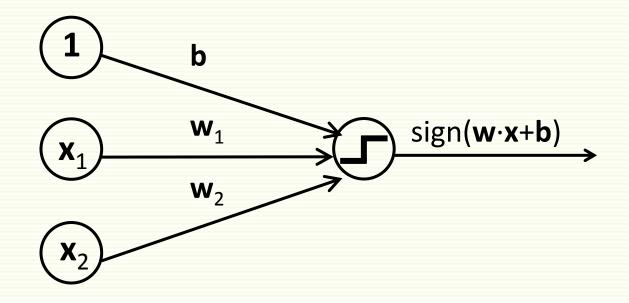
- Due to historical reasons, training and testing stages have special names
 - Backpropagation (or training)
 Minimize objective function with gradient descent
 - Feedforward (or testing)

- Want more compact (vector) notation
- Compact notation for Perceptron

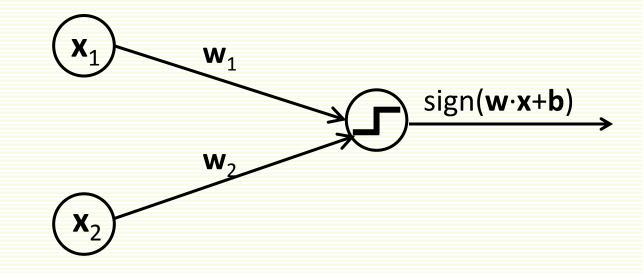


$$\mathbf{x} = \begin{bmatrix} \mathbf{x_1} \\ \mathbf{x_2} \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} \mathbf{w_1} \\ \mathbf{w_2} \end{bmatrix}$$

• Change notation a bit



• Do not draw bias unit

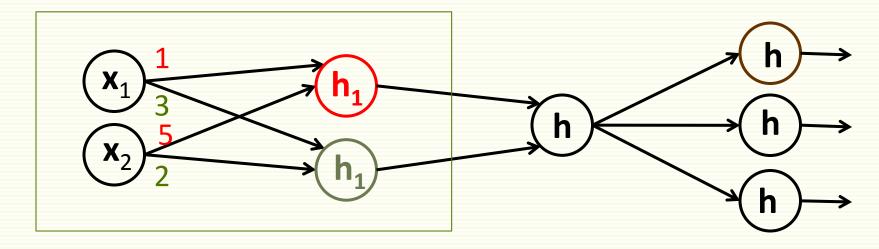


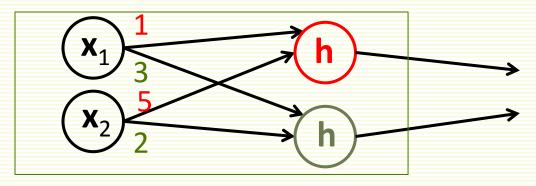
• Compact picture

$$\xrightarrow{\mathbf{X}} \mathbf{h}(\mathbf{w} \cdot \mathbf{x} + \mathbf{b}) \xrightarrow{\mathbf{h}}$$

• **h**(t) = sign(t)

• For now, look just at the first layer (2 perceptrons)





- Red perceptron has weights w¹ and bias b₁
- Green perceptron has weights w² and bias b₂

$$\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 5 \end{bmatrix}$$

$$\mathbf{w}^{1} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$

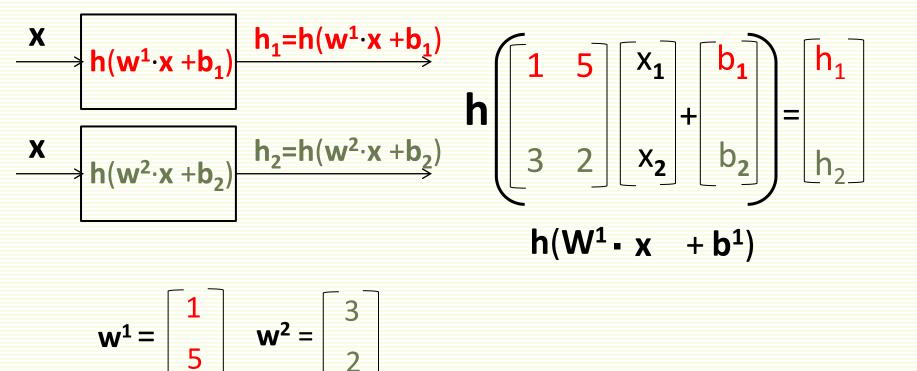
$$\mathbf{w}^{2} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$\begin{array}{c|c} \mathbf{x} & \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{x} + \mathbf{b}_{1}) & \mathbf{h}_{1} = \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{x} + \mathbf{b}_{1}) \\ \hline \mathbf{x} & \mathbf{h}(\mathbf{w}^{2} \cdot \mathbf{x} + \mathbf{b}_{2}) & \mathbf{h}_{2} = \mathbf{h}(\mathbf{w}^{2} \cdot \mathbf{x} + \mathbf{b}_{2}) & \mathbf{x}_{2} & \mathbf{x}_{2} & \mathbf{w}^{2} \cdot \mathbf{x} \\ \hline \mathbf{w}^{2} \cdot \mathbf{x} & \mathbf{w}^{1} \cdot \mathbf{x} \end{array}$$

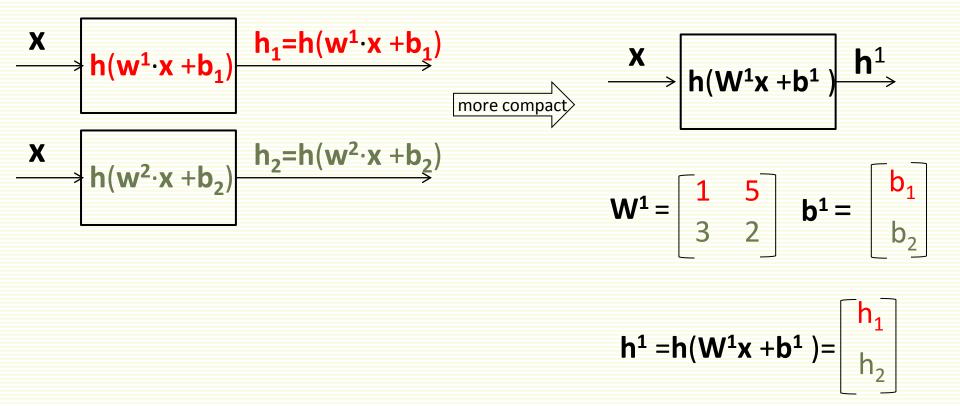
$$\mathbf{w^1} = \begin{bmatrix} 1 \\ 5 \end{bmatrix} \quad \mathbf{w^2} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$\begin{array}{c|c} \mathbf{x} & \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{x} + \mathbf{b}_{1}) \\ \hline \mathbf{x} & \mathbf{h}(\mathbf{w}^{2} \cdot \mathbf{x} + \mathbf{b}_{2}) \\ \hline \mathbf{w}^{2} \cdot \mathbf{x} + \mathbf{b}_{2}) \end{array} \begin{array}{c} \mathbf{h}_{1} = \mathbf{h}(\mathbf{w}^{1} \cdot \mathbf{x} + \mathbf{b}_{1}) \\ \hline \mathbf{x} & \mathbf{h}(\mathbf{w}^{2} \cdot \mathbf{x} + \mathbf{b}_{2}) \\ \hline \mathbf{w}^{2} \cdot \mathbf{x} + \mathbf{b}_{2}) \end{array} \begin{array}{c} \mathbf{1} & \mathbf{5} \\ \mathbf{3} & \mathbf{2} \\ \hline \mathbf{x}_{2} \\ \hline \mathbf{x}_{2} \\ \hline \mathbf{w}^{2} \cdot \mathbf{x} + \mathbf{b}_{2} \\ \hline \mathbf{w}^{2} \cdot \mathbf{x} + \mathbf{b}_{2} \\ \hline \mathbf{w}^{2} \cdot \mathbf{x} + \mathbf{b}_{2} \\ \hline \mathbf{w}^{1} \cdot \mathbf{x} \\ \hline \mathbf{w}^{1} \cdot \mathbf{w} \\$$

$$\mathbf{w^1} = \begin{bmatrix} 1 \\ 5 \end{bmatrix} \quad \mathbf{w^2} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

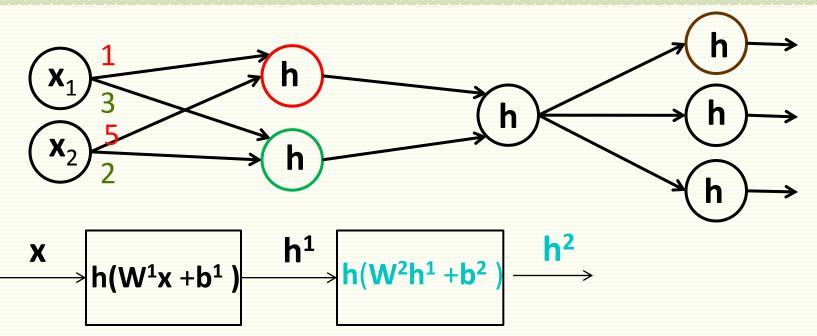


h(v) for vector v – apply h to each component of v



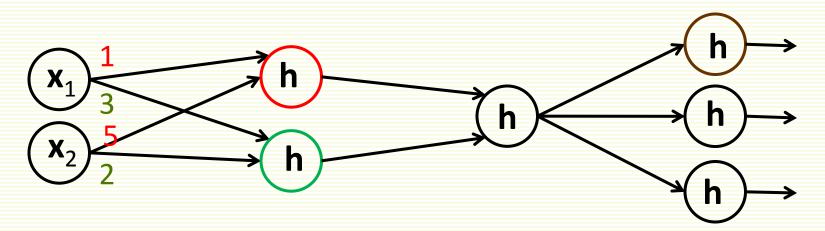
h(v) for vector v – apply h to each component of v

NN: Vector Notation, Next Layer



- W² is a matrix of weights between hidden layer 1 and 2
 - W²(r,c) is weight from unit c to unit r
- **b**² is a vector of bias weights for second hidden layer
 - b_r^2 is bias weight of unit **r** in second layer
- h² is a vector of second layer outputs
 - h²_r is output of unit **r** in second layer

NN: Vector Notation, all Layers



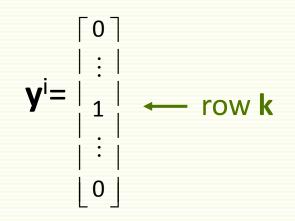
Complete depiction

$$\begin{array}{c} x \\ \hline \end{array} \\ h(W^{1}x + b^{1}) \\ \hline \end{array} \\ \begin{array}{c} h^{1} \\ h(W^{2}h^{1} + b^{2}) \\ \hline \end{array} \\ \begin{array}{c} h^{2} \\ \hline \end{array} \\ \begin{array}{c} h(W^{3}h^{2} + b^{3}) \\ \hline \end{array} \\ \begin{array}{c} o \\ \hline \end{array} \\ \end{array} \\ \end{array}$$

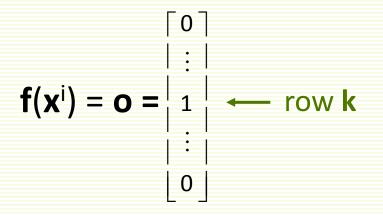
- o vector from the output layer
- $o = h(W^3h^2 + b^3)$
 - = h(W³h(W²h¹ +b²)+b³)
 - $= h(W^{3}h(W^{2}h(W^{1}x + b^{1}) + b^{2}) + b^{3})$

NN: Output Representation

- Output of NN is a vector
- So label yⁱ of sample xⁱ should also be a vector
- Let xⁱ be sample of class k



- Want output unit $\mathbf{o}_k = 1$
- Want other output units zero



Training NN: Loss Function

- Want to minimize difference between yⁱ and f(xⁱ)
- Let W be all edge weights
- With squared difference loss (error)
- Loss on one example **x**ⁱ :

$$\mathbf{L}(\mathbf{x}^{i}, \mathbf{y}^{i}; \mathbf{W}) = \left\| \mathbf{f}(\mathbf{x}^{i}) - \mathbf{y}^{i} \right\|^{2} = \sum_{j=1}^{m} \left(\mathbf{f}_{j}(\mathbf{x}^{i}) - \mathbf{y}_{j}^{i} \right)^{2}$$
$$\begin{bmatrix} 0.5 \\ \vdots \\ \vdots \\ 0.9 \end{bmatrix} \qquad \mathbf{y}^{i} = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ 0 \end{bmatrix} \qquad \text{row } \mathbf{k}$$
$$\begin{bmatrix} 0 \\ \vdots \\ \vdots \\ 0 \end{bmatrix}$$

• f depends on W, but too cumbersome to write f(x,W) everywhere

Let X = x¹,..., xⁿ
 Y = y¹,..., yⁿ

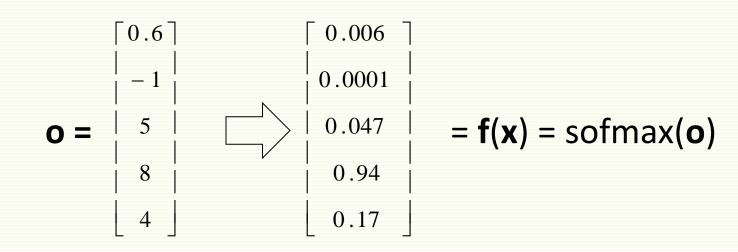
- Loss on all examples: $L(\mathbf{X}, \mathbf{Y}; \mathbf{W}) = \sum_{i=1}^{n} \left\| \mathbf{f}(\mathbf{x}^{i}) \mathbf{y}^{i} \right\|^{2}$
- Gradient descent

initialize w to random choose ε , α while $\alpha ||\nabla L(X,Y;W)|| > \varepsilon$ w = w - $\alpha \nabla L(X,Y;W)$

Training NN: Cross Entropy Loss Function

- Cross entropy loss works well for classification
- First put the output **o** through soft-max

$$\mathbf{f}_{k}(\mathbf{x}) = \frac{\exp\left(\mathbf{o}_{k}\right)}{\sum_{j=1}^{m} \exp\left(\mathbf{o}_{j}\right)}$$



Interpret f_k(x) as probability of class k

Training NN: Cross Entropy Loss Function

• One sample cross entropy loss, dropping superscripts from **x**ⁱ, **y**ⁱ:

$$L(\mathbf{x}, \mathbf{y}; \mathbf{W}) = -\sum_{j} \mathbf{y}_{j} \log \mathbf{f}_{j}(\mathbf{x})$$

• If sample **x** is of class k, then the above is equivalent to

$$L(x, y; W) = -\log f_k(x)$$

- minimizing **-log** is equivalent to maximizing probability
- Loss on all samples

$${ t L}ig({ t X}\,,{ t Y}\,;{ t W}\,ig) = \sum\,{ t L}ig({ t x}\,,{ t y}\,;{ t W}\,ig)$$

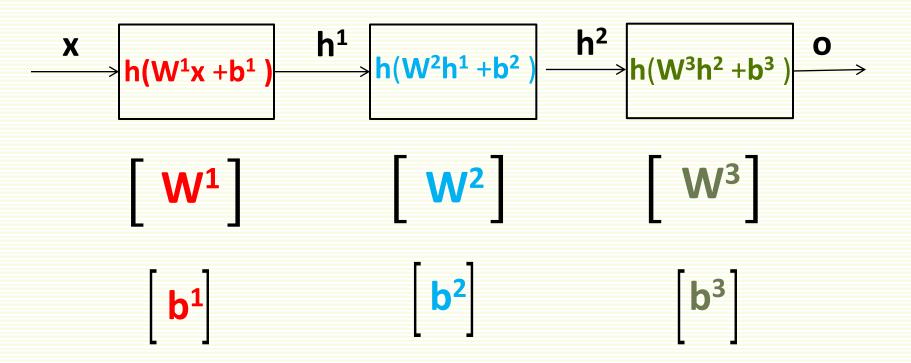
- Need to find derivative of L wrt every network weight w_i
 - ∂L ∂w,
- After derivative found, according to gradient descent, weight update is:

$$\Delta \mathbf{w}_{i} = -\alpha \, \frac{\partial \mathbf{L}}{\partial \mathbf{w}_{i}}$$

- where α is the learning rate
- Update weight:

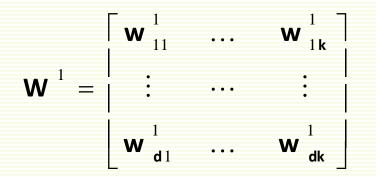
$$\mathbf{w}_{i} = \mathbf{w}_{i} + \Delta \mathbf{w}_{i}$$

• How many weights do we have in our network?

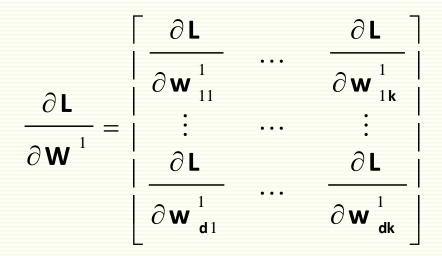


- Weights are in matrices W¹, W²,..., W¹
- And are in matrices **b**¹,**b**²,...,**b**¹

• Consider matrix **W**¹



- Need to compute derivative wrt every w¹_{is}
- Organize derivatives in matrix



• Chain rule for derivatives of composed functions:

$$\frac{\partial f(h(w))}{\partial w} = \frac{\partial f}{\partial h} \frac{\partial h}{\partial x}$$

- NN is a composition of compositions ... of compositions of functions h(h(h()))
- Have to apply the chain rule a lot

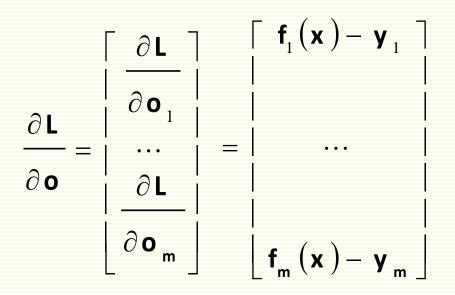
$$\mathbf{f}_{\mathbf{k}}(\mathbf{x}) = \frac{\exp(\mathbf{o}_{\mathbf{k}})}{\sum_{j=1}^{m} \exp(\mathbf{o}_{j})} \qquad \mathbf{L}(\mathbf{x}, \mathbf{y}; \mathbf{w}) = -\sum_{j} \mathbf{y}_{j} \log \mathbf{f}_{j}(\mathbf{x})$$

- f (x,W) = f(g(o(W)))
- So first take derivatives wrt o_i

$$\frac{\partial \mathbf{L}}{\partial \mathbf{o}_{j}} = \mathbf{f}_{j}(\mathbf{x}) - \mathbf{y}_{j}$$

• Vector of derivatives wrt o

$$\frac{\partial \mathbf{L}}{\partial \mathbf{o}} = \mathbf{f}(\mathbf{x}) - \mathbf{y}$$



$$\xrightarrow{\mathbf{X}} \mathbf{h}(\mathbf{W}^{1}\mathbf{x} + \mathbf{b}^{1}) \xrightarrow{\mathbf{h}^{1}} \mathbf{h}(\mathbf{W}^{2}\mathbf{h}^{1} + \mathbf{b}^{2}) \xrightarrow{\mathbf{h}^{2}} \mathbf{h}(\mathbf{W}^{3}\mathbf{h}^{2} + \mathbf{b}^{3}) \xrightarrow{\mathbf{O}}$$

 $\frac{\partial \mathbf{L}}{\partial \mathbf{o}} = \mathbf{f}(\mathbf{x}) - \mathbf{y}$

- Assume ReLu h(z) = max(z,0)
- Compute derivatives "backwards"

$$\frac{\partial \mathbf{L}}{\partial \mathbf{W}^{3}} = \frac{\partial \mathbf{L}}{\partial \mathbf{o}} \frac{\partial \mathbf{o}}{\partial \mathbf{W}^{3}}$$
$$\frac{\partial \mathbf{L}}{\partial \mathbf{h}^{2}} = \frac{\partial \mathbf{L}}{\partial \mathbf{o}} \frac{\partial \mathbf{o}}{\partial \mathbf{h}^{2}}$$

$$\xrightarrow{\mathbf{X}} \mathbf{h}(\mathbf{W}^{1}\mathbf{x} + \mathbf{b}^{1}) \xrightarrow{\mathbf{h}^{1}} \mathbf{h}(\mathbf{W}^{2}\mathbf{h}^{1} + \mathbf{b}^{2}) \xrightarrow{\mathbf{h}^{2}} \mathbf{h}(\mathbf{W}^{3}\mathbf{h}^{2} + \mathbf{b}^{3}) \xrightarrow{\mathbf{0}}$$

 $\frac{\partial \mathbf{L}}{\partial \mathbf{o}} = \mathbf{f}(\mathbf{x}) - \mathbf{y}$

- Assume ReLu h(z) = max(z,0)
- Compute derivatives "backwards"

$$\frac{\partial \mathbf{L}}{\partial \mathbf{W}^{3}} = \frac{\partial \mathbf{L}}{\partial \mathbf{o}} \frac{\partial \mathbf{o}}{\partial \mathbf{W}^{3}} = (\mathbf{f}(\mathbf{x}) - \mathbf{y})(\mathbf{h}^{2})^{\mathsf{T}}$$

$$\frac{\partial \mathbf{L}}{\partial \mathbf{h}^{2}} = \frac{\partial \mathbf{L}}{\partial \mathbf{o}} \frac{\partial \mathbf{o}}{\partial \mathbf{h}^{2}} = \left(\mathbf{W}^{3}\right)^{\mathsf{T}} \left(\mathbf{f}(\mathbf{x}) - \mathbf{y}\right)$$

 $\frac{\partial \mathbf{L}}{\partial \mathbf{W}^{3}}$

Sketch of derivation for

$$\mathbf{W}^{3} = \begin{bmatrix} \mathbf{w}_{11}^{3} & \mathbf{w}_{12}^{3} \\ \mathbf{w}_{21}^{3} & \mathbf{w}_{22}^{3} \end{bmatrix}$$

$$\frac{\partial \mathbf{L}}{\partial \mathbf{W}^{3}} = \begin{bmatrix} \frac{\partial \mathbf{L}}{\partial \mathbf{w}_{11}^{3}} & \frac{\partial \mathbf{L}}{\partial \mathbf{w}_{12}^{3}} \\ \frac{\partial \mathbf{L}}{\partial \mathbf{w}_{21}^{3}} & \frac{\partial \mathbf{L}}{\partial \mathbf{w}_{22}^{3}} \end{bmatrix}$$

• Recall $\mathbf{W}^3 = \begin{bmatrix} \mathbf{w}_{11}^3 & \mathbf{w}_{12}^3 \\ \mathbf{w}_{21}^3 & \mathbf{w}_{22}^3 \end{bmatrix} \mathbf{h}^2 = \begin{bmatrix} \mathbf{h}_1^2 \\ \mathbf{h}_2^2 \end{bmatrix} \mathbf{b}^2 = \begin{bmatrix} \mathbf{b}_1^2 \\ \mathbf{b}_2^2 \end{bmatrix}$

Thus
$$\mathbf{W}^{3}\mathbf{h}^{2} = \begin{bmatrix} \mathbf{h}_{1}^{2}\mathbf{w}_{11}^{3} + \mathbf{h}_{2}^{2}\mathbf{w}_{12}^{3} \\ \mathbf{h}_{1}^{2}\mathbf{w}_{21}^{3} + \mathbf{h}_{2}^{2}\mathbf{w}_{22}^{3} \end{bmatrix}$$

$$\mathbf{W}^{3}\mathbf{h}^{2} + \mathbf{b}^{3} = \begin{bmatrix} \mathbf{h}_{1}^{2}\mathbf{w}_{11}^{3} + \mathbf{h}_{2}^{2}\mathbf{w}_{12}^{3} + \mathbf{b}_{1}^{3} \\ \mathbf{h}_{1}^{2}\mathbf{w}_{21}^{3} + \mathbf{h}_{2}^{2}\mathbf{w}_{22}^{3} + \mathbf{b}_{2}^{3} \end{bmatrix}$$

$$\mathbf{o} = \mathbf{h} \left(\mathbf{W}^{3} \mathbf{h}^{2} + \mathbf{b}^{3} \right) = \begin{bmatrix} \mathbf{h} \left(\mathbf{h}_{1}^{2} \mathbf{w}_{11}^{3} + \mathbf{h}_{2}^{2} \mathbf{w}_{12}^{3} + \mathbf{b}_{1}^{3} \right) \\ \mathbf{h} \left(\mathbf{h}_{1}^{2} \mathbf{w}_{21}^{3} + \mathbf{h}_{2}^{2} \mathbf{w}_{22}^{3} + \mathbf{b}_{2}^{3} \right) \end{bmatrix}$$

$$\mathbf{o} = \begin{bmatrix} \mathbf{o}_1 \\ \mathbf{o}_2 \end{bmatrix} = \mathbf{h} \left(\mathbf{W}^3 \mathbf{h}^2 + \mathbf{b}^3 \right) = \begin{bmatrix} \mathbf{h}_1^2 \mathbf{w}_{11}^3 + \mathbf{h}_2^2 \mathbf{w}_{12}^3 + \mathbf{b}_1^3 \\ \mathbf{h}_1^2 \mathbf{w}_{21}^3 + \mathbf{h}_2^2 \mathbf{w}_{22}^3 + \mathbf{b}_2^3 \end{bmatrix}$$

• Using chain rule

$$\frac{\partial \mathbf{L}}{\partial \mathbf{W}^{3}} = \begin{bmatrix} \frac{\partial \mathbf{L}}{\partial \mathbf{w}_{11}} & \frac{\partial \mathbf{L}}{\partial \mathbf{w}_{12}} \\ \frac{\partial \mathbf{L}}{\partial \mathbf{w}_{21}} & \frac{\partial \mathbf{L}}{\partial \mathbf{w}_{22}} \end{bmatrix} = \begin{bmatrix} \frac{\partial \mathbf{L}}{\partial \mathbf{o}_{1}} & \frac{\partial \mathbf{o}_{1}}{\partial \mathbf{w}_{11}} \\ \frac{\partial \mathbf{L}}{\partial \mathbf{o}_{2}} & \frac{\partial \mathbf{L}}{\partial \mathbf{o}_{2}} \\ \frac{\partial \mathbf{O}_{2}}{\partial \mathbf{o}_{2}} & \frac{\partial \mathbf{L}}{\partial \mathbf{o}_{2}} \end{bmatrix}$$

• Need $\frac{\partial \mathbf{o}}{\partial \mathbf{W}^3}$

$$\mathbf{o} = \mathbf{h} \left(\mathbf{W}^{3} \mathbf{h}^{2} + \mathbf{b}^{3} \right) = \begin{bmatrix} \mathbf{h} \left(\mathbf{h}_{1}^{2} \mathbf{w}_{11}^{3} + \mathbf{h}_{2}^{2} \mathbf{w}_{12}^{3} + \mathbf{b}_{1}^{3} \right) \\ \mathbf{h} \left(\mathbf{h}_{1}^{2} \mathbf{w}_{21}^{3} + \mathbf{h}_{2}^{2} \mathbf{w}_{22}^{3} + \mathbf{b}_{2}^{3} \right) \end{bmatrix}$$

- Assume ReLu h(z) = max(z,0)
- Assuming non-negativity of input to function h

$$\mathbf{o} = \mathbf{h} \left(\mathbf{W}^{3} \mathbf{h}^{2} + \mathbf{b}^{3} \right) = \begin{bmatrix} \mathbf{h}_{1}^{2} \mathbf{w}_{11}^{3} + \mathbf{h}_{2}^{2} \mathbf{w}_{12}^{3} + \mathbf{b}_{1}^{3} \\ \mathbf{h}_{1}^{2} \mathbf{w}_{21}^{3} + \mathbf{h}_{2}^{2} \mathbf{w}_{22}^{3} + \mathbf{b}_{2}^{3} \end{bmatrix}$$

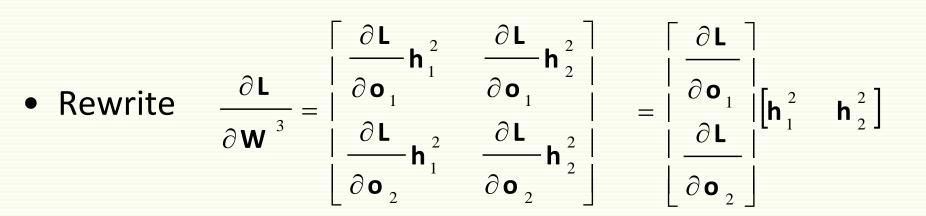
• If there are negative components, replace by 0

• Continue

$$\mathbf{o} = \begin{bmatrix} \mathbf{h}_{1}^{2} \mathbf{w}_{11}^{3} + \mathbf{h}_{2}^{2} \mathbf{w}_{12}^{3} + \mathbf{b}_{1}^{3} \\ \mathbf{h}_{1}^{2} \mathbf{w}_{21}^{3} + \mathbf{h}_{2}^{2} \mathbf{w}_{22}^{3} + \mathbf{b}_{2}^{3} \end{bmatrix}$$

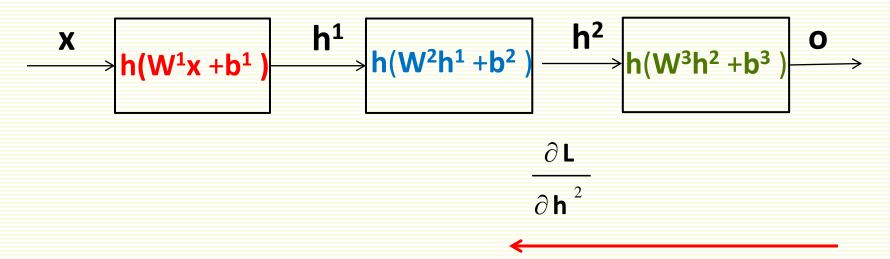
$$\frac{\partial \mathbf{o}}{\partial \mathbf{W}^{3}} = \begin{bmatrix} \frac{\partial \mathbf{o}}{\partial \mathbf{w}_{11}^{3}} & \frac{\partial \mathbf{o}}{\partial \mathbf{w}_{12}^{3}} \\ \frac{\partial \mathbf{o}}{\partial \mathbf{w}_{21}^{3}} & \frac{\partial \mathbf{o}}{\partial \mathbf{o}} \end{bmatrix} = \begin{bmatrix} \mathbf{h}_{1}^{2} & \mathbf{h}_{2}^{2} \\ \mathbf{h}_{1}^{2} & \mathbf{h}_{2}^{2} \end{bmatrix} \\ \begin{bmatrix} \partial \mathbf{w}_{21}^{3} & \partial \mathbf{w}_{22}^{3} \end{bmatrix}$$

• Plug into $\frac{\partial \mathbf{L}}{\partial \mathbf{W}^{3}} = \begin{bmatrix} \frac{\partial \mathbf{L}}{\partial \mathbf{o}_{1}} \frac{\partial \mathbf{o}_{1}}{\partial \mathbf{w}_{11}} & \frac{\partial \mathbf{L}}{\partial \mathbf{o}_{1}} \frac{\partial \mathbf{o}_{1}}{\partial \mathbf{w}_{12}} \\ \frac{\partial \mathbf{L}}{\partial \mathbf{o}_{2}} \frac{\partial \mathbf{O}_{2}}{\partial \mathbf{w}_{21}} & \frac{\partial \mathbf{L}}{\partial \mathbf{o}_{2}} \frac{\partial \mathbf{O}_{2}}{\partial \mathbf{w}_{22}} \end{bmatrix} = \begin{bmatrix} \frac{\partial \mathbf{L}}{\partial \mathbf{o}_{1}} \mathbf{h}_{1}^{2} & \frac{\partial \mathbf{L}}{\partial \mathbf{o}_{1}} \mathbf{h}_{2}^{2} \\ \frac{\partial \mathbf{L}}{\partial \mathbf{o}_{2}} \mathbf{h}_{2}^{2} \end{bmatrix}$



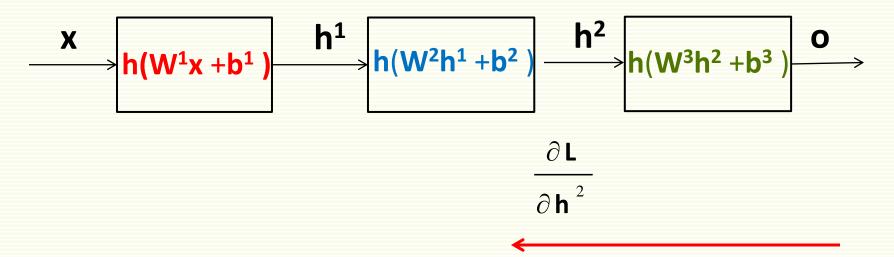
• Recall
$$\frac{\partial \mathbf{L}}{\partial \mathbf{o}} = \mathbf{f}(\mathbf{x}) - \mathbf{y} = \begin{bmatrix} \mathbf{f}_1(\mathbf{x}) - \mathbf{y}_1 \\ \vdots \\ \mathbf{f}_m(\mathbf{x}) - \mathbf{y}_m \end{bmatrix}$$

• So, finally
$$\frac{\partial \mathbf{L}}{\partial \mathbf{W}^3} = (\mathbf{f}(\mathbf{x}) - \mathbf{y})(\mathbf{h}^2)^{\mathsf{T}}$$



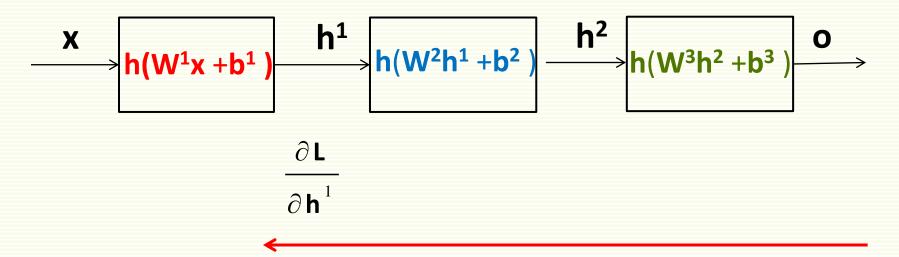
Continue compute derivatives "backwards"

$$\frac{\partial \mathbf{L}}{\partial \mathbf{W}^2} = \frac{\partial \mathbf{L}}{\partial \mathbf{h}^2} \frac{\partial \mathbf{h}^2}{\partial \mathbf{W}^2}$$
$$\frac{\partial \mathbf{L}}{\partial \mathbf{h}^1} = \frac{\partial \mathbf{L}}{\partial \mathbf{h}^2} \frac{\partial \mathbf{h}^2}{\partial \mathbf{h}^1}$$



Continue computing derivatives "backwards"

$$\frac{\partial \mathbf{L}}{\partial \mathbf{W}^{2}} = \frac{\partial \mathbf{L}}{\partial \mathbf{h}^{2}} \frac{\partial \mathbf{h}^{2}}{\partial \mathbf{W}^{2}} = \frac{\partial \mathbf{L}}{\partial \mathbf{h}^{2}} \left(\mathbf{h}^{1}\right)^{\mathsf{T}}$$
$$\frac{\partial \mathbf{L}}{\partial \mathbf{h}^{1}} = \frac{\partial \mathbf{L}}{\partial \mathbf{h}^{2}} \frac{\partial \mathbf{h}^{2}}{\partial \mathbf{h}^{1}} = \left(\mathbf{W}^{2}\right)^{\mathsf{T}} \frac{\partial \mathbf{L}}{\partial \mathbf{h}^{2}}$$



Continue computing derivatives "backwards"

$$\frac{\partial \mathbf{L}}{\partial \mathbf{W}^{1}} = \frac{\partial \mathbf{L}}{\partial \mathbf{h}^{1}} \frac{\partial \mathbf{h}^{1}}{\partial \mathbf{W}^{1}} = \frac{\partial \mathbf{L}}{\partial \mathbf{h}^{1}} (\mathbf{x})^{\mathsf{T}}$$

Training Protocols

Batch Protocol

- full gradient descent
- weights are updated only after all examples are processed
- might be very slow to train
- Single Sample Protocol
 - examples are chosen randomly from the training set
 - weights are updated after every example
 - weighs get changed faster than batch, less stable
 - One iteration over all samples (in random order) is called an **epoch**
- Mini Batch
 - Divide data in batches, and update weights after processing each batch
 - Middle ground between single sample and batch protocols
 - Helps to prevent over-fitting in practice, think of it as "noisy" gradient
 - allows CPU/GPU memory hierarchy to be exploited so that it trains much faster than single-sample in terms of wall-clock time
 - One iteration over all mini-batches is called an epoch

Training DNN: Initialization

- For gradient descent, need to pick initialization parameters w⁰
 - do not set all the parameters **w**⁰ equal
 - set the parameters in **w**⁰ randomly

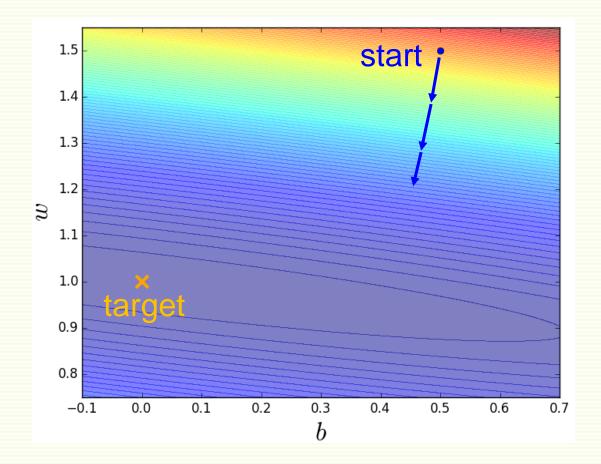
- Set the learning rate carefully
- Toy example $x \xrightarrow{w} + \xrightarrow{z} \sqrt{y}$
- Optimal weights: w = 1, b = 0
- Gradient descent

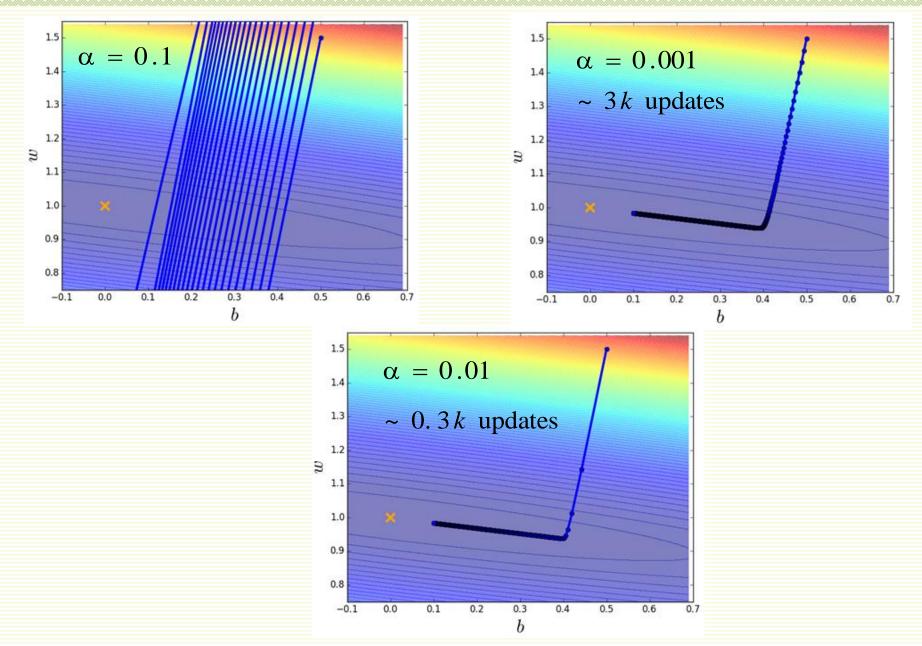
$$\mathbf{w}^{t} = \mathbf{w}^{t-1} - \alpha \nabla L(\mathbf{w}^{t-1})$$

• Training Data (20 examples)

 $\begin{aligned} \mathsf{x} &= [0.0, \, 0.5, \, 1.0, \, 1.5, \, 2.0, \, 2.5, \, 3.0, \, 3.5, \, 4.0, \, 4.5, \, 5.0, \, 5.5, \, 6.0, \, 6.5, \, 7.0, \, 7.5, \, 8.0, \, 8.5, \, 9.0, \, 9.5] \\ \mathsf{y} &= [0.1, \, 0.4, \, 0.9, \, 1.6, \, 2.2, \, 2.5, \, 2.8, \, 3.5, \, 3.9, \, 4.7, \, 5.1, \, 5.3, \, 6.3, \, 6.5, \, 6.7, \, 7.5, \, 8.1, \, 8.5, \, 8.9, \, 9.5] \end{aligned}$

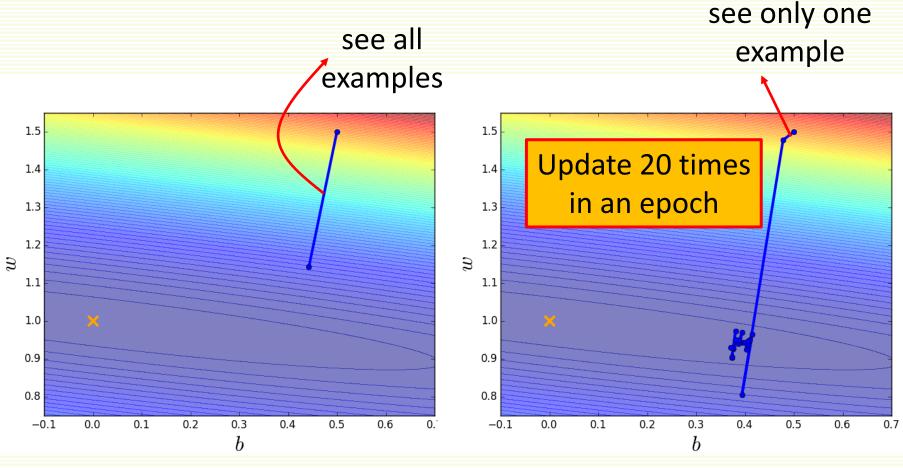
• Surface of the loss function L(w,b)





- \bullet Can adjust α at the training time
- The loss function L(w) should decrease during gradient descent
 - If L(w) oscillates, α is too large, decrease it
 - If L(w) goes down but very slowly, α is too small, increase it

Training DNN: Gradient descent



Gradient descent

Stochastic gradient descent, 1 epoch

Training DNN: Gradient descent

• Real Example: Handwriting Digit Classification

Training DNN: Momentum

- Gradient descent finds only a local minima
- Momentum: popular method to avoid local minima and speed up descent in flat (plateau) regions
- Add temporal average direction in which weights have been moving recently
- Previous direction: $\Delta w^{t} = w^{t} w^{t-1}$
- Weight update rule with momentum:

$$\mathbf{w}^{t+1} = \mathbf{w}^{t} + (1 - \beta) \nabla \mathbf{L} (\mathbf{w}^{t}) + \beta \Delta \mathbf{w}^{t-1}$$

steepest descent previous direction direction

Training DNN: Normalization

- Features should be normalized for faster convergence
- Suppose fish length is in meters and weight in grams
 - typical sample [length = 0.5, weight = 3000]
 - feature length will be almost ignored
 - If length is in fact important, learning will be very slow
- Any normalization we looked at before will do
 - test samples should be normalized exactly as training samples

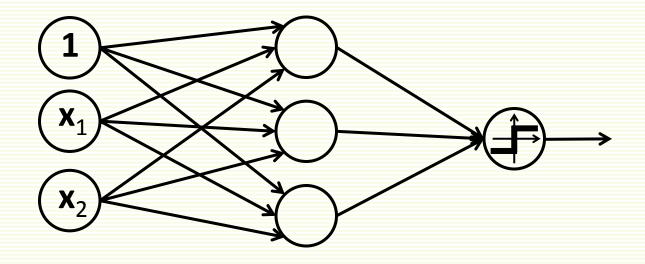
Trainind DNN: How Many Epochs?

training time

Large training error: random decision regions in the beginning - underfit Small training error: decision regions improve with time Zero training error: decision regions fit training data perfectly - overfit

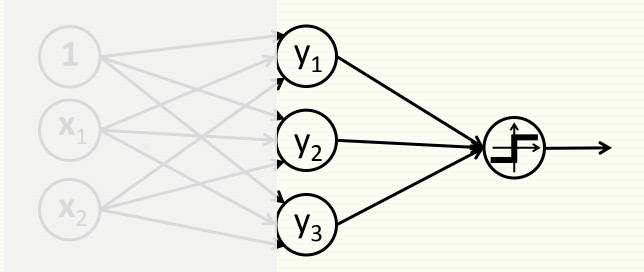
can learn when to stop training through validation

NN as Non-Linear Feature Mapping



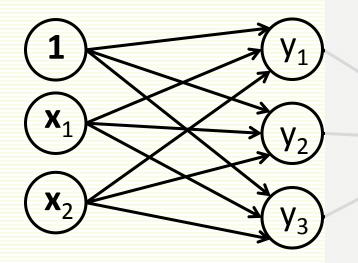
- 1 hidden layer NN can be interpreted as first mapping input features to new features
- Then applying (linear classifier) to the new features

NN as Non-Linear Feature Mapping



this part implements Perceptron (liner classifier)

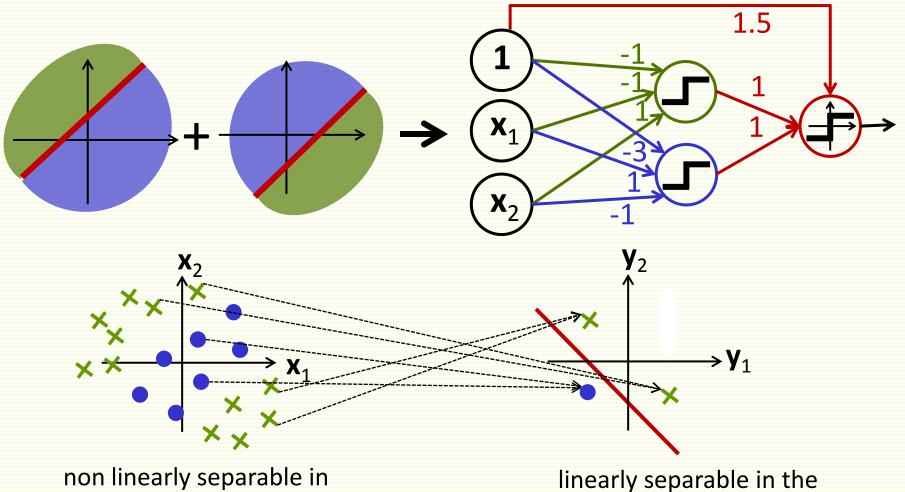
NN as Non-Linear Feature Mapping



this part implements mapping to new features **y**

NN as Nonlinear Feature Mapping

• Consider 3 layer NN example we saw previously:

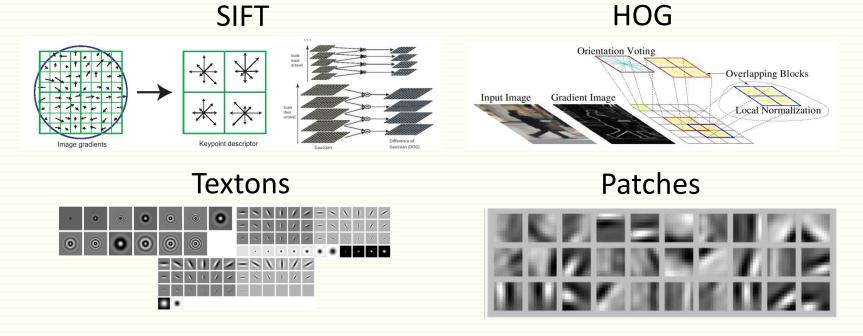


the original feature space

new feature space

NN as Nonlinear Feature Mapping

- Features are key to recent success in object recognition
- Multitude of hand-crafted features, time consuming



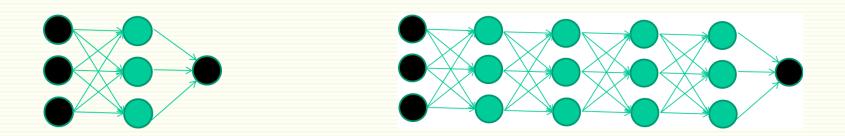
• With NN, change in paradigm: instead of handcrafting, learn features automatically from data

Shallow vs. Deep Architecture

• How many layers should we choose?

Shallow network

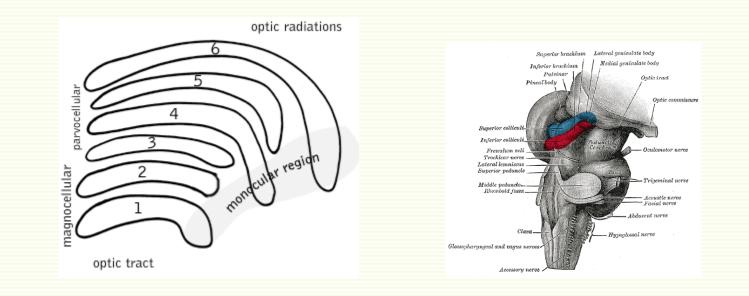
Deep network



 Deep network lead to many successful applications recently

Why Deep Networks

Evidence from biology

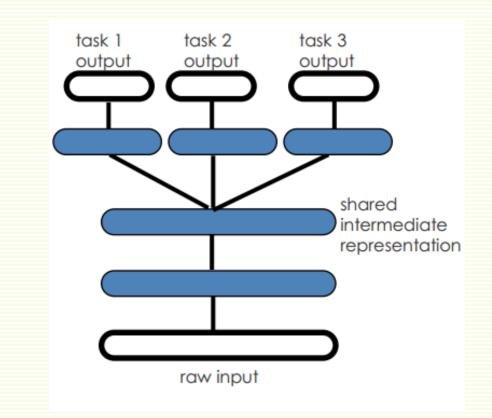


Why Deep Networks

- 2 layer networks can represent any function
- But deep architectures are more efficient for representing some functions
 - problems that can be represented with a polynomial number of nodes with k layers, may require an exponential number of nodes with k-1 layers
 - thus with deep architecture, less units might be needed overall
 - less weights, less parameter updates, more efficient

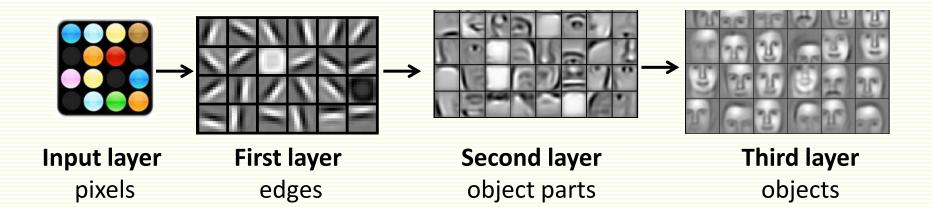
Why Deep Networks

• Sub-features created in deep architecture can potentially be shared between multiple tasks



Why Deep Networks: Hierarchical Feature Extraction

- Deep architecture works well for hierarchical feature extraction
 - hierarchies features are especially natural in vision
- Each stage is a trainable feature transform
- Level of abstraction increases up the hierarchy



Why Deep Networks: Hierarchical Feature Extraction

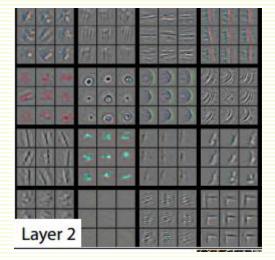
• Another example (from M. Zeiler'2013)

visualization of learned features

Patches that result in high response

Layer 1

Layer 2



Why Deep Networks: Hierarchical Feature Extraction

visualization of learned features

Patches that result in high response

X X	4 (A)	4		A.		1	24
** *	1 7 4	*	15		* 1	100	and the
A 30		y. #	5- 3/1	1	the second	N.	
* *		= 18 a	¥	105	S OH	ans.	-
1 1			in 2	-	-	refiles	20984
1	- AND A				1. T.	- centre (-
the second s	e die 🛓		2 2	de s	* ~	N.	C.A.
RE TH	100 0		- 1	aller .	A. M.	de.	sta

Layer 3

Layer 4

Early Work on Deep Networks

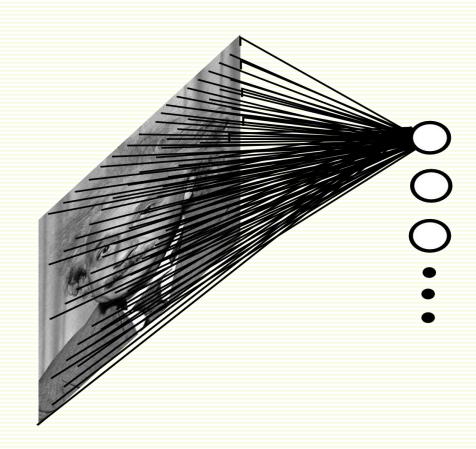
- Fukushima (1980) Neo-Cognitron
- LeCun (1998) Convolutional Networks (convnets)
 - Similarities to Neo-Cognitron
- Other attempts at deeply layered Networks trained with backpropagation
 - not much success
 - very slow
 - diffusion of gradient
 - recent work has shown significant training improvements with various tricks (drop-out, unsupervised learning of early layers, etc.)

ConvNets: Prior Knowledge for Network Architecture

- Convnets use prior knowledge about recognition task into network architecture design
 - connectivity structure
 - weight constraints
 - neuron activation functions
- This is less intrusive than hand-designing the features
 - but it still prejudices the network towards the particular way of solving the problem that we had in mind

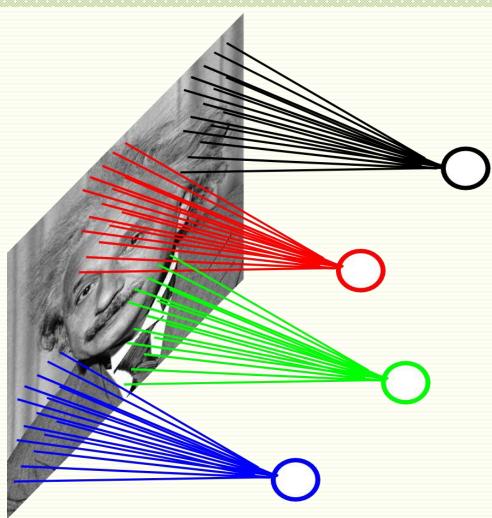
Convolutional Network: Motivation

- Consider a fully connected network
- Example: 200 by 200 image, 4x10⁴ connections to one hidden unit
- For 10⁵ hidden units → 4x10⁹ connections
- But spatial correlations are mostly local
- Should not waste resources by connecting unrelated pixels



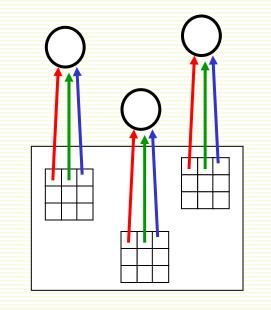
Convolutional Network: Motivation

- Connect only pixels in a local patch, say 10x10
- For 200 by 200 image, 10² connections to one hidden unit
- For 10⁵ hidden units → 10⁷ connections
- factor of 400 decrease



Convolutional Network: Motivation

- If a feature is useful in one image location, it should be useful in all other locations
 - *Stationarity*: statistics is similar at different locations
- All neurons detect the same feature at different positions in the input image
 - i.e. share parameters (network weights) across different locations
 - bias is usually not shared
 - also greatly reduces the number of tunable parameters



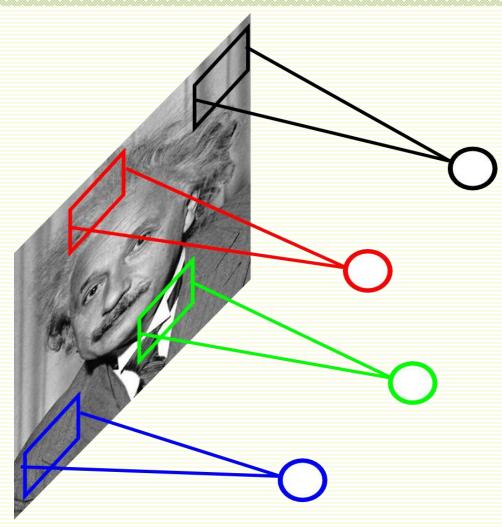
all red connections have the same weight

all green connections have the same weight

all blue connections have the same weight

ConvNets: Weight Sharing

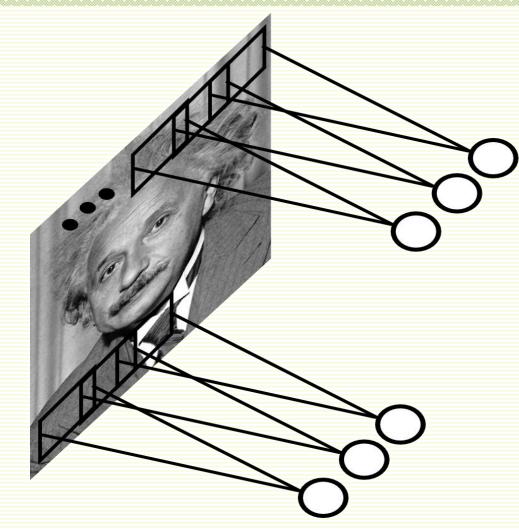
- Much fewer parameters to learn
- For 10⁵ hidden units and 10x10 patch
 - 10⁷ parameters to learn without sharing
 - 10² parameters to learn with sharing

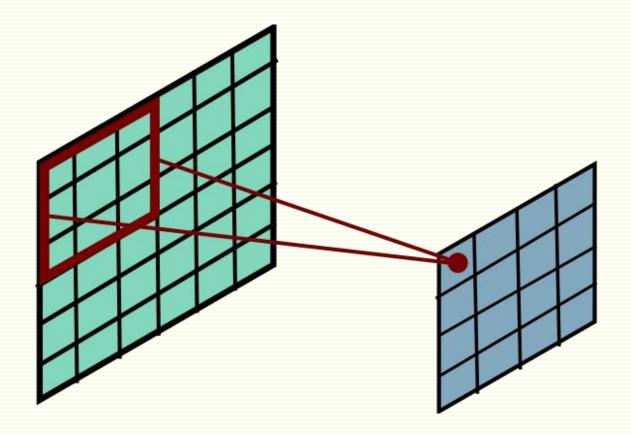


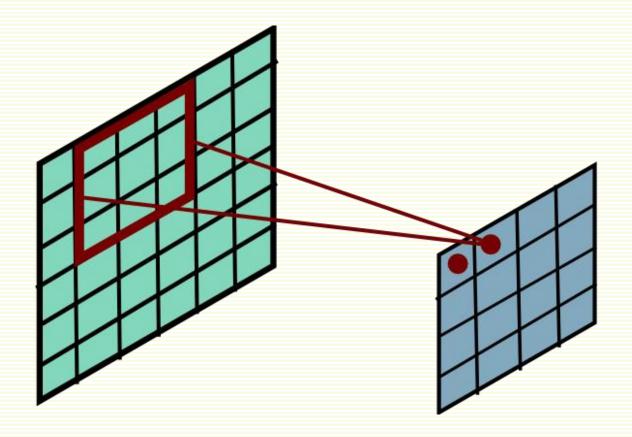
Weight Sharing Constraints

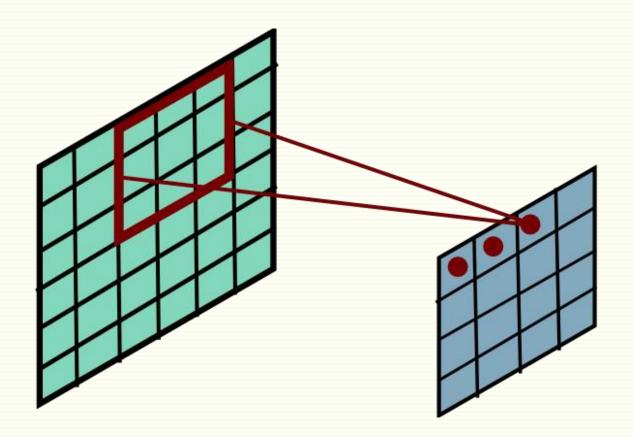
- Easy to modify backpropagation algorithm to incorporate weight sharing
- Compute the gradients as usual, and then modify the gradients so that they satisfy the constraints.
 - if the weights started off satisfying the constraints, they will continue to satisfy them
- To constrain $\mathbf{w}_1 = \mathbf{w}_2$, we need $\Delta \mathbf{w}_1 = \Delta \mathbf{w}_2$
- Before we used $\frac{\partial \mathbf{L}}{\partial \mathbf{w}_1}$ to update \mathbf{w}_1 and $\frac{\partial \mathbf{L}}{\partial \mathbf{w}_2}$ to update \mathbf{w}_2
 - Now use $\frac{\partial \mathbf{E}}{\partial \mathbf{w}_1} + \frac{\partial \mathbf{E}}{\partial \mathbf{w}_2}$ to update $\mathbf{w_1}$ and $\mathbf{w_2}$, use

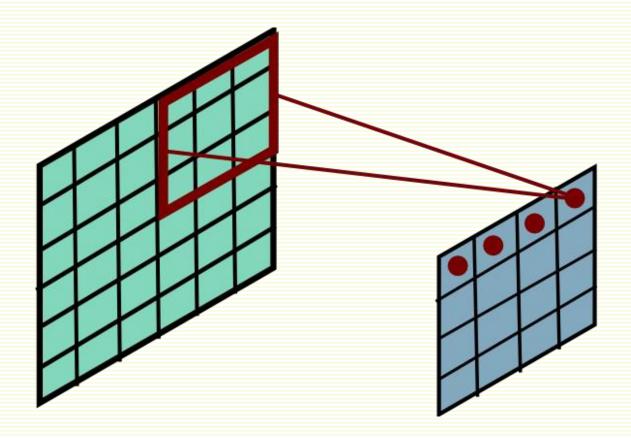
- Share parameters (network weights) across different locations
- Note similarity to convolution with some fixed filter
- But here the filter is learned

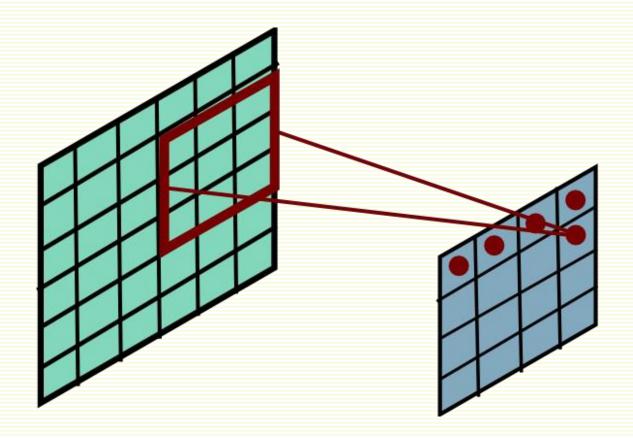


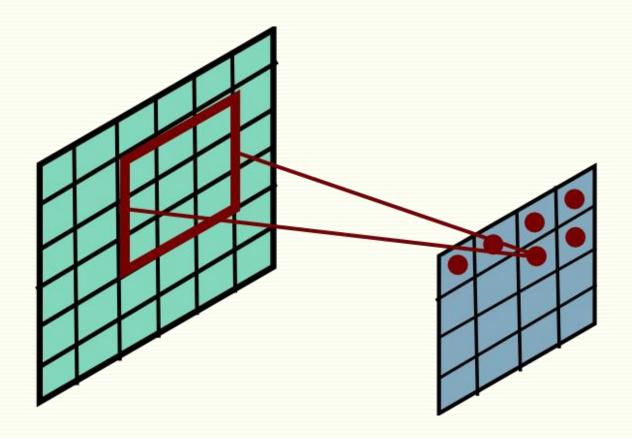


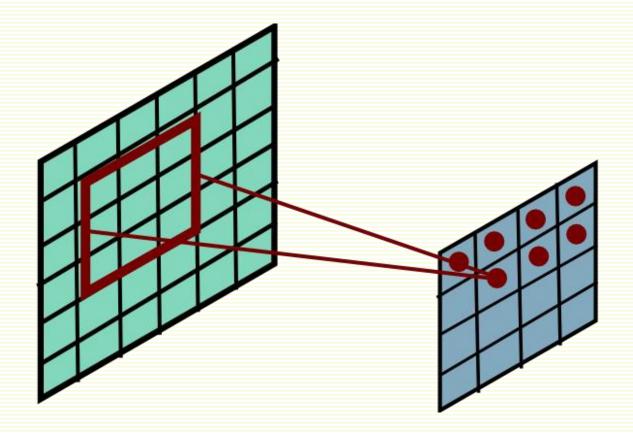


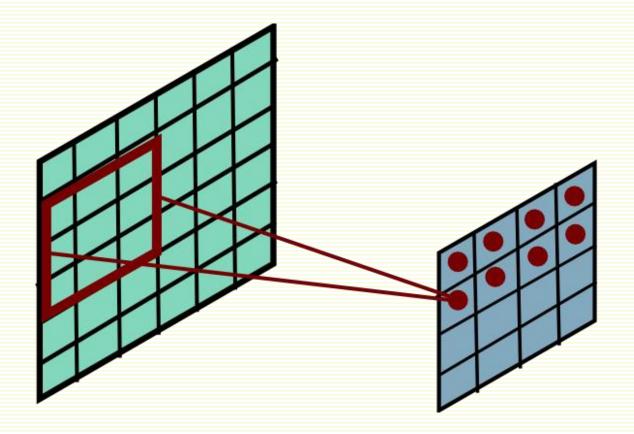


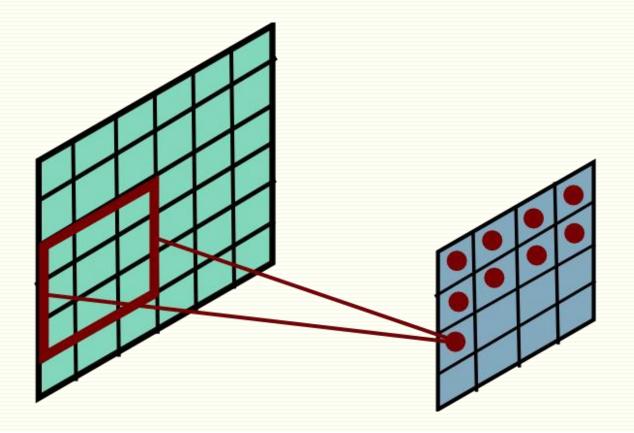


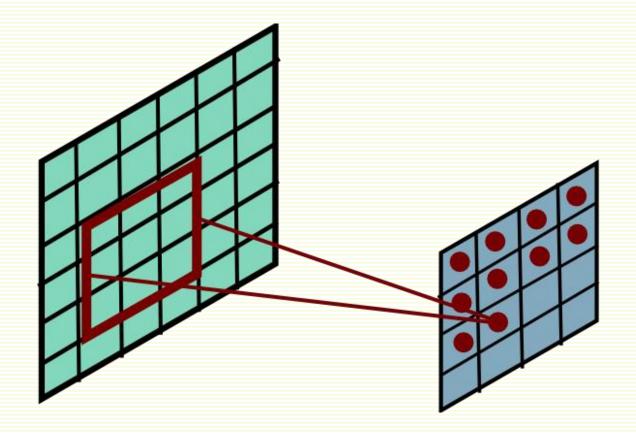


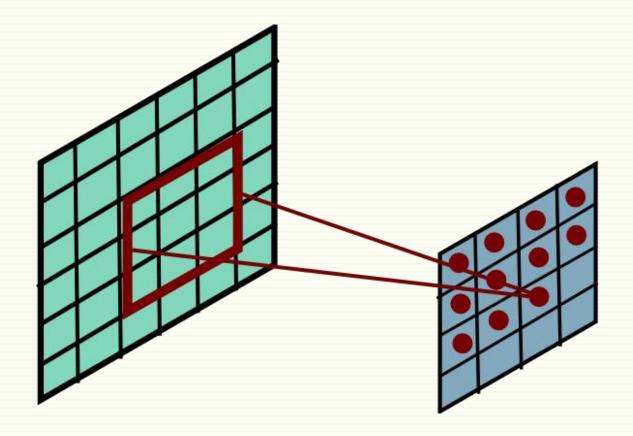


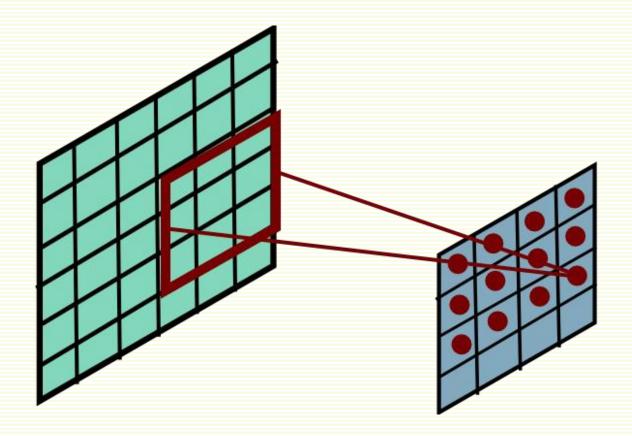


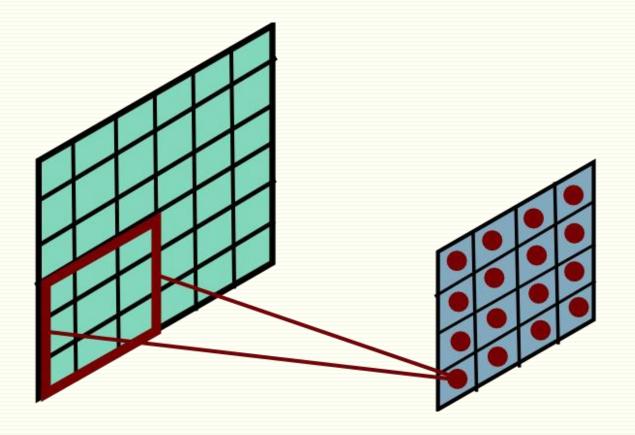


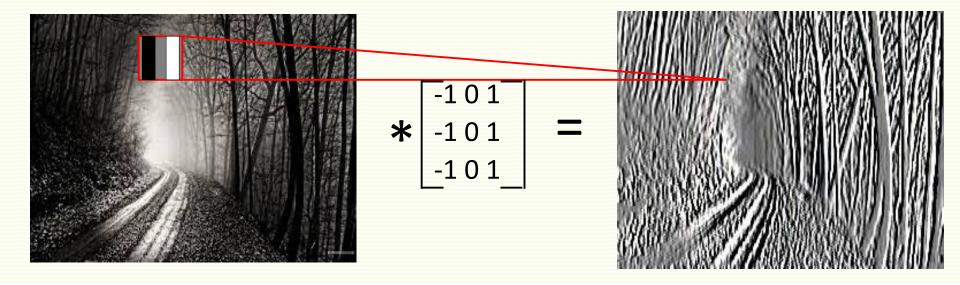




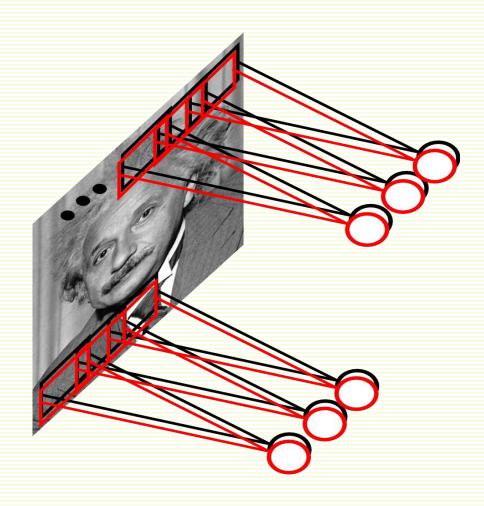




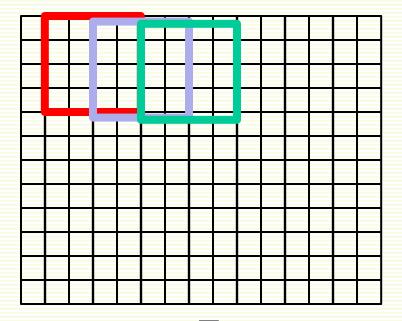


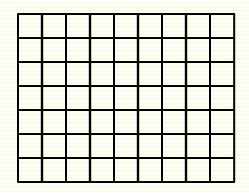


- Each filter is responsible for one feature type
- Learn multiple filters
- Example:
 - 10x10 patch
 - 100 filters
 - only 10⁴ parameters to learn
 - because parameters are shared between different locations

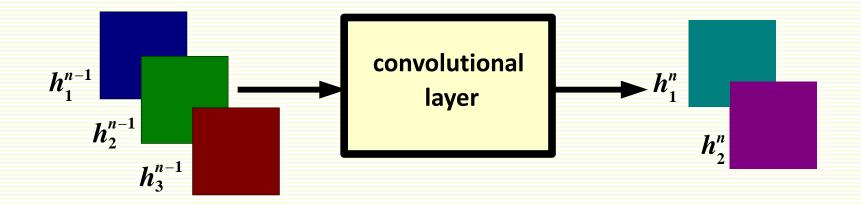


- Can apply convolution to every other pixel, to reduce the number of parameters even further
- Example
 - stride = 2
 - apply convolution every second pixel
 - makes image twice smaller in each dimension

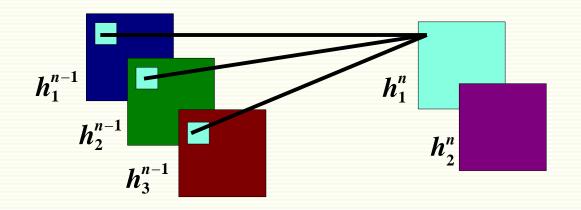




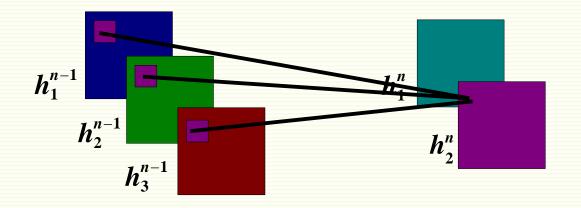
- Each layer h is a d-dimensional image or map r x c x d
- Thus perform **d**-dimensional convolution
- If using d' filters, next layer is a map of size r' x c' x d'
- Example with **d** = 3 and **d'** = 2 (i.e. 2 filters)
- r' and c' depend on whether convolution crops image border and the stride of convolution



- Example with **d** = 3 and **d'** = 2 (i.e. 2 filters)
- Applying the first filter



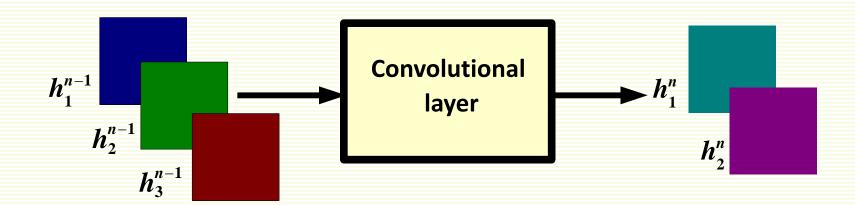
- Example with **d** = 3 and **d'** = 2 (i.e. 2 filters)
- Applying the second filter



- Formula for convolution application to **K** dimensional layer **h**ⁿ⁻¹
 - Also with application of ReLu activation function

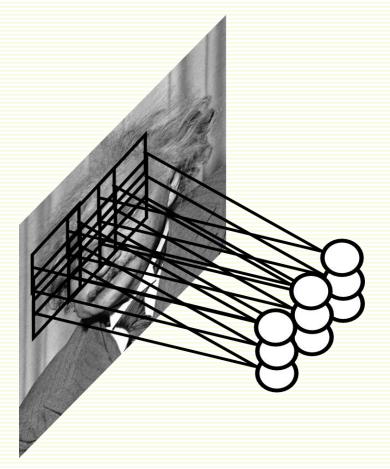
$$h_{j}^{n} = max(0, \sum_{k=1}^{K} h_{k}^{n-1} * w_{kj}^{n})$$

output feature map input feature map



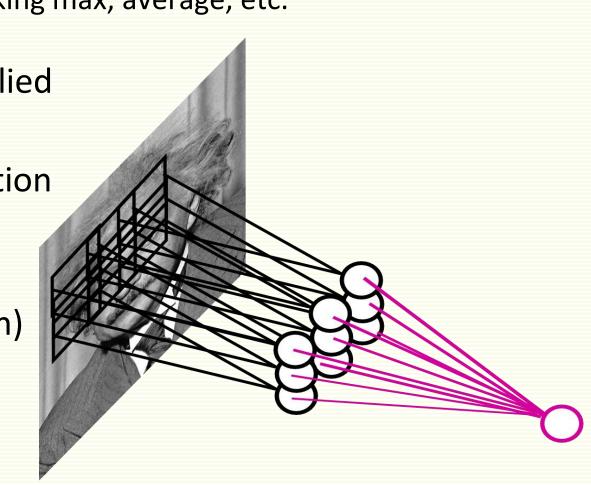
Pooling Layer

- Say a filter is an eye detector
- Want to detection to be robust to precise eye location

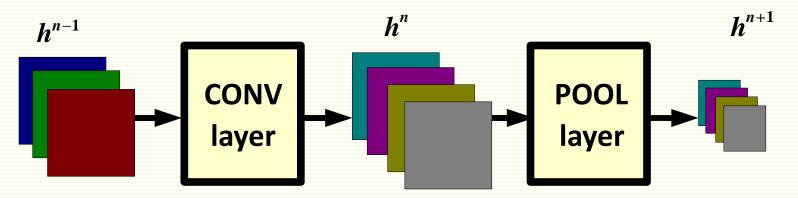


Pooling Layer

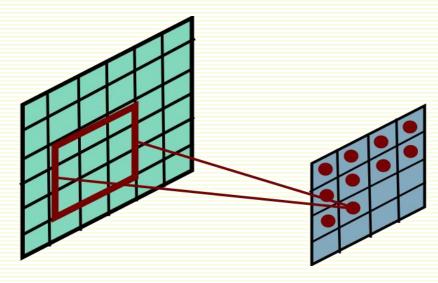
- *Pool* filter responses at different locations gain robustness to exact spatial location
 - pooling could be taking max, average, etc.
- Usually pooling applied with stride > 1
- This reduces resolution of output map
- But we already lost resolution (precision) by pooling



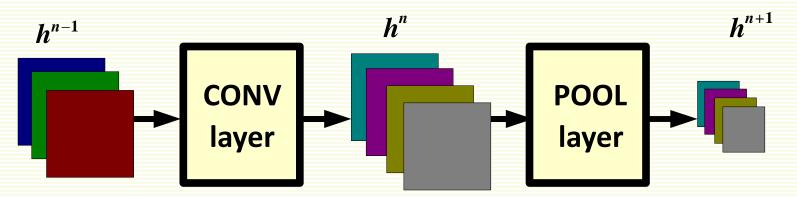
Pooling Layer: Receptive Field Size



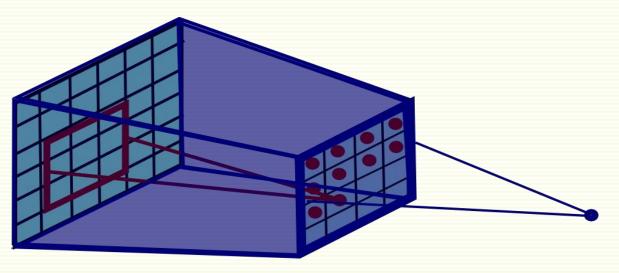
 If convolution filters have size K x K and stride 1, and pooling layer has pools of size P x P, then each unit in pooling layer depends on patch (in preceding convolution layer) of size (P+K-1) x (P+K-1)



Pooling Layer: Receptive Field Size



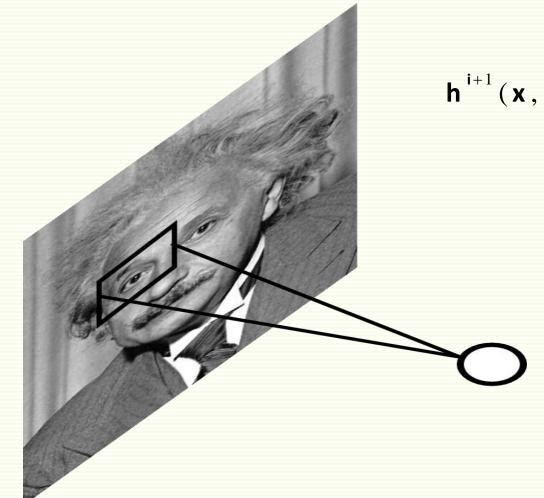
 If convolution filters have size KxK and stride 1, and pooling layer has pools of size PxP, then each unit in the pooling layer depends upon a patch (in the preceding convolution layer) of size (P+K-1)x(P+K-1)



Problem with Pooling

- After several levels of pooling, we have lost information about the precise positions of things
- This makes it impossible to use the precise spatial relationships between high-level parts for recognition.

Local Contrast Normalization



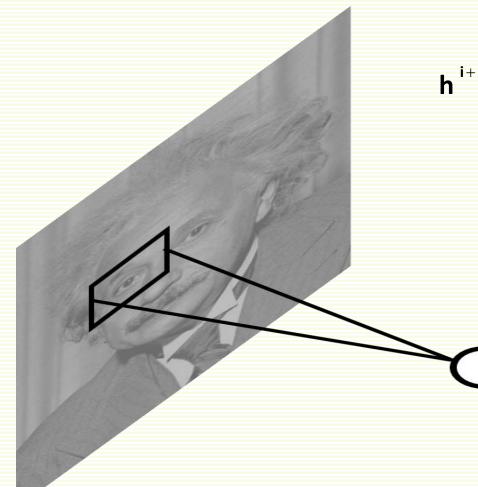
$$\mathbf{h}^{i+1}(\mathbf{x},\mathbf{y}) = \frac{\mathbf{h}^{i}(\mathbf{x},\mathbf{y}) - \mu^{i}(\mathbf{N}(\mathbf{x},\mathbf{y}))}{\sigma^{i}(\mathbf{N}(\mathbf{x},\mathbf{y}))}$$

Local Contrast Normalization

$$\mathbf{h}^{i+1}(\mathbf{x},\mathbf{y}) = \frac{\mathbf{h}^{i}(\mathbf{x},\mathbf{y}) - \mu^{i}(\mathbf{N}(\mathbf{x},\mathbf{y}))}{\sigma^{i}(\mathbf{N}(\mathbf{x},\mathbf{y}))}$$

want the same response

Local Contrast Normalization



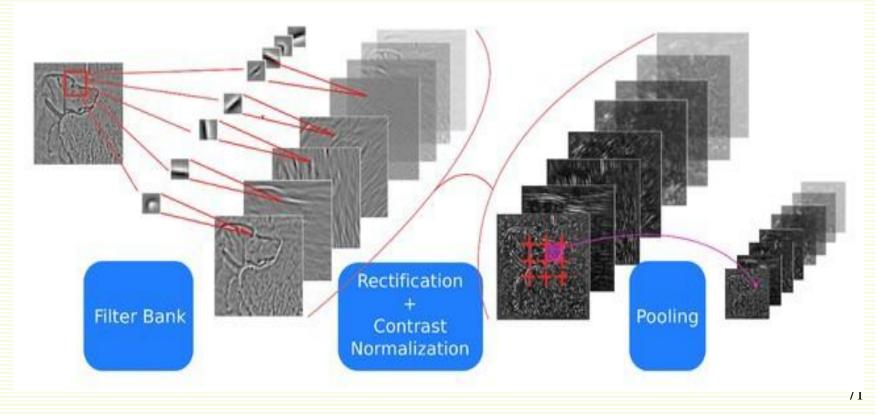
$$\mathbf{h}^{i+1}(\mathbf{x},\mathbf{y}) = \frac{\mathbf{h}^{i}(\mathbf{x},\mathbf{y}) - \mu^{i}(\mathbf{N}(\mathbf{x},\mathbf{y}))}{\sigma^{i}(\mathbf{N}(\mathbf{x},\mathbf{y}))}$$

- Performed also across features and in higher layers
- Effects
 - Improves invariance
 - Improves optimization

ConvNets: Typical Stage

One Stage (zoom)

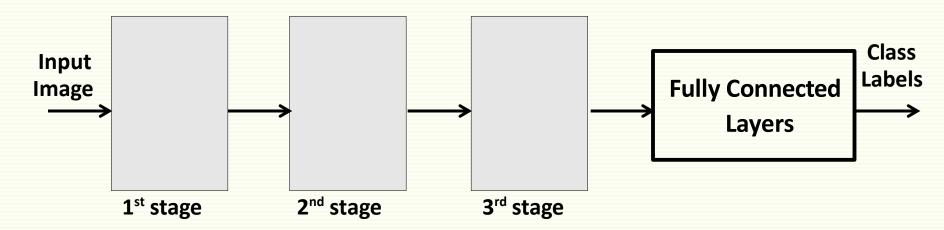
Conceptually similar to: SIFT, HoG, etc.



Typical Architecture

One Stage (zoom)

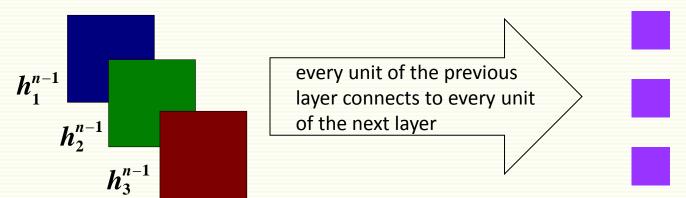
Whole System



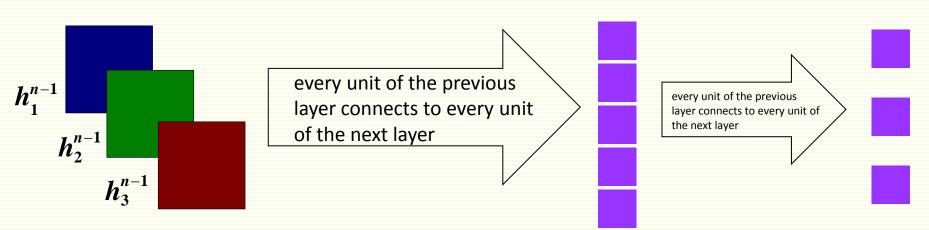
Conceptually similar to: SIFT \rightarrow K-Means \rightarrow Pyramid Pooling \rightarrow SVM

Fully Connected Layer

- Can have just one fully connected layer
- Example for 3-class classification problem



- Can have many fully connected layer
- Example for 3-class classification problem

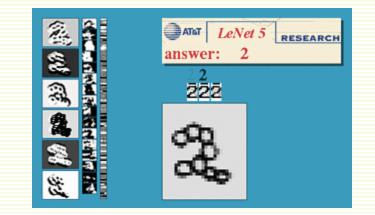


ConvNets: Training

- All Layers are differentiable
- Use standard back-propagation (gradient descent)
- At test time, run only in forward mode

Conv Nets: Character Recognition

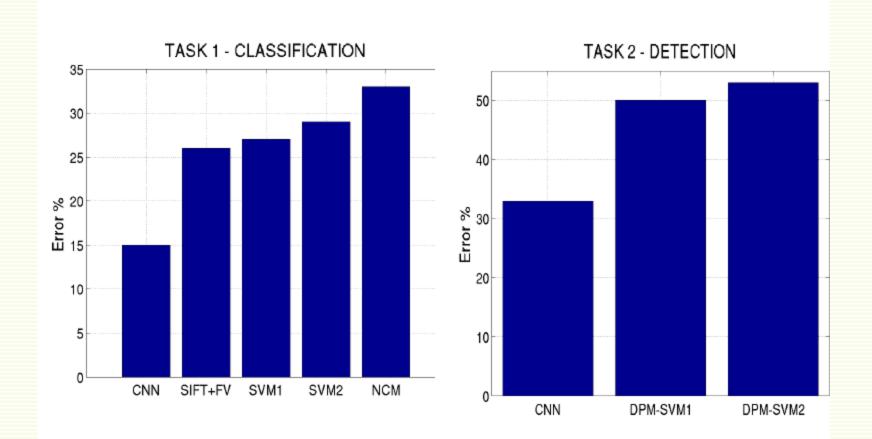
http://yann.lecun.com/exdb/lenet/index.html



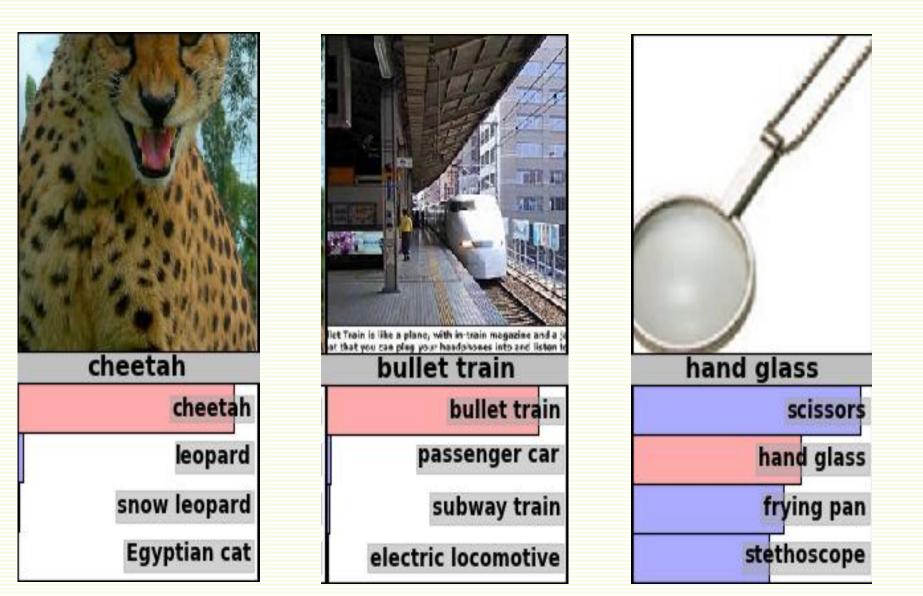
ConvNet for ImageNet

- Krizhevsky et.al.(NIPS 2012) developed deep convolutional neural net of the type pioneered by Yann LeCun
- Architecture:
 - 7 hidden layers not counting some max pooling layers.
 - the early layers were convolutional.
 - the last two layers were globally connected.
- Activation function:
 - rectified linear units in every hidden layer
 - train much faster and are more expressive than logistic unit

Results: ILSVRC 2012

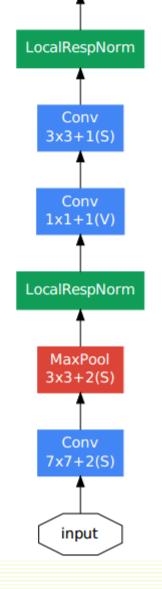


ConvNet on Image Classification



Tricks to Improve Generalization

- To get more data:
 - Use left-right reflections of the images
 - Train on random 224x224 patches from the 256x256 images
- At test time:
 - combine the opinions from ten different patches:
 - four 224x224 corner patches plus the central 224x224 patch
 - the reflections of those five patches
- Use *dropout* to regularize weights in the fully connected layers
 - half of the hidden units in a layer are randomly removed for each training example
- This stops hidden units from relying too much on other hidden units



Going Deeper with Convolutions http://arxiv.org/abs/1409.4842

Difficulties in Supervised Training of Deep Networks

- Early layers do not get trained well
 - *diffusion of gradient* error attenuates as it propagates to earlier layers
 - exacerbated since top layers can learn any task pretty well
 - thus error to earlier layers drops quickly as the top layers "mostly" solve the task
 - lower layers never get the opportunity to use their capacity to improve results, they just do a random feature map
 - need a way for early layers to do effective work
- Often not enough labeled data available while there may be lots of unlabeled data
 - can we use unsupervised/semi-supervised approaches to take advantage of the unlabeled data

Greedy Layer-Wise Training

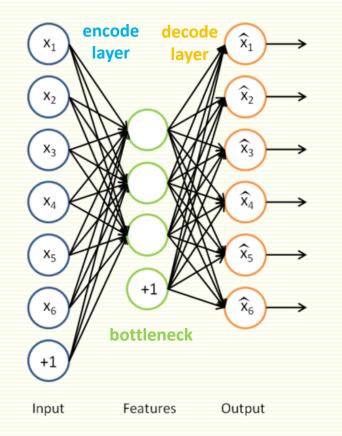
- Greedy layer-wise training to insure lower layers learn
- 1. Train first layer using your data without the labels (unsupervised)
 - we do not know targets at this level anyway
 - can use the more abundant unlabeled data which is not part of the training set
- 2. Freeze the first layer parameters and start training the second layer using the output of the first layer as the unsupervised input to the second layer
- 3. Repeat this for as many layers as desired
 - This builds our set of robust features
- 4. Use the outputs of the final layer as inputs to a supervised layer/model and train the last supervised layer(s)
 - leave early weights frozen
- 5. Unfreeze all weights and fine tune the full network by training with a supervised approach, given the pre-processed weight settings

Greedy Layer-Wise Training

- Greedy layer-wise training avoids many of the problems of trying to train a deep net in a supervised fashion
 - Each layer gets full learning focus in its turn since it is the only current "top" layer
 - Can take advantage of the unlabeled data
 - When you finally tune the entire network with supervised training the network weights have already been adjusted so that you are in a good error basin and just need fine tuning This helps with problems of
 - ineffective early layer learning
 - deep network local minima

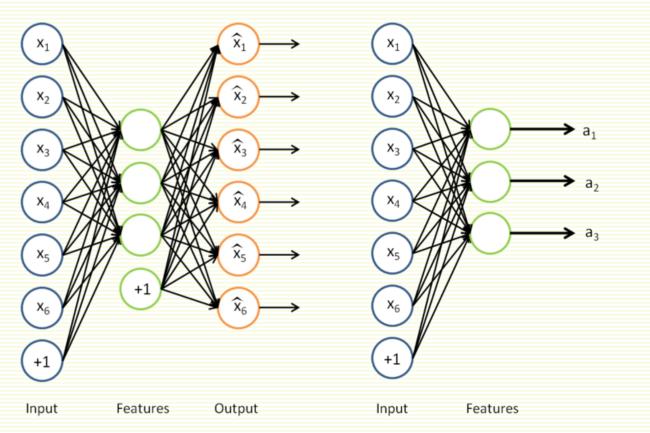
Auto-Encoders

- Unsupervised learning to discover generic features of the data
 - Learn identity function **f**(**x**,**w**) = **x**
 - through learning important sub-features, not by just passing through data
 - Constrain layer 2 to have less units than the input layer, or to be sparse



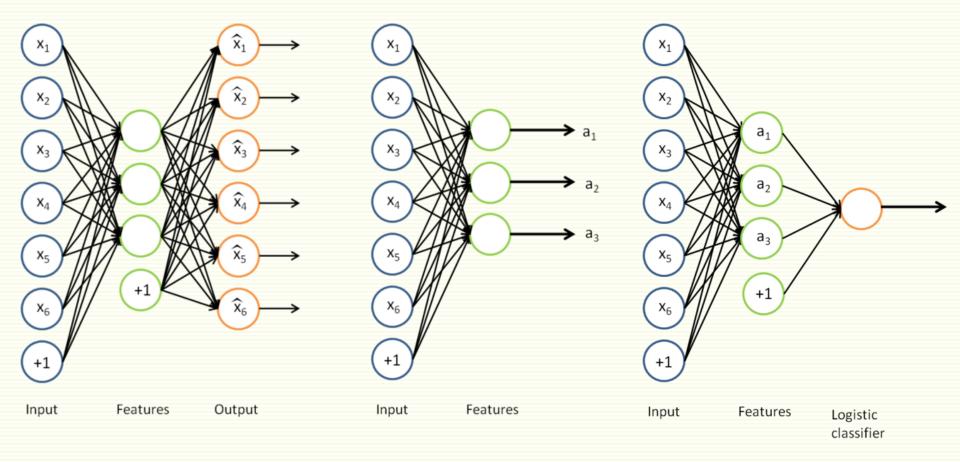
Auto-Encoders

• Layer 2 units are the new learned features



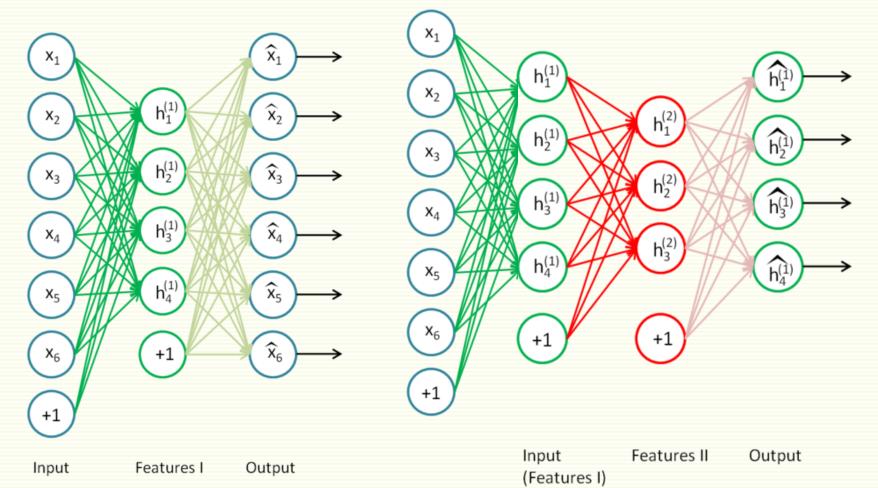
Auto-Encoders

- Layer 2 units are the new learned features
- Can fix their weights, replace decode layer with supervised learning layer and do supervised learning



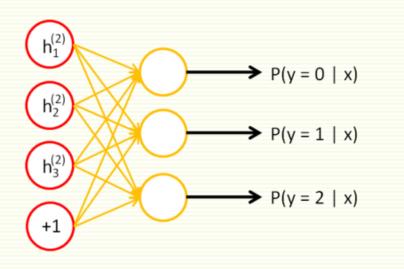
Stacked Auto-Encoders

- Stack many (sparse) auto-encoders in succession and train them using greedy layer-wise training
- Drop the decode output layer each time



Stacked Auto-Encoders

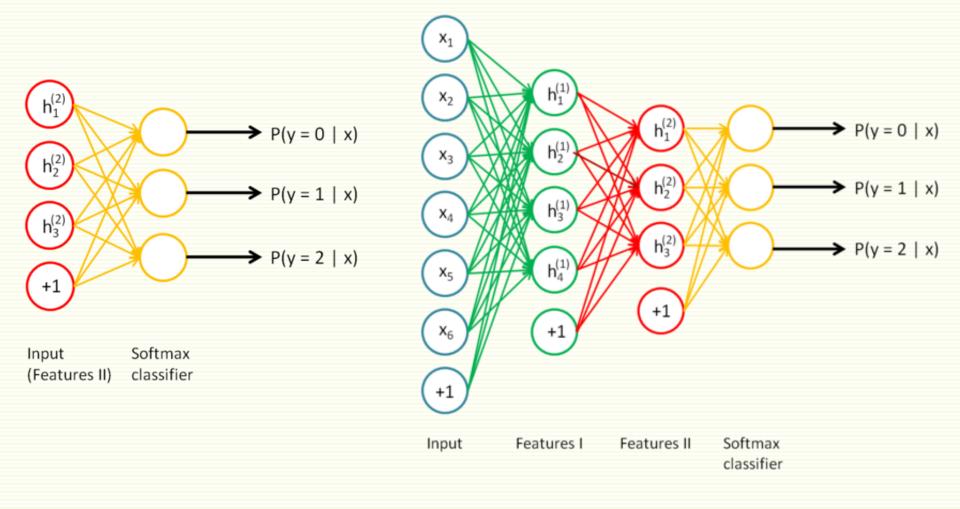
• Do supervised training on the last layer using final features



Input Softmax (Features II) classifier

Stacked Auto-Encoders

- Do supervised training on the last layer using final features
- Then do supervised training on full network to fine-tune all weights



Concluding Remarks

Advantages

- NN can learn complex mappings from inputs to outputs, based only on the training samples
- Easy to incorporate a lot of heuristics
- Many competitions won recently
- Disadvantages
 - A lot of tricks for successful implementation
 - Theory is not as developed yet