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Lecture 2
k Nearest Neighbors



k-Nearest Neighbors

classify an unknown example with the most
common class among k closest examples

“tell me who your neighbors are, and I’ll tell you

who you are”

Example:

k=3
2 sea bass, 1 salmon
Classify as sea bass
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KNN: Multiple Classes

e Easy to implement for multiple classes
e Examplefork=5
e 3 fish species: salmon, sea bass, eel
® 3seabass, 1 eel, 1 salmon = classify as sea bass
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kNN: How to Choose k?

e In theory, if infinite number of samples
available, the larger is k, the better is

classification
e The caveat is that all k neighbors have to be

ciose
e Possible when infinite # samples available

e |[mpossible in practice since # samples is finite




kNN: How to Choose k?

Problems if “tune” k on training data

e meta parameter, overfit if tune these on training data

k =1 is often used for efficiency, but sensitive to “noise”
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KNN: How to Choose k?
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e Larger k gives smoother boundaries, better for generalization

. But only if locality is preserved. Locality is not preserved if end up looking
at samples too far away, not from the same class.

e Interesting theoretical properties if k < sqrt(n), n is # of examples
e Can choose k through cross-validation (study soon)



kKNN: How Well does it Work?

KNN is simple and intuitive, but does it work?

Theoretically, the best error rate is the Bayes rate E*

e Bayes error rate is the best (smallest) error rate a classifier can have, for
a given problem, but we do not study it in this course

Assume we have an unlimited number of samples
kNN leads to an error rate greater than E*

But even for k=1, as n — oo, it can be shown that
kNN error rate is smaller than 2E*

As we increase k, the upper bound on the error gets
better, that is the error rate (as n — o) for the kNN
rule is smaller than cE*,with smaller ¢ for larger k

If we have lots of samples, kNN works well



KNN: Multi-Modal Distributions

e Many parametric
distributions would not
work for this 2 class
classification problem

e Nearest neighbors will
do reasonably well,
provided we have a lot of
samples
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1NN Visualization

e \Voronoi tesselation is useful for visualization

decision boundary



kNN Selection of Distance

e So far we assumed we use Euclidian Distance
to find the nearest neighbor:

D(a,b) = \/Z(ak -b,)

e Euclidean distance treats each feature as
equally important

e However some features (dimensions) may be
much more discriminative than other features



kNN Distance Selection: Extreme Example

feature 1 gives the correct class: 1 or 2

feature 2 gives irrelevant number from 100 to 200

dataset: [1 150]
[2 110]
classify [1 100]
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) =+/(1-1) +(100-150) =50

) =/(1-2) +(100-110) =10.5

[1 100] is misclassified!
The denser the samples, the less of this problem

But we rarely have samples dense enough



kNN Distance Selection: Extreme Example
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e Decision boundary is in red, and is really wrong because

e feature 1 is discriminative, but it’s scale is small

e feature 2 gives no class information but its scale is large, it
dominates distance calculation



kKNN: Feature Normalization

Notice that 2 features are on different scales:
First feature takes values between 1 or 2

Second feature takes values between 100 to 200
Idea: normalize features to be on the same scale
Different normalization approaches

Linearly scale the range of each feature to be, say, in

range [0,1]
min
f _ 1:old - 1:old
new max £ min
old old




KNN: Feature Normalization

e Linearly scale to 0 mean variance 1:

e |f Zis a random variable of mean m and variance 6 ?,
then (Z- m)/6 has mean 0 and variance 1

e For each feature f let the new rescaled feature be
- Tog — M
O

New

e Let us apply this normalization to previous example
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kKNN: Selection of Distance

e Feature normalization does not help in high dimensional
spaces if most features are irrelevant

D(a,b):\/zk:(ak—bk)z =\/Z(ai—bi)2+zj:(aj—bj)2

discriminative noisy
features features

e |f the number of useful features is smaller than the
number of noisy features, Euclidean distance is
dominated by noise



kKNN: Feature Weighting

Scale each feature by its importance for classification

D(a,b) = \/Zwk (ak —b, )2

Can use our prior knowledge about which features are
more important

Can learn the weights w, using cross-validation (to be
covered later)



kKNN: Computational Complexity

Basic kNN algorithm stores all examples

Suppose we have n examples each of dimension d
O(d) to compute distance to one examples

O(nd) to computed distances to all examples

Plus O(nk) time to find k closest examples

Total time: O(nk+nd)

Very expensive for a large number of samples

But we need a large number of samples for kNN to
work well!



Reducing Complexity

e \arious exact and approximate methods for
reducing complexity

e reduce dimensionality of the data

e find projection to a lower dimensional space so that
the distances between samples are approximately
the same

e PCA
* Projection to a Random subspace

e use smart data structures, like kd trees



KNN Summary

e Advantages
e Can be applied to the data from any distribution

e for example, data does not have to be separable with a linear
boundary

e Very simple and intuitive
e Good classification if the number of samples is large enough

e Disadvantages
e Choosing k may be tricky
e Test stage is computationally expensive

e No training stage, all the work is done during the test stage

e This is actually the opposite of what we want. Usually we can afford
training step to take a long time, but we want fast test step

e Need large number of samples for accuracy
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