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Outline 

• Computer Vision Concepts 
• Filtering  
• Edge Detection 
• Image Features 
• Template matching based on 

• Correlation 
• SSD 
• Normalized Cross Correlation 

• Motion and Optical Flow Field  
 



Digital Grayscale Image 

Slide Credit: D. Hoeim 
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Digital Grayscale Image 

• Image is array f(x,y)    
• approximates continuous 

function f(x,y) from R2 to R: 

• f(x,y) is the intensity or 
grayscale at position (x,y) 
• proportional to brightness  of 

the real world point it images 
• standard range: 0, 1, 2,…., 255 
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Digital Color Image 
• Color image is three 

functions pasted together 
• Write this as a vector-

valued function:  
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R G B 

Digital Color Image 
• Can consider color image as 3 separate images: R, G, B  



Image filtering 
• Given f(x,y) filtering computes a new 

image g(x,y) 
• As a function of local neighborhood at 

each position (x,y) 
 g(x,y) = f(x,y)+f(x-1,y)× f(x,y-1)  

 

1 2 4 2 8 
9 2 2 7 5 
2 8 1 3 9 
4 3 2 7 2 
2 2 2 6 1 
8 3 2 5 4 

g(1,3) = 3 + 4 × 8 = 35 

g(4,5) = 4 + 5 × 1 = 9 

g(3,1) = 7 + 2×4 - 3×9 = -12 

• Linear filtering: function is a weighted 
sum (or difference) of pixel values 
 g(x,y) = f(x,y) + 2×f(x-1,y-1) - 3×f(x+1,y+1)  
 • Many applications: 
• Enhance images 

• denoise, resize, increase contrast, … 
• Extract information from images 

• Texture, edges, distinctive points … 
• Detect patterns 

• Template matching 

 



Image Filtering: Moving Average 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 0 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 90 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 
0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 0 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 90 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

f(x,y) g(x,y) 



0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 0 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 90 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 10 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 90 0 90 90 90 0 0 

0 0 0 90 90 90 90 90 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 90 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

f(x,y) g(x,y) 

Image Filtering: Moving Average 
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Image Filtering: Moving Average 
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Image Filtering: Moving Average 
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Image Filtering: Moving Average 
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Image Filtering: Moving Average 
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Image Filtering: Moving Average 



  Correlation Filtering 

• Write as equation, averaging window  (2k+1)x(2k+1) 
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loop over all pixels in 
neighborhood around  pixel f (i,j) 

uniform weight for 
each pixel 

• Generalize by allowing different weights for different pixels in the 
neighborhood 
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Correlation filtering 
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• This is called cross-correlation, denoted  g = H ⊗ f 
• Filtering an image: replace each pixel with a linear 

combination of its neighbors 
• The filter kernel or mask H is gives the weights in linear 

combination 
 



Averaging Filter 

• What is kernel H for the moving average example? 
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H[u,v] = ? g(x,y)  f(x,y) 

g = H ⊗ f 



Smoothing by Averaging 

original filtered 

• What if the mask is larger than 3x3 ?  

• Pictorial representation of box filter: 
• white means large value, black means low value 
  



Effect of Average Filter 
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Gaussian noise Salt and Pepper noise 



Gaussian Filter 
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• May want nearest neighboring pixels to have the most influence 

This kernel H is an 
approximation of a 2d 

Gaussian function: 

H[u,v]  f(x,y) 
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Gaussian Filters: Mask Size 
• Gaussian has infinite domain, discrete filters use finite mask 

• larger mask contributes to more smoothing 
 

 

 
σ = 5 with 10 x 10 mask σ = 5 with 30 x 30 mask 

blue weights 
are so small 
they are 
effectively 0 



Gaussian filters: Variance 
• Variance (σ) also contributes to the extent of smoothing 

• larger σ gives less rapidly decreasing weights → can construct a larger mask 
with non-negligible weights 

σ = 2 with 30 x 30 kernel σ = 5 with 30 x 30 kernel σ = 8 with 30 x 30 kernel 



Average vs. Gaussian Filter 

mean filter Gaussian filter 



More Average vs. Gaussian Filter 

mean filter Gaussian filter 

5 × 5 

15 × 15 

31 × 31 



Properties of Smoothing Filters 

• Values positive  
• Sum to 1  

• constant regions same as input 
• overall image brightness stays unchanged 

• Amount of smoothing proportional to mask size 
• larger mask means more extensive smoothing 

 



Convolution 
• Convolution:  

• Flip the mask in both dimensions  
• bottom to top, right to left 

• Then apply cross-correlation 
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• Notation for convolution: g = H*f 



Convolution vs. Correlation 

• Convolution: g = H*f  
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• Correlation: g = H ⊗ f 
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• For  Gaussian or box filter, how the outputs differ?  
• If the input is an impulse signal, how the outputs differ? 



Derivatives and Edges 

image 
intensity function 

(along horizontal scanline) first derivative 

edges correspond to 
extrema of derivative 

• An edge is a place of rapid change in intensity 



Derivatives with Convolution 
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• For 2D function f(x,y), partial derivative in horizontal 
direction 

• For discrete data, approximate 

• Similarly, approximate vertical partial derivative (wrt y) 

• How to implement as  a convolution? 



Image Partial Derivatives 
Which is with respect to x? 

-1     
1 

1     
-1 or 

 -1    1 

x
yxf

∂
∂ ),(

y
yxf

∂
∂ ),(

 1    -1 
or 



Finite Difference Filters 
• Other filters for derivative approximation 
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Image Gradient 

• Combine both partial derivatives into vector 

• Gradient points in the direction of most rapid increase in intensity 
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Sobel Filter for Vertical Gradient Component 
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Slide Credit: D. Hoeim 



Sobel Filter for Horizontal Gradient Component 
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Horizontal Edge 
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Sobel 

Slide Credit: D. Hoeim 



Edge Detection 

• Smooth image 
• gets rid of noise and small detail 

• Compute Image gradient (with Sobel filter, etc) 
• Pixels with large gradient magnitude are marked as edges 
• Can also apply non-maximum suppression to “thin” the 

edges and other post-processing 
 

canny edge detector 



 What does this Mask Detect? 

2 2 -4 -4 2 2 

2 2 -4 -4 2 2 

2 2 -4 -4 2 2 

2 2 -4 -4 2 2 

2 2 -4 -4 2 2 strong negative response strong positive response 

• Masks “looks like” the feature it’s trying to detect 
 

 
 
 
 



 What Does this Mask Detect? 

2 2 -2 -2 
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strong negative response strong positive response  



Image Features 

• Edge features capture places where something interesting 
is happening 
• large change in image intensity 

• Edges is just one type of image features or “interest 
points” 

• Various type of corner features, etc. are popular in vision 
• Other features: 

 

 
 
 
 

corners stable regions SIFT 



Template matching 
• Goal: find       in image 
• Main challenge: What 

is a good similarity or 
distance measure 
between two patches? 
• Correlation 
• Zero-mean correlation 
• Sum Square Difference 
• Normalized Cross 

Correlation 
 

Slide Credit: D. Hoeim 



Method 0: Correlation 
• Goal: find       in image 
• Filter the image with H = “eye patch” 

 

Input Filtered Image 
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f = image 
H = filter 

Slide Credit: D. Hoeim 



Method 1: zero-mean Correlation 
• Goal: find       in image 
• Filter the image with zero-mean eye 

 

Input Filtered Image (scaled) Thresholded Image 
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Slide Credit: D. Hoeim 



Method 3: Sum of Squared Differences 
• Goal: find       in image 

 

Input 1- sqrt(SSD) Thresholded Image 
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Slide Credit: D. Hoeim 



Problem with SSD 
• SSD is sensitive to changes in brightness 

 

Input 1- sqrt(SSD) 

Slide Credit: D. Hoeim 

(      -       )2 = large 
(      -       )2 = medium 



Method 3: Normalized Cross-Correlation 
• Goal: find       in image 
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Input 

Normalized X-Correlation 

Thresholded Image 

True detections 

Slide Credit: D. Hoeim 

Method 3: Normalized Cross-Correlation 



Comparison 
• Zero-mean filter: fastest but not a great 

matcher 
• SSD: next fastest, sensitive to overall 

intensity 
• Normalized cross-correlation: slowest, 

but invariant to local average intensity 
and contrast 

Slide Credit: D. Hoeim 



Optical flow 

• How to estimate pixel motion from image I1  to image I2 ? 
• Solve pixel correspondence problem 

• given a pixel in I1 , find pixels with similar color in I2 

• Frequently made assumptions 
• color constancy:  a point in I1 looks the same in I2 

• For grayscale images, this is brightness constancy 
• small motion:  points do not move very far 

• This is called the optical flow problem 

first image I1 second image I2 



Optical Flow Field 



• Optical flow field is the apparent motion of brightness 
patterns between 2 (or several) frames in an image 
sequence 

• Why does brightness change between frames? 
• Assuming that illumination does not change: 

• changes are due to the RELATIVE MOTION between the scene 
and the camera 

• There are 3 possibilities: 
• Camera still, moving scene 
• Moving camera, still scene 
• Moving camera, moving scene 

 

Optical Flow and Motion Field 



Motion Field (MF) 

• The MF assigns a velocity vector to each pixel in the 
image 

• These velocities are induced by the relative motion 
between the camera and the 3D scene 

• The MF is the projection of the 3D velocities on the 
image plane 



Examples of Motion Fields 

 (a) (b) 

 (c) (d) 

(a) Translation perpendicular to a surface. (b) Rotation about axis 
perpendicular to image plane. (c) Translation parallel to a surface at a 
constant distance. (d) Translation parallel to an obstacle in front of a more 
distant background. 



Optical Flow vs. Motion Field 

 (a) (b) 

(a) A smooth sphere is rotating 
under constant illumination. 
Thus the optical flow field is 
zero, but the motion field is 
not 

(b) A fixed sphere is illuminated 
by a moving source—the 
shading of the image changes. 
Thus the motion field is zero, 
but the optical flow field is not 

• Optical Flow is the apparent motion of brightness   patterns 
• We equate Optical Flow Field with Motion Field 
• Frequently works, but now always:  



 Optical Flow vs. Motion Field 

• Often (but not always) optical flow corresponds to 
the true motion of the scene 

 
 



Human Motion System 
Illusory Snakes 

from Gary Bradski and Sebastian Thrun 



Computing Optical flow: Direct Search 

• Can perform direct search for pixel correspondence 
• Individual pixels are not reliable to match 

first image I1 second image I2 

? ? 

? 



Computing Optical flow: Direct Search 

• Can perform direct search for pixel correspondence 
• Individual pixels are not reliable to match 
• For each pixel, take a patch of pixels around it, and match patches 

• Use any of template matching cost functions studied previously 

first image I1 second image I2 



Computing Optical flow: Direct Search 

• Can perform direct search for pixel correspondence 
• Individual pixels are not reliable to match 
• For each pixel, take a patch of pixels around it, and match patches 

• Use any of template matching cost functions studied previously 

first image I1 second image I2 

• Assuming small motion lets us limit the search to a small area 
around pixel’s position in the first image 



Computing Optical Flow without Direct Search 

• Can find optical flow without direct search 
• Very small motion (not more than one pixel) 

• will relax this later 

• Color constancy 
• Can also be relaxed 

 

first image I1 second image I2 



Computing Optical Flow: Brightness Constancy Equation 

• Let P be a moving point in 3D: 
• At time t, P has coordinates (X(t),Y(t),Z(t)) 
• Let p=(x(t),y(t)) be the coordinates of its image at 

time t 
• Let E(x(t),y(t),t) be the brightness at p at time t. 

• Brightness Constancy Assumption: 
• As P moves over time, E(x(t),y(t),t) remains 

constant 



Computing Optical Flow: Brightness Constancy Equation 

• Taking derivative with respect to time:  

• Rewriting:  



Computing Optical Flow: Brightness Constancy Equation 

frame spatial gradient optical flow derivative across frames 

• This is one equation with two unknowns: 

• Let’s group some terms together:  
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Computing Optical Flow: Brightness Constancy Equation 

• Need to get more equations for a pixel: 
• Idea:  impose additional constraints 

• assume that the flow field is smooth locally 
•  i.e. pretend the pixel’s neighbors have the same (u,v) 

• If we use a 5x5 window, that gives us 25 equations per pixel! 
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* Picture from Khurram Hassan-Shafique CAP5415 Computer Vision 2003 

* 

 Video Sequence 



Optical Flow Results 

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003 



Revisiting the small motion assumption 

• Is this motion small enough? 
• Probably not—it’s much larger than one pixel 
• How might we solve this problem? 



Reduce the resolution! 

motion is about 1 pixel 



image I image H 

Gaussian pyramid of image H Gaussian pyramid of image I 

image I image H u=10 pixels 

u=5 pixels 

u=2.5 pixels 

u=1.25 pixels 

Coarse-to-fine optical flow estimation 



Iterative Lukas-Kanade Refinement 

Gaussian pyramid of image H Gaussian pyramid of image I 

image I image H 

solve for optical flow 



Iterative Lukas-Kanade Refinement 

image I image H 

solve for optical flow 

wrap H  towards I using 
estimated flow field 

H I 

• Before wrapping, motion of 3.9 pixels 
• Estimated flow is 1.4 pixels to the left 

• After wrapping 
• Residual motion is 1.1 pixels to the left 

H I 

move by 2.8 since image twice bigger 



Iterative Lukas-Kanade Refinement 

image I image H 

solve for optical flow 

wrap H  towards I using 
estimated flow field 

solve for optical flow 

• Continue iterations until reach the bottom 
of the pyramid 
• Solve for optical flow 
• Wrap H toward I using estimated optical flow 



Optical Flow Results 

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003 



Modern OF Algorithms 

• A lot of development in the past 10 years 
• See Middlebury Optical Flow Evaluation 

• http://vision.middlebury.edu/flow/ 
• Dataset with ground truth 

http://vision.middlebury.edu/flow/
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