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Outline 

• Course overview 
• Introduction to Machine Learning 
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Course Outline 
• Prerequisites 

•  Calculus,  Statistics, Linear Algebra  
• Some Computer Vision/Image Processing  

• Grading 
• Class participation: 10% 
• Four assignments (Matlab): 20% 

• Each assignment is 5% 
• Assignment grades are 0, 40%, 60%, 80%, 100% 

• In class paper presentation  20% 
• Final project: 50% 

• Final Project Presentation 20% 
• Written project report + code, 30 % 
• Matlab, C/C++, anything else as long as I can run it 
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Course Outline: Content 

• Lecture (2/3 of the time), paper discussions (1/3 of the 
time) 

• Machine Learning Topics (tentatively) 
• Nearest neighbor 
• Linear and generalized linear classifiers 
• SVM 
• Boosting 
• Neural Networks 

• Computer Vision Topics 
• Image features 
• Mostly detection/recognition 

• object, action, etc  
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Course Outline: Textbook 

• No required textbook, but recommended 
• “Pattern Classification” by R.O. Duda, P.E. Hart and 

D.G. Stork, second edition  
• “Machine Learning” by Tom M. Mitchell 
• “Pattern Recognition and Machine Learning, by C. 

Bishop  
• “Machine Learning: a Probabilistic Perspective” by 

Kevin Patrick Murphy 

• Journal/Conference papers 
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Intro: What is Machine Learning?  

• Machine learning is useful when it is too difficult to 
come up with a program to perform a desired task 

• Make computer to learn by showing examples 
(usually with correct answers) 
• “supervised” learning or learning with a teacher 

• In practice: computer program (or function) which 
has a tunable parameters, tune parameters until the 
desirable behavior on the examples 
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Different Types of Learning  

• Supervised Learning: given training examples 
of inputs and corresponding outputs, produce 
the “correct” outputs for new inputs 

• Unsupervised Learning: given only inputs as 
training, find structure in the world: e.g. 
discover “natural” clusters 

• Reinforcement Learning: not covered in this 
course 
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Supervised Machine Learning 
• Training samples (or examples) x1,x2,…, xn 

• Each xi  is usually multi-dimensional 
• xi

1, xi
2 ,…, xi

d  are called features 
• xi  is also called a feature vector 
• example 

x1 = (3,7, 35) 
x2 = (5, 9, 47) 
….. 

• how many and which features to extract? 
• Have target output for each example y1, y2,…yn 

• “teacher” gives target outputs 
• yi are usually one-dimensional 
• example 

y1 = 1 (“face”) 
y2 = 0 (“not a face”) 
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Two Types of Supervised Machine Learning 

• Classification  
• yi   is finite, typically called a label or a class                   
•example:  yi ∈{“sunny”, ”cloudy”, ”raining”}  

 
• Regression 

• yi   is continuous, typically called  an output value 
•Example: yi = temperature ∈[-60,60] 
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Toy Application: fish sorting 

salmon 

sea bass 

sorting 
chamber 

classifier 
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Classifier design 
• Notice salmon tends to be shorter than sea bass 
• Use fish length as a feature 
• Count number of bass and salmon of each length 
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Single Feature (length) Classifier 
• Find the best length L threshold 

fish length < L fish length > L 

classify as salmon classify as sea bass 

2 4 8 10 12 14 
bass 0 1 3 8 10 5 
salmon 2 5 10 5 1 0 

• For example, at  L = 5, misclassified: 
 

• 1 sea bass 
• 16 salmon 

• Classification error (total error) 17 
50 
       = 34% 



• Tune parameter L to find the one that performs best 
• The best L= 9, and still 20% of fish is misclassified 
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Next Step 

• Lesson learned: 
• Length is a poor feature alone! 

• What to do? 
• Try another feature 
• Salmon tends to be lighter 
• Try average fish lightness 
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Single Feature (lightness) Classifier 

• Now fish are classified best at lightness threshold of 
3.5 with classification error of 8% 
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Can do better by feature combining  
• Use both length and lightness features 
• Feature vector [length,lightness] 
•  Find linear boundary that separates training samples 

length 

decision  
boundary 

• Classification error 4%  

decision regions 
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Even Better Decision Boundary 

• Decision boundary (wiggly) with 0%  error 

length 
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Test Classifier on New Data 
• The goal is for classifier to perform well on new data 
• Test “wiggly” classifier on new data: 25% error 

length 



What Went Wrong? 

• Have only a limited amount of data for training 
• Should ensure decision boundary does not adapt too closely to 

the particulars of training data, but  grasps the “big picture” 
• Smoother (simpler) decision boundaries tend to generalize better 

to new data 
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• Complicated boundaries overfit the data,  they are too 
tuned to the particular training data at hand 

• Therefore complicated boundaries tend to not 
generalize well to the new data   

• Usually refer to the new data  as test data 

Overfitting 



Overfitting: Extreme Example 
• Say we have 2 classes: face and non-face images 
• Memorize (i.e. store) all the “face” images 
• For a new image, see if it is one of the stored faces 

• if yes, output “face” as the classification result 
• If no, output “non-face” 
• also called “rote learning”  

• problem: new “face” images are different from stored 
“face” examples 
• zero error on stored data, 50% error on test (new) data 
• decision boundary is very unsmooth 

• Rote learning is memorization without generalization 
slide is modified from Y. LeCun 



Generalization 
training data 

• The ability to produce correct outputs on previously unseen 
examples is called generalization 

• Big question of learning theory: how to get good generalization 
with a limited number of examples 

• Intuitive idea: favor simpler classifiers 
• William of Occam (1284-1347): “entities are not to be multiplied without necessity” 

• Simpler decision boundary may not fit ideally to the  training data 
but tends to generalize better to new data 
 

test data 
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• Can also underfit data, i.e.  too 
simple decision boundary  
• chosen model is not expressive 

enough 
• No linear decision boundary can 

well separate the samples 
• Training error is too high 

• test error is, of course, also high 

Underfitting 



Underfitting → Overfitting 

underfitting “just right” overfitting 

• high training error 
• high test error  

• low training error 
• low test error  

• low training error 
• high test error  
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Sketch of Supervised Machine Learning  

• Chose a learning machine f(x,w) 
• w are tunable weights 
• x is the input sample 
• f(x,w) should output the correct class of sample x 
• use labeled samples to tune weights w so that f(x,w) 

give the correct label for sample x 

• Which function f(x,w) do we choose?   
• has to be expressive enough to model our problem 

well, i.e. to avoid underfitting 
• yet not to complicated to avoid overfitting 
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Training and Testing 

• There are 2 phases, training and testing 
• Divide all labeled samples x1,x2,…xn  into 2 sets, 

training set and test set  
• Training phase is for “teaching”  machine 

•  tuning weights w 

• Testing phase is for evaluating how well  machine 
works on unseen examples 
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More on Training Phase 

• Find the weights w s.t. f(xi,w) = yi “as much as 
possible” for  training samples (xi, yi) 
• “as much as possible” needs to be defined 

• How do we tune parameters w to ensure       
f(xi,w) = yi for most training samples (xi,yi) ? 
• This step is usually done by optimization, can be 

quite time consuming 
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More on Testing Phase 

• The goal is to design machine which performs well on 
unseen examples 

• Evaluate performance of the trained machine f(x,w) on 
the test samples (unseen labeled samples)  

• Testing the machine on unseen labeled examples lets us 
approximate how well it will perform in practice  

• If testing results are poor, go back to training phase 
• add more features (if underfitting) 
• remove features (if overfitting) 
• or redesign f(x,w) 
• or collect more training data 
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Classification System Design Overview 
• Collect and label data by hand 

 
 

salmon salmon salmon sea bass sea bass sea bass 

• Preprocess by segmenting fish from background 
  

• Extract possibly discriminating features 
• length, lightness, width, number of fins,etc. 

• Classifier design 
• Choose model for classifier 
• Train classifier on training data 

• Test classifier on test data 
 

• Split data into training and test sets 
 
 

we mostly look at 
these two steps in 
this course 
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Application: Face Detection 

• Objects – image patches 
• Classes – “face” and “not face” 
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Optical character recognition (OCR) 

Digit recognition, AT&T labs 
http://www.research.att.com/~yann/ 

License plate readers 
http://en.wikipedia.org/wiki/Automatic_number_plate_recognition 

 

• Objects – images or image patches 
• Classes – digits 0, 1, …,9 

Slide Credit: D. Hoiem 

http://www.research.att.com/%7Eyann
http://en.wikipedia.org/wiki/Automatic_number_plate_recognition
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Smile detection 
 

Sony Cyber-shot® T70 Digital Still Camera  
Slide Credit: D. Hoiem 

http://www.sonystyle.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=10551&storeId=10151&productId=8198552921665200469&langId=-1
http://www.sonystyle.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=10551&storeId=10151&productId=8198552921665200469&langId=-1
http://www.sonystyle.com/webapp/wcs/stores/servlet/ProductDisplay?catalogId=10551&storeId=10151&productId=8198552921665200469&langId=-1
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Object recognition in mobile phones 

Point & Find, Nokia 
Google Goggles 

Slide Credit: D. Hoiem 

http://www.infoworld.com/article/07/04/24/HNnokiasiliconvalley_1.html
http://research.nokia.com/researchteams/vcui/index.html
http://www.google.com/mobile/goggles/
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Interactive Games: Kinect 
• Object Recognition: 

http://www.youtube.com/watch?feature=iv&v=fQ59dXOo63o 

• Mario: http://www.youtube.com/watch?v=8CTJL5lUjHg 

• 3D: http://www.youtube.com/watch?v=7QrnwoO1-8A 

• Robot: http://www.youtube.com/watch?v=w8BmgtMKFbY 

Slide Credit: D. Hoiem 

http://www.youtube.com/watch?feature=iv&v=fQ59dXOo63o
http://www.youtube.com/watch?v=8CTJL5lUjHg
http://www.youtube.com/watch?v=8CTJL5lUjHg
http://www.youtube.com/watch?v=7QrnwoO1-8A
http://www.youtube.com/watch?v=7QrnwoO1-8A
http://www.youtube.com/watch?v=w8BmgtMKFbY
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Application: Scene Classification 

• Objects – images 
• Classes – “mountain”, “lake”, “field”… 
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Application: Medical Image Processing 

• Objects – pixels 
• Classes – different tissue types, stroma, 

lument, etc. 
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