CS840a Machine Learning in Computer Vision Olga Veksler

Lecture 1 Introduction

Outline

- Course overview
- Introduction to Machine Learning

Course Outline

- Prerequisites
 - Calculus, Statistics, Linear Algebra
 - Some Computer Vision/Image Processing
- Grading
 - Class participation: 10%
 - Four assignments (Matlab): 20%
 - Each assignment is 5%
 - Assignment grades are 0, 40%, 60%, 80%, 100%
 - In class paper presentation 20%
 - Final project: 50%
 - Final Project Presentation 20%
 - Written project report + code, 30 %
 - Matlab, C/C++, anything else as long as I can run it

Course Outline: Content

- Lecture (2/3 of the time), paper discussions (1/3 of the time)
- Machine Learning Topics (tentatively)
 - Nearest neighbor
 - Linear and generalized linear classifiers
 - SVM
 - Boosting
 - Neural Networks
- Computer Vision Topics
 - Image features
 - Mostly detection/recognition
 - object, action, etc

Course Outline: Textbook

- No required textbook, but recommended
 - "Pattern Classification" by R.O. Duda, P.E. Hart and D.G. Stork, second edition
 - "Machine Learning" by Tom M. Mitchell
 - "Pattern Recognition and Machine Learning, by C. Bishop
 - "Machine Learning: a Probabilistic Perspective" by Kevin Patrick Murphy
- Journal/Conference papers

Intro: What is Machine Learning?

- Machine learning is useful when it is too difficult to come up with a program to perform a desired task
- Make computer to learn by showing examples (usually with correct answers)
 - "supervised" learning or learning with a teacher
- In practice: computer program (or function) which has a tunable parameters, tune parameters until the desirable behavior on the examples

Different Types of Learning

- Supervised Learning: given training examples of inputs and corresponding outputs, produce the "correct" outputs for new inputs
- Unsupervised Learning: given only inputs as training, find structure in the world: e.g. discover "natural" clusters
- Reinforcement Learning: not covered in this course

Supervised Machine Learning

- Training samples (or examples) x¹,x²,..., xⁿ
- Each **x**ⁱ is usually multi-dimensional
 - \mathbf{x}_{1}^{i} , \mathbf{x}_{2}^{i} ,..., \mathbf{x}_{d}^{i} are called *features*
 - **x**ⁱ is also called a *feature vector*
 - example

....

- how many and which features to extract?
- Have target output for each example **y**¹, **y**²,...**y**ⁿ
 - "teacher" gives target outputs
 - **y**ⁱ are usually one-dimensional
 - example

y¹ = 1 ("face")
y² = 0 ("not a face")

Two Types of Supervised Machine Learning

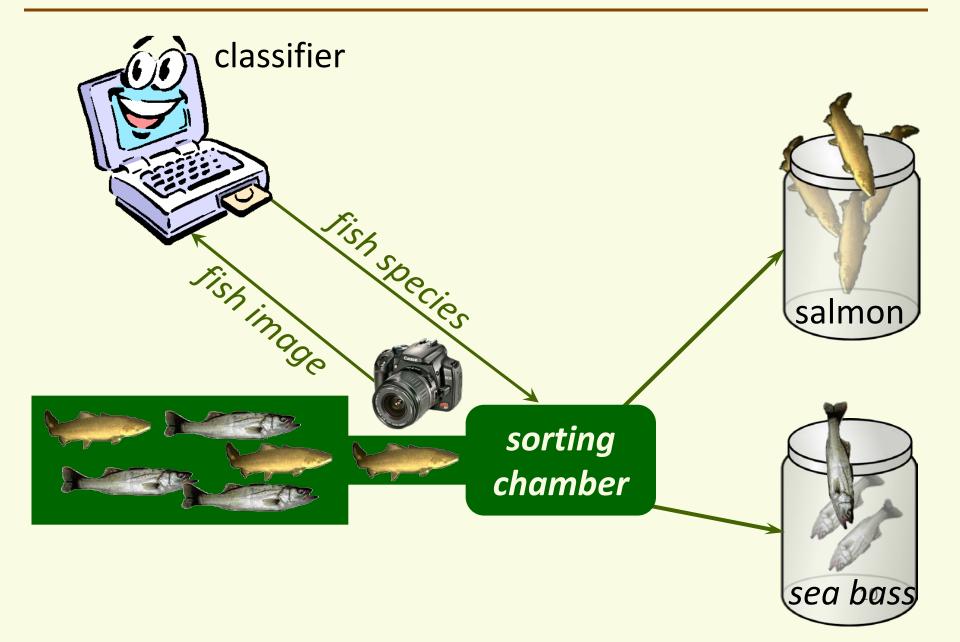
Classification

- yⁱ is finite, typically called a *label* or a *class*
- example: $\mathbf{y}^{i} \in \{\text{"sunny", "cloudy", "raining"}\}$

Regression

- yⁱ is continuous, typically called an *output value*
- Example: \mathbf{y}^{i} = temperature \in [-60,60]

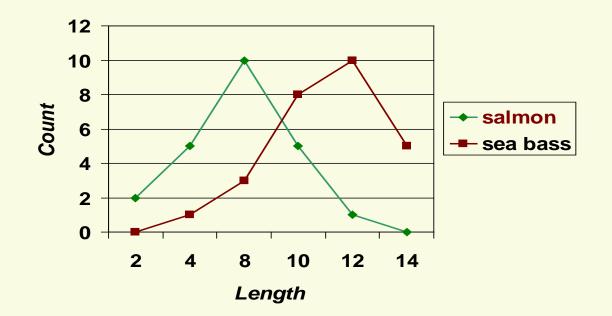
Toy Application: fish sorting



Classifier design

- Notice salmon tends to be shorter than sea bass
- Use fish length as a feature
- Count number of bass and salmon of each length

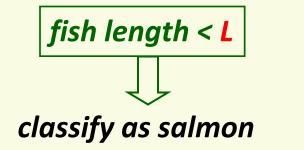
	2	4	8	10	12	14
bass	0	1	3	8	10	5
salmon	2	5	10	5	1	0

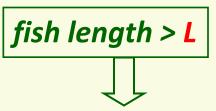


11

Single Feature (length) Classifier

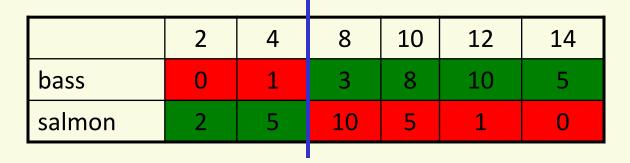
• Find the best length *L* threshold





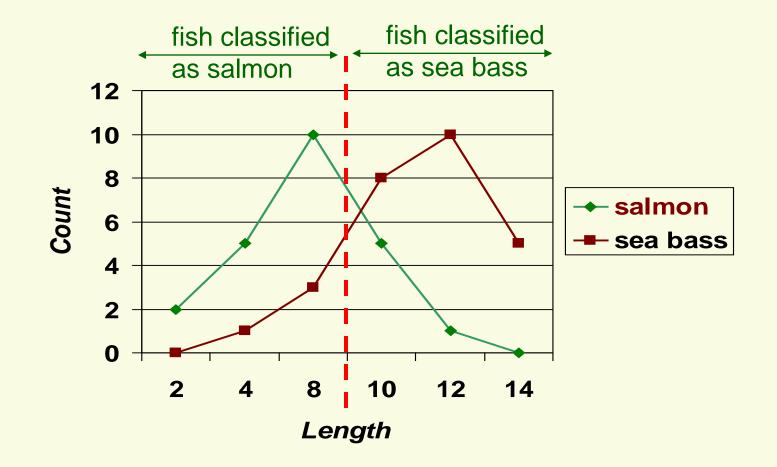
classify as sea bass

- For example, at *L* = 5, misclassified:
 - 1 sea bass
 - 16 salmon



• Classification error (total error) $\frac{17}{50} = 34\%$

Single Feature (length) Classifier

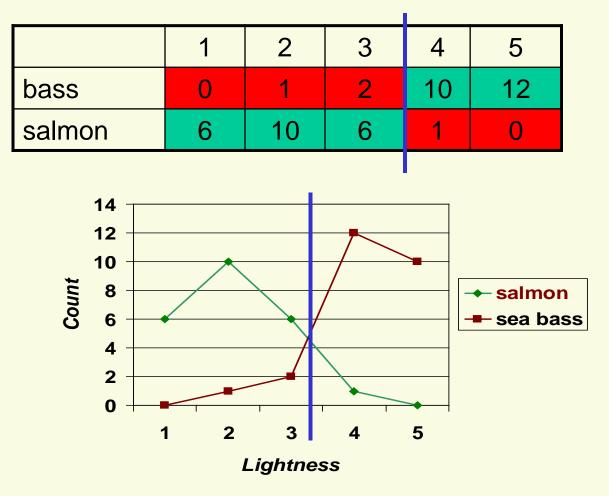


- **Tune** parameter *L* to find the one that performs best
- The best L = 9, and still 20% of fish is misclassified

Next Step

- Lesson learned:
 - Length is a poor feature alone!
- What to do?
 - Try another feature
 - Salmon tends to be lighter
 - Try average fish lightness

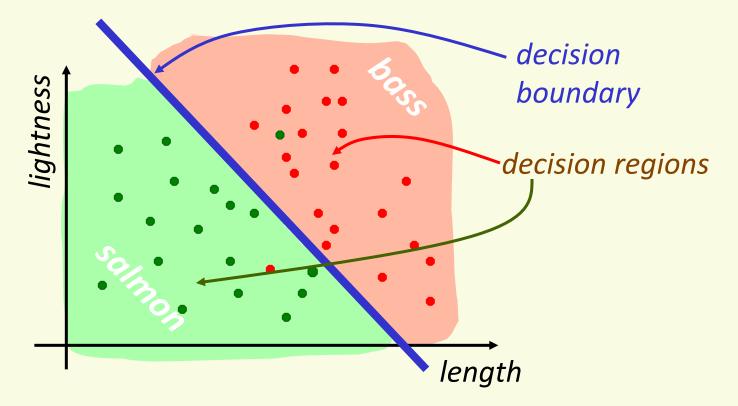
Single Feature (lightness) Classifier



 Now fish are classified best at lightness threshold of 3.5 with classification error of 8%

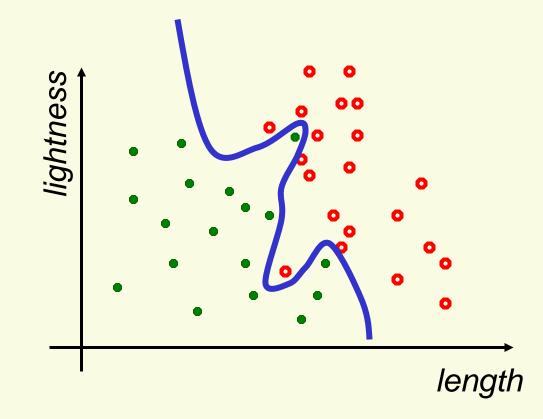
Can do better by feature combining

- Use both length and lightness features
- Feature vector [length,lightness]
- Find linear boundary that separates training samples



• Classification error 4%

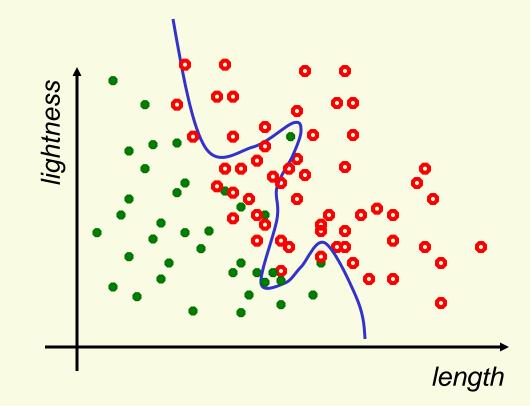
Even Better Decision Boundary



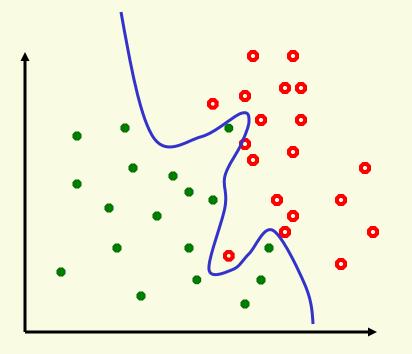
Decision boundary (wiggly) with 0% error

Test Classifier on New Data

- The goal is for classifier to perform well on new data
- Test "wiggly" classifier on new data: 25% error

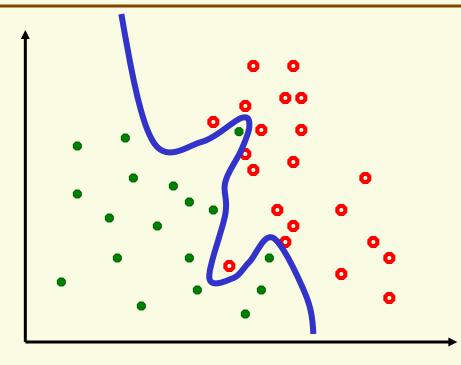


What Went Wrong?



- Have only a limited amount of data for training
- Should ensure decision boundary does not adapt too closely to the particulars of training data, but grasps the "big picture"
- Smoother (simpler) decision boundaries tend to generalize better to new data

Overfitting



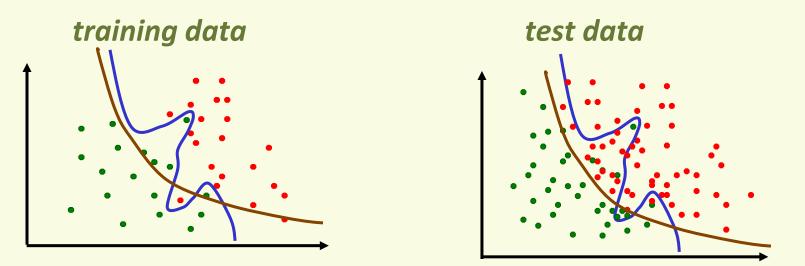
- Complicated boundaries *overfit* the data, they are too tuned to the particular training data at hand
- Therefore complicated boundaries tend to not generalize well to the new data
- Usually refer to the new data as **test** data

Overfitting: Extreme Example

- Say we have 2 classes: face and non-face images
- Memorize (i.e. store) all the "face" images
- For a new image, see if it is one of the stored faces
 - if yes, output "face" as the classification result
 - If no, output "non-face"
 - also called "rote learning"
- **problem**: new "face" images are different from stored "face" examples
 - zero error on stored data, 50% error on test (new) data
 - decision boundary is very unsmooth
- Rote learning is memorization without generalization

slide is modified from Y. LeCun

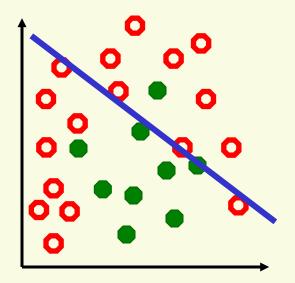
Generalization



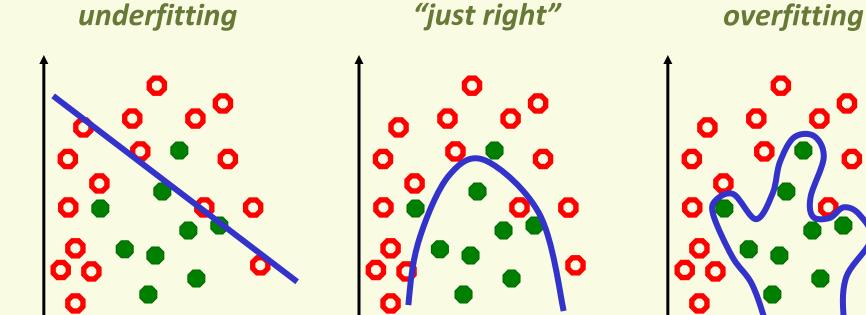
- The ability to produce correct outputs on previously unseen examples is called **generalization**
- Big question of learning theory: how to get good generalization with a limited number of examples
- Intuitive idea: favor simpler classifiers
 - William of Occam (1284-1347): "entities are not to be multiplied without necessity"
- Simpler decision boundary may not fit ideally to the training data but tends to generalize better to new data

Underfitting

- Can also underfit data, i.e. too simple decision boundary
 - chosen model is not expressive enough
- No linear decision boundary can well separate the samples
- Training error is too high
 - test error is, of course, also high



Underfitting \rightarrow Overfitting



- high training error
- high test error •

- low training error
- low test error

- low training error
- high test error

Sketch of Supervised Machine Learning

- Chose a learning machine f(x,w)
 - w are tunable weights
 - **x** is the input sample
 - **f**(**x**,**w**) should output the correct class of sample **x**
 - use labeled samples to tune weights w so that f(x,w) give the correct label for sample x
- Which function **f**(**x**,**w**) do we choose?
 - has to be expressive enough to model our problem well, i.e. to avoid *underfitting*
 - yet not to complicated to avoid overfitting

Training and Testing

- There are 2 phases, training and testing
 - Divide all labeled samples x¹,x²,...xⁿ into 2 sets, training set and test set
 - Training phase is for "teaching" machine
 - tuning weights **w**
 - Testing phase is for evaluating how well machine works on unseen examples

More on Training Phase

- Find the weights w s.t. f(xⁱ,w) = yⁱ "as much as possible" for *training* samples (xⁱ, yⁱ)
 - "as much as possible" needs to be defined
- How do we tune parameters w to ensure
 f(xⁱ,w) = yⁱ for most training samples (xⁱ,yⁱ) ?
 - This step is usually done by optimization, can be quite time consuming

More on Testing Phase

- The goal is to design machine which performs well on unseen examples
- Evaluate performance of the trained machine f(x,w) on the test samples (unseen labeled samples)
- Testing the machine on unseen labeled examples lets us approximate how well it will perform in practice
- If testing results are poor, go back to training phase
 - add more features (if underfitting)
 - remove features (if overfitting)
 - or redesign **f**(**x**,**w**)
 - or collect more training data

Classification System Design Overview

- Split data into training and test sets
- Preprocess by segmenting fish from background

- Extract possibly discriminating features
 - length, lightness, width, number of fins, etc.
- Classifier design
 - Choose model for classifier
 - Train classifier on training data
- Test classifier on test data

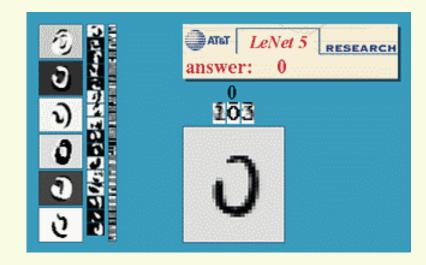
 we mostly look at
 these two steps in this course

Application: Face Detection

- Objects image patches
- Classes "face" and "not face"

Optical character recognition (OCR)

- Objects images or image patches
- Classes digits 0, 1, ...,9



Digit recognition, AT&T labs http://www.research.att.com/~yann/ License plate readers

31 Slide Credit: D. Hoiem

Smile detection

The Smile Shutter flow

Imagine a camera smart enough to catch every smile! In Smile Shutter Mode, your Cyber-shot® camera can automatically trip the shutter at just the right instant to catch the perfect expression.

Sony Cyber-shot® T70 Digital Still Camera

32 Slide Credit: D. Hoiem

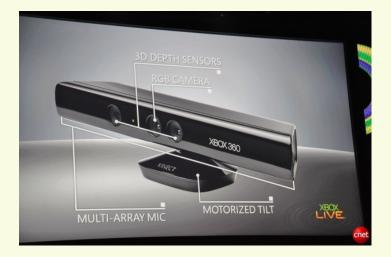
Object recognition in mobile phones

Point & Find, Nokia Google Goggles

> 33 Slide Credit: D. Hoiem

Interactive Games: Kinect

- Object Recognition: http://www.youtube.com/watch?feature=iv&v=fQ59dXOo63o
- Mario: http://www.youtube.com/watch?v=8CTJL5lUjHg
- **3D:** <u>http://www.youtube.com/watch?v=7QrnwoO1-8A</u>
- Robot: <u>http://www.youtube.com/watch?v=w8BmgtMKFbY</u>

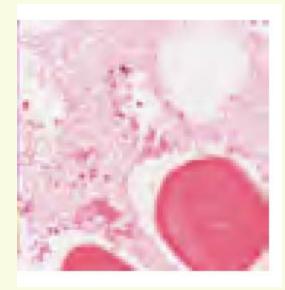


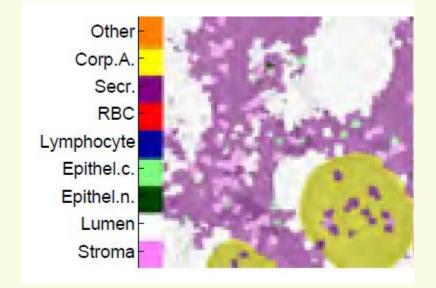
34

Application: Scene Classification

- Objects images
- Classes "mountain", "lake", "field"...

Application: Medical Image Processing





- Objects pixels
- Classes different tissue types, stroma, lument, etc.